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Abstract

An important hallmark of cardiac failure is abnormal second messenger signaling due to impaired 

synthesis and catabolism of adenosine 3’,5’-cyclic monophosphate (cAMP) and cyclic guanosine 

3’,5’-cyclic monophosphate (cGMP). Their dysregulation, altered intracellular targeting, and 

blunted responsiveness to stimulating pathways all contribute to pathological remodeling, muscle 

dysfunction, reduced cell survival and metabolism, and other abnormalities. Therapeutic 

enhancement of either cyclic nucleotide can be achieved by stimulating their synthesis and/or by 

suppressing members of the family of cyclic nucleotide phosphodiesterases (PDEs). The heart 

expresses seven of the eleven major PDE sub-types - PDE1, 2, 3, 4, 5, 8, and 9. Their differential 

control over cAMP and cGMP signaling in various cell types, including cardiomyocytes, provides 

intriguing therapeutic opportunities to counter heart disease. This review examines the roles of 

these PDEs in the failing and hypertrophied heart, and summarizes experimental and clinical data 

that has explored the utility of targeted PDE inhibition.
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Introduction

Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze the cyclic 

nucleotides adenosine 3’,5’-cyclic monophosphate (cAMP) and cyclic guanosine 3’,5’-

cyclic monophosphate (cGMP). Both cyclic nucleotides are synthesized in specific 

intracellular compartments by corresponding cyclases, and are selectively catabolized by 

members of the PDE superfamily. The resulting localized activation elicits targeted cellular 

responses to multiple stimuli. Levels of both myocardial cyclic nucleotide synthesis and 

hydrolysis are altered by physiological and pathological stress, and play an important role in 

diseases such as cardiac failure. Therapies to restore their signaling to improve cardiac 
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function and suppress maladaptive organ and molecular remodeling have been and continue 

to be pursued. Targeting PDEs is particularly attractive as highly specific and potent small 

molecule inhibitors have been developed for many of the enzymes, and their expression in 

particular cell types and intracellular nanodomain regulation affords targeted influences over 

cyclic nucleotide signaling. Inhibitors of PDE3 are in clinical use for acute heart failure, 

PDE4 for psoriasis and chronic obstructive lung disease, and PDE5 for erectile dysfunction 

and pulmonary hypertension). None are presently approved for chronic heart failure, but 

several are being studied for such indications. This review describes the role and potential 

utility of pharmacological targeting of PDEs in the diseased heart, focusing first on those for 

which clinical data has been generated, followed by those where only pre-clinical data has 

been obtained thus far.

Cyclic Nucleotides: Cardiac Second Messengers with Pleiotropic Effects

Both cAMP and cGMP modulate a wide range of myocardial properties including 

contraction and relaxation, diastolic stiffness, heart rate, cell growth and survival, interstitial 

fibrosis, vascular tone, and endothelial permeability and proliferation. Cyclic AMP is 

generated by adenylate cyclase (AC type 5 and type 6 in the heart) and it activates one of 

two cognate proteins: protein kinase A (PKA) or exchange protein directly activated by 

cAMP (Epac). In the cardiomyocyte, PKA phosphorylates multiple proteins controlling 

excitation-contraction coupling and sarcomere function. These include troponin I (Kentish et 

al., 2001), titin (Yamasaki et al., 2002), myosin binding protein C (Nagayama et al., 2007; 

Stelzer et al., 2006), phospholamban (MacLennan and Kranias, 2003), the ryanodine 

receptor (RyR2) (Reiken et al., 2002), and the L-type calcium channel (Verde et al., 1999). 

Epac is a guanine nucleotide exchange factor (GEF) protein that can activate calcium-

calmodulin activated kinase II (CamKII) signaling to alter calcium cycling and gene 

transcription (Gloerich and Bos, 2010). In the cardiomyocyte, both PKA and Epac are 

engaged by cAMP synthesis coupled to β-adrenergic G-protein coupled receptor 

stimulation.

Cyclic GMP is generated by either a soluble guanylate cyclase (sGC) activated by nitric 

oxide, or a receptor-bound cyclase (GC-A or GC-B) in the intracellular domain of the 

natriuretic peptide receptor. The targeted kinase is cGMP-stimulated kinase (cGK1 in the 

heart, also called PKG-1) that phosphorylates many of the same calcium homeostasis and 

sarcomere proteins targeted by PKA (e.g. phospholamban, TnI, titin, myosin binding protein 

C). However, other cGK1 targets oppose neurohormonal stimulation pathways, such as 

regulator of G-protein signaling 2 and 4 (RGS2, RGS4) that counter Gq- and Gi-receptor 

coupled agonism (Takimoto et al., 2009; Tokudome et al., 2008), ion channels like transient 

potential receptor canonical type 6 (TRPC6) that stimulate calcineurin/NFAT signaling 

(Kinoshita et al., 2010; Koitabashi et al., 2010; Nishida et al., 2010), and RhoA which 

regulates Rho-kinase signaling (Sawada et al., 2001), and myosin light chain phosphatase 

(Surks et al., 1999). In the myocyte, cGK1 does not stimulate L-type calcium current. Thus, 

cGK1 generally acts as a myocardial brake, that can counter cAMP/PKA stimuli acutely and 

chronically suppress stress-mediated signaling.
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Upon synthesis, local regulation of cyclic nucleotides is exquisitely controlled by members 

of the PDE superfamily. The 11 family members of PDEs are expressed by nearly 100 

isoform variants (Maurice et al., 2014) that differ mainly in their N-terminus regulatory 

domains. By contrast, their catalytic domains are broadly conserved, with each species 

having subtle differences to provide cAMP- and/or cGMP-substrate specificity (Bender and 

Beavo, 2006; Francis et al., 2011). PDEs pose unique opportunities for pharmacological 

modification of cyclic nucleotide signaling because they are selectively expressed in various 

cell types. PDEs 1–5, 8 and 9 are expressed in myocardium, with some species-dependent 

differences in isoform expression, notably in PDE1 (Table 1). PDE1, 2, 3 are all dual 

substrate esterases, PDE5 and PDE9 are selective for cGMP, and PDE4 and PDE8 are 

selective for cAMP. Preclinical studies have established a role in cardiac regulation for all of 

these species, while clinical data related to heart disease only exists for PDE3 and PDE5. 

Importantly, all of these PDEs are dysregulated in conditions of cardiac failure, infarction, 

and hypertrophy, often but not always displaying increased expression. This applies to 

disease in multiple experimental models as well as in humans (Table 2). Furthermore, 

studies using either selective pharmacological or genetic modulators of these PDEs have 

revealed their potent impact on disease pathophysiology, supporting therapeutic potential 

(Table 3).

PDE3 and Dilated Cardiomyopathy

The first exploration for a therapeutic role of PDE modulation to treat heart disease evolved 

with the discovery that PDE3 modulated cAMP, and that its inhibition could potentially 

enhance PKA- (and Epac-) dependent signaling in the diseased heart. PDE3 is expressed in 

two primary isoforms, PDE3A and PDE3B, and both are found in cardiomyocytes. PDE3A 

is the predominant form (Meacci et al., 1992; Sun et al., 2007), and its three splice variants 

differ in intracellular compartmentation (Wechsler et al., 2002) as well as regulation by PKA 

and PKC (Vandeput et al., 2013). These isoforms operate in microdomains, for example 

PDE3A localizes to the sarcolemmal membrane), and this allows for regulation of 

compartmentalized PKA signaling (Leroy et al., 2008; Zaccolo, 2009; Zaccolo and Pozzan, 

2002). While PDE3 can hydrolyze both cAMP and cGMP, it favors cAMP due to a much 

higher Vmax for this substrate.

PDE3 inhibition results in increased L-type calcium current (Verde et al., 1999) which 

stimulates contractility (Weishaar et al., 1987), an effect principally mediated by PDE3A 

(Sun et al., 2007). PDE3A co-immuno-precipitates with a protein complex containing 

SERCA2a, phospholamban and A-kinase anchoring protein 18 (AKAP18) in a PKA-

phosphorylation dependent manner (Ahmad et al., 2015). This specifically targets a pool of 

cAMP to regulate calcium cycling via the sarcoplasmic reticulum (Beca et al., 2013). Broad 

PDE3 inhibition can also stimulate arrhythmia by excessive calcium entry and internal 

release from the SR coupled to both PKA and Epac2-CamKII activation (Bobin et al., 2016). 

PDE3 also influences cellular apoptosis as revealed in studies of myocardial infarction. In 

this condition, PDE3A inhibition can damage the heart by increasing activity of ICER 

(inducible cAMP early repressor) to suppress Bcl2 expression and promote apoptosis (Ding 

et al., 2005; Yan et al., 2007). Enhancing PDE3A expression is cardioprotective against 

ischemia-reperfusion (Oikawa et al., 2013). However, the opposite holds for PDE3B, whose 
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gene deletion is protective against cardiac ischemia/reperfusion injury (Chung et al., 2015). 

Summary signaling is shown in Figure 1.

Given the potential for PDE3 inhibition to improve myocardial hemodynamics by enhancing 

contractility while also dilating veins and arteries to reduce cardiac load, it became the first 

PDE targeted for inhibition to treat heart failure. While acute responses appeared promising, 

trials with sustained PDE3 inhibition increased adverse events and mortality in HF patients 

(Cuffe et al., 2002; DiBianco et al., 1989; Metra et al., 2009; Packer et al., 1991). Di Bianco 

et al. compared milrinone (10 mg/qid) to the cardiac glycoside digoxin (DiBianco et al., 

1989), but found no added benefit over digoxin. In the pivotal 6-month PROMISE study 

(The Effects of Oral Milrinone on Mortality in Severe Chronic Heart Failure), Packer et al. 

found no improvement in heart function over placebo (Packer et al., 1991), but rather 

increased arrhythmia, hypotension, and greater mortality. The subsequent OPTIME-CHF 

(Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic 

Heart failure) study also reported no clinical benefit over placebo (Cuffe et al., 2002). 

Despite this, short-term PDE3 inhibition remains in use for acute decompensated HF.

Several conclusions evolved from these studies. One was that doses yielding substantive 

acute inodilator responses were probably too high to avoid chronic toxicity. Another was 

that interventions substantively increasing intracellular calcium transients may pose 

arrhythmogenic risks. As these trials predated the era of broad β-adrenergic blockade use, 

some hypothesized that PDE3 inhibition might be safe if combined with such therapy. This 

was tested in the ESSENTIAL trials (Studies of Oral Enoximone Therapy in Advanced HF), 

examining enoximone combined with background β-blockade (Metra et al., 2009). Unlike 

the earlier studies, enoximone did not worsen mortality; however, it also did not improve 

symptoms or exercise capacity.

Despite this history, there interest remains in modulating PDE3 (Movsesian et al., 2011). 

This has evolved in part from recent data that isoform-specific targeting might enhance 

beneficial effects while avoiding toxicity. For example, PDE3A rather than PDE3B is 

required to enhance myocyte contractility and calcium cycling (Beca et al., 2013; Sun et al., 

2007). However, mice lacking PDE3B also show protection against ischemic reperfusion, so 

selective targeting only of the PDE3A isoform would seem undesirable (Chung et al., 2015). 

However, splice variants PDE3A1 and A2 also differ, with unique phosphorylation 

responses to PKA and PKC (Vandeput et al., 2013) due to specific protein-protein 

interactions. Thus, one approach being explored is to express a disrupting peptide to 

interfere with a specific isoform protein complex to dislocate the PDE from its normal 

effectors without impacting the other isoform. If successful, this approach might avoid 

unwanted effects from non-selective inhibitors.

PDE5 and Dilated Cardiomyopathy

PDE5A was the first cGMP-selective isotype discovered. Its esterase activity is stimulated 

both by cGMP binding to regulatory GAF-domains in the N-terminus, and by cGK1 

phosphorylation at S92 (Corbin et al., 2000; Francis et al., 2002; Rybalkin et al., 2003), 

creating a negative feedback loop. Immunocytochemical evidence has shown that PDE5A 
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localizes to the Z-disk in the cardiomyocyte, but this can become diffuse in mammalian 

models of hypertrophy and heart failure (Takimoto et al., 2005a; Zhang et al., 2008) and in 

the absence or suppression of nitric oxide synthase synthase III (Nagayama et al., 2008; 

Takimoto et al., 2005b). At the Z-disk, it predominately targets cGMP generated by the 

nitric oxide-soluble guanylyl cyclase (NO-sGC) pathway, having only minimal impact on 

natriuretic peptide (NP)-stimulated cGMP pools (Fischmeister et al., 2006; Lee et al., 2015; 

Takimoto et al., 2005a).

PDE5A is expressed at very low levels in the normal myocardium, but is upregulated in 

DCM (Andersen et al., 2012; Shan et al., 2012) and in RV hypertrophy associated with 

pulmonary hypertension (Nagendran et al., 2007). There remains some controversy 

regarding PDE5A expression in the human heart, based primarily on differences in 

immunoblot data (Degen et al., 2015). As gene deletion models – even conditional ones - 

have not been successful, absolute proof of the role of normal PDE5A in the heart in vivo 
remains indirect. However, myocyte specific overexpression models have shown PDE5A 

upregulation worsens the consequences of pressure overload (Zhang et al., 2010) and 

myocardial infarction (Pokreisz et al., 2009), and that subsequent genetic suppression of the 

same gene is sufficient to reverse pathological hypertrophy/fibrosis induced by pressure-

overload (Zhang et al., 2010).

In experimental models, PDE5A inhibition stimulates cGK1 activity to suppress multiple 

cardiac signaling pathways engaged in pathological hypertrophy and HF. This includes 

blockade of calcineurin/NFAT signaling (Takimoto et al., 2005c), its activation of regulators 

of G-protein signaling (RGS2/4) to block Gq-activated cascades (e.g. from angiotensin or 

endothelin-1) (Takimoto et al., 2009), inhibition of transient receptor potential canonical ion 

channel - type 6 (Trpc6) (Seo et al., 2014), improvement of proteasome degradation of 

misfolded proteins (Ranek et al., 2013), enhanced mitochondrial and consequent 

cytoprotection against ischemic injury linked to glycogen synthesis kinase 3-β and mitogen 

activated kinase ERK1/2 (Das et al., 2008), and other mechanisms. cGK1 activation can also 

improve diastolic function by phosphorylating titin to increase distensibility (Bishu et al., 

2011). Figure 2 summarizes these PDE5A effects on cGMP/cGK1 signaling.

The clinical effects of PDE5A inhibition on dilated HF have been principally studied in 

patients who also had pulmonary hypertension, as the latter is an approved therapeutic target 

for PDE5A inhibitors. Lewis et al. (Lewis et al., 2007) tested 12 weeks of sildenafil therapy 

and found peak oxygen consumption and cardiac output was enhanced and coupled to 

improved exercise capacity and quality of life. Similar results were observed by others 

(Behling et al., 2008; Kim et al., 2015), including data showing PDE5A inhibition improves 

LV function and exercise oscillatory ventilation, the latter a clinical index of DCM outcome 

(Murphy et al., 2011). The extent to which direct myocardial effects underlie benefit from 

PDE5A inhibition in DCM remains speculative. Systemic arterial vasodilation is minimal, so 

LV unloading is unlikely, but PDE5A inhibition can dilate small arteries that may enhance 

skeletal muscle oxygenation (Ghofrani et al., 2004). As of now, no definitive multicenter 

trial of PDE5A inhibition in DCM has been conducted. A pivotal >2000 patient NIH-

sponsored trial (PITCH-HF) was initiated in November 2013, but then terminated 4 months 

later due principally to budget constraints.
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Another form of DCM for which PDE5A inhibition has been studied is associated with 

Duchenne muscular dystrophy. This disease is caused by missense mutations in the 

dystrophin gene that results in full disruption of the dystro-sarcoglycan complex essential to 

normal skeletal and cardiac muscle function and survival. Duchenne patients develop near 

total loss of skeletal motor function by their early teens, and heart failure generally follows. 

The dystro-sarcoglycan complex also anchors neuronal NOS at the plasma membrane of 

skeletal muscle (Brenman et al., 1995), and its absence leads to disrupted NO signaling that 

is thought to depress microvascular flow leading to ischemia (Kobayashi et al., 2007; 

Loufrani et al., 2002). The impact on NOS dyslocalization in cardiomyocytes is less clear, 

though cGMP signaling appears to be depressed and its activation maybe therapeutic. Seo et 

al (Seo et al., 2014), reported hyper-active mechano-stimulated force, intracellular calcium, 

and associated arrhythmia in myocytes from a DMD mouse model that were all potently 

suppressed by cGMP activation. This effect was also achieved by chronic PDE5A inhibition, 

that further improved both in vivo cardiac function and reduced hypertrophy. The latter data 

support studies reported from mouse and canine models of DMD (Adamo et al., 2010; 

Albert et al., 2012).

Human trials have shown that acute PDE5A inhibition improves microvascular flow in 

skeletal muscle to match contractile stress in Duchenne patients (Nelson et al., 2014). 

However, when tested in non-ambulatory adults with advanced Duchenne skeletal and 

cardiac disease, 6 months of sildenafil therapy did not improve heart function (Leung et al., 

2014). Furthermore, a recently completed international multicenter trial of tadalafil in 

ambulatory boys with Duchenne and no cardiac disease also failed to improve motor 

capacity. This could indicate that PDE5A is not the right target for improving cGMP 

signaling, but that modulating cGMP synthesis or using other PDE inhibitors might be 

successful. It may also require some gene correction in addition to any modulation of cGMP 

signaling to achieve benefits.

PDE5A and Non-dilated Heart Disease

About half of all patients with heart failure symptoms have ventricles that do not dilate but 

rather present with an ejection fraction in the normal range. This is often termed heart failure 

with a preserved EF (HFpEF), a multifactor syndrome that has proven difficult to treat, with 

no current specific evidence-based therapy (Shah et al., 2016). While HFpEF implies a 

central role for heart disease, the reality is more complex as many other organ 

pathophysiologies contribute, including from the lung, kidney, skeletal muscle, 

neuroregulatory systems, and adipose tissue. Common co-morbidities are type-2 diabetes, 

obesity, hypertension, cardiac hypertrophy, pulmonary hypertension, inflammatory disease, 

and renal insufficiency (Shah et al., 2016).

Since cGK1 activation can reduce hypertrophy, fibrosis, PH, while improving metabolism 

and potentially renal function, it has been an attractive strategy for treating HFpEF. In 

patients with LV diastolic dysfunction and PH, chronic sildenafil treatment lowered mean 

pulmonary artery pressure and improved RV function and LV relaxation (Guazzi et al., 

2011). A subsequent study, however, found no benefit on either invasive hemodynamics or 

exercise performance (Hoendermis et al., 2015). More convincingly, a larger 6-month 
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multicenter trial of the same drug in HFpEF patients also reportedno benefits over placebo 

(Redfield et al., 2013). However, the patient cohort for this study included few subjects with 

PH, and a majority lacked LV hypertrophy and many did not have diastolic dysfunction. 

Prior animal data has shown that the influence of PDE5A inhibition to counter pressure-

overload induced cardiac disease requires the presence of sufficient maladaptive remodeling 

so that cGK1 has something useful to suppress (Nagayama et al., 2009). Perhaps more 

importantly, other studies have found human HFpEF myocardium contains very little cGMP 

and has low cGK1 activity, neither being attributable to elevated PDE5A activation (van 

Heerebeek et al., 2012). This makes it less likely that PDE5A inhibition could have much 

impact.

HFpEF particularly affects older women and reduced NO-signaling consequent to 

menopause maybe provide another reason for little impact from PDE5A inhibition. In 

women, the estrogen receptor couples to NOS-dependent cGMP synthesis via a non-

transcriptional signaling pathway (Haynes et al., 2000; Leung et al., 2007). As this NO-

derived cGMP is the primary target of PDE5A, its decline post menopause may limit the 

efficacy of PDE5A inhibition. Consistent with this hypothesis, Sasaki et al. (Sasaki et al., 

2014) found that female mice with Gαq-over expression or pressure-overload induced heart 

disease responded favorably to PDE5A inhibition, but this benefit was lost if the mice 

underwent ovariectomy. The efficacy of PDE5A inhibition was restored if exogenous 

estrogen was subsequently provided. This may have contributed to differences in results 

from the two hemodynamic studies, with negative data coming from mostly female patients 

(>75%) (Hoendermis et al., 2015) and positive results from mostly males (Guazzi et al., 

2011).

Lastly, PDE5A inhibition has been studied in patients with type 2 diabetes and evidence of 

ventricular dysfunction but no heart failure symptoms. Chronic sildenafil treatment 

improved some indexes of LV contraction and morphology (Giannetta et al., 2012). 

Additional studies in this disease have not yet been reported. Further, whether this relates to 

myocardial, vascular, or potentially metabolic effects such as improved insulin sensitivity 

(Ho et al., 2014; Ramirez et al., 2015) from PDE5A inhibition, remains unclear.

Potential roles for PDE1, PDE2 and PDE9 in Heart Failure

PDE1

The PDE1 family is encoded by three genes PDE1A, PDE1B and PDE1C. PDE1A is 

selective for cGMP, whereas PDE1B and PDE1C display balanced substrate selectivity. All 

three isoforms are expressed in human myocardium (Table 1), with PDE1C the predominant 

ventricular isoform (Loughney et al., 1996; Lukowski et al., 2010; Miller et al., 2009; 

Vandeput et al., 2007). By contrast, PDE1A is the predominant isoform in rat and mouse 

heart (Miller et al., 2009). All three require activation by calcium/calmodulin making them 

of interest in cardiac stress conditions. In rodents, PDE1A expression is pathologically 

upregulated in myocytes and fibroblasts in response to Gq-coupled agonists (e.g. angiotensin 

II), and by myocardial stress such as infarction (Miller et al., 2011), pressure overload, and 

chronic isoproterenol infarction (Miller et al., 2009). Broad PDE1 inhibition was effective in 

vitro in suppressing myocyte hypertrophy and fibroblast activation, and in vivo against 
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isoproterenol infusion. (Figure 1) While it is likely PDE1A is engaged in these behaviors, 

PDE1A knockout mice remain yet to be reported. PDE1C global knockout mice have been 

generated and studied for their role in the olfactory system (Cygnar and Zhao, 2009). 

Preliminary data from these mice has revealed protection against pressure overload 

hypertrophy and apoptosis (Knight et al., 2014). The mechanism for the former remains 

unclear, while the latter appears related to cAMP rather than cGMP signaling. Broad PDE1 

inhibitors have already been developed for human use and tested in patients with 

schizophrenia (Heckman et al., 2015). Cardiovascular studies of the hemodynamic and 

direct myocardial effects of non-selective PDE1 inhibitors in larger mammals are also 

ongoing, and clinical studies may follow.

PDE2A

PDE2A is a dual-substrate enzyme which provides important cyclic nucleotide cross-talk as 

it is activated by cGMP, binding to regulatory GAF domains, to enhance hydrolysis of 

cAMP (Martins et al., 1982). PDE2A is encoded by a single gene giving rise to three N-

terminal variants (Rosman et al., 1997). PDE2A3 is expressed in human, and found in 

cardiomyocytes and vascular endothelial cells (Sadhu et al., 1999). Zaccolo et al reported 

PDE2A modifies myocyte responses to β-adrenergic co-stimulation (Mongillo et al., 2006; 

Vandecasteele et al., 2001), controlling localized PKA-II at the plasma membrane in a 

cGMP-regulated manner (Zoccarato et al., 2015). Both NP- and NO-stimulated cGMP 

pathways are linked to PDE2A activation in quiescent adult and neonatal cardiac myocytes 

(Fischmeister et al., 2006); however, the physiological role cGMP hydrolysis in vivo remains 

unclear.

As with most of the other PDEs, PDE2A expression rises in the failing heart. Hypoxia 

increases PDE2A expression and activity through HIF1α and TNF-α signaling in cultured 

human umbilical vein endothelial cells (Chen et al., 2016). Myocardial expression is 

increased in rat hypertrophy (Mehel et al., 2013; Yanaka et al., 2003) and in canine pacing-

induced HF models (Mehel et al., 2013). Similar increases are reported in human ischemic 

or non-ischemic dilated HF, but not in hypertrophy (Mehel et al., 2013). PDE2A 

overexpression in isolated rat myocytes reduces L-type calcium current and corresponding 

calcium transients and sarcomere shortening following β-adrenergic stimulation. Chronic 

upregulation depresses hypertrophy induced by sustained β-adrenergic stimulation (Mehel et 

al., 2013), suggesting its activation is beneficial.

An alternative view was reported by Zoccarato et al. (Zoccarato et al., 2015), who found 

PDE2A inhibition suppresses norepinephrine-stimulated hypertrophy in the rat. Here, the 

mechanism was linked to an increase in cAMP-PKA signaling pathway that in turn 

increased NFAT phosphorylation. This curtailed the nuclear translocation of NFAT and 

downstream pro-hypertrophic signaling. Both studies reported regulation of cAMP by 

PDE2A amplified by cGMP, but their differences may relate to the precise conditions and 

local signaling linked to the stress trigger and cyclic nucleotide cross-talk. For instance, 

computer modeling (Zhao et al., 2016) predicts PDE2A hydrolyzes increasing amounts of 

cAMP as β-AR stimulation is enhanced, and hydrolyzes more cGMP at low levels of NO 

stimulation. Differences in cyclic nucleotide regulation, such as relocalization of PDE4 and 
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targeted stimulation of PKA isoform subtypes, are also induced by sustained adrenergic 

stimuli, and could alter net PDE2A responses (Fields et al., 2016). Figure 2 summarizes this 

signaling.

Therapeutic targeting of PDE2A in the intact myocardium poses further challenges in that its 

expression in myocytes and vascular endothelial cells may present opposing effects. For 

example, Chen et al. (Chen et al., 2016) revealed that NPs released after myocardial 

infarction increase endothelial permeability to amplify the post-injury inflammatory 

response. This was related to endothelial-specific NP receptor-guanylyl cyclase activation, 

though not to cGMP-activated cGK1 regulation. Rather, the newly generated cGMP 

stimulated PDE2A activity, further potentiating the esterase’s hypoxia-induced expression; 

this in turn lowered cAMP to promote endothelial leakiness. Thus, blockers of PDE2A 

might concomitantly reduce post-ischemic inflammation via endothelial-targeted activity, 

while increasing adrenergic-stimulated contractility but also suppressing hypertrophic 

signaling in the myocyte.

PDE9A

PDE9A is the most selective for cGMP from all the 11 species (Fisher et al., 1998; Soderling 

et al., 1998), and has been clinically developed and tested for its potential to treat cognitive 

disorders such as Alzheimer’s and schizophrenia (Duinen et al., 2015). It is expressed most 

prominently in brain (though still at low levels), but also in gut, kidney, and heart. Unlike 

PDE1, PDE2, or PDE5, there are presently no known mechanisms regulating its hydrolytic 

activity. The wide range of N-terminal splice variants are instead likely to impact subcellular 

targeting (Wang et al., 2003). Lee et al reported PDE9A is also upregulated in diseased 

myocardium, showing protein expression increases in human both dilated HF and HFpEF 

(Lee et al., 2015). In mice subjected to pressure overload, PDE9A deletion or its 

pharmacological inhibition led to improved LV function, and reduced fibrosis and 

hypertrophy. Importantly, PDE9A regulation of cGMP is distinct from PDE5A, in that the 

former selectively hydrolyzes cGMP derived from NP stimulation. This was confirmed in 

neonatal and adult cardiomyocytes and the intact heart (Figure 2). While inhibition of each 

selective PDE was linked to cGK1 activation, the protein targeting of the kinase as well as 

impact on transcriptional regulators as deduced by non-biased phospho-proteomics was 

distinct (Lee et al., 2015). These results have potentially significant therapeutic implications 

as NOS declines in many HF patients (Umar and van der Laarse, 2010), and as mentioned, is 

compromised in women by the decline in estrogen post menopause. Targeting PDE9A 

inhibition may circumvent obstacles posed by depressed NO-dependent signaling.

Beyond single small molecule PDE suppression

Advances in biochemical and cloning techniques helped unveil the structural similarities as 

well as differences among PDE species, and facilitated small molecule design for highly 

potent and selective inhibitors. Still, our capacity to influence isoform subtypes remains 

poor, while data increasingly shows how this is central to their intracellular regulation. The 

concept of protein complex disruption for the cAMP signalosome may be easier to achieve 

given the existence of A-kinase anchoring proteins (AKAPs) (Esseltine and Scott, 2013; 
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Nygren and Scott, 2015). These proteins act as coordinators of a cAMP-cyclase, targeted 

effector kinase, and regulatory PDEs to provide microdomain control. Equivalent proteins 

for cGMP-kinase signaling have not been found and this may make it more difficult to target 

a specific cGK1 pool.

Another issue is whether targeting a single PDE is the optimal approach, or whether 

strategic combinations may prove more effective. For example, both PDE5A and PDE9A 

regulate cGMP, but the results showing different proximal triggers and shared as well as 

different downstream effectors might raise the potential for combined efficacy. Synergy 

between PDE3 and PDE4 inhibition has been reported in myocytes (Mika et al., 2013). A 

particularly striking example was reported in a study of steroid production (Shimizu-

Albergine et al., 2012) in testicular Leydig cells, where inhibition of PDE4 or PDE8 alone 

resulted in modestly elevated testosterone production, but their combination increased this 

100-fold.

Conclusion

Since their discovery over 50 years ago, the importance of PDEs for fine tuning localized 

second messenger signaling has been increasingly recognized. While much structural 

chemistry and pharmacology is already established, our understanding of sub-cellular 

physiology and full therapeutic potential has lagged. Novel approaches beyond single-target 

small molecule inhibitors, combining stimulation with hydrolytic suppression, using dual 

PDE suppression, or disrupting protein complexes to target specific isoforms, may all 

ultimately change the therapy landscape. New work with several PDEs not been previously 

known for relevance to heart disease has already opened up new territory and opportunities. 

Thus, while the PDE field has in many ways matured, its impact on human disease remains 

to be fully leveraged, and exciting times lie ahead.
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Figure 1. 
Signaling pathways and their myocardial effects coupling PDE-cAMP modulation with the 

activation of protein kinase A, epac, and their downstream effectors. Pathways for which 

published data has defined a link between a given PDE and specific downstream effects have 

been color coded: PDE1 in blue, PDE2A in red, and PDE3A in green.
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Figure 2. 
Signaling pathways and their myocardial effects coupling PDE-cGMP modulation with 

cyclic GMP activated protein kinase (cGK1) and their downstream effects. Pathways that 

regulate cardiac cGMP signaling. Pathways for which published data has defined a link 

between a given PDE and specific downstream effects have been color coded: PDE1 in blue, 

PDE2A in red, and PDE5A in purple, and PDE9A in yellow.
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Table 1

Specificity and Regulation of PDEs Expressed in Myocardium

PDE Substrate Regulator

1A*

cAMP/cGMP Calcium/calmodulin activated1B

1C†

2A cAMP/cGMP cGMP activated cAMP hydrolysis

3A‡
cAMP/cGMP cGMP inhibited

3B

5A cGMP cGMP activated

9A cGMP None known

*
prominent isoform expressed in mouse and rat;

†
prominent isoform in human, dog, rabbit;

‡
predominantly expressed myocardial isoform

Handb Exp Pharmacol. Author manuscript; available in PMC 2017 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim and Kass Page 19

Table 2

Pathologic Alterations in Myocardial PDE Expression (In Vivo Studies)

PDE
Family Change Species Cardiomyopathy References

1A Increased

Rat Hypertrophy (aortic constriction) Yanaka et al., 2003

Human Post-myocardial infarction Miller et al., 2011

Mouse Hypertrophy (ISO, AII, , TAC)
Miller et al., 2009; Miller et al., 2011

Rat Isoproterenol-induced HCM

2A Increased

Rat Hypertrophy (aortic constriction) Yanaka et al., 2003

Human DCM, ICM, but not in AS

Mehel et al., 2013Dog Pacing-induced HF

Rat Isoproterenol-induced HCM

3A Decreased
Human DCM Ding et al, 2005

Dog Pacing-induced HF Smith et al, 1997

5A Increased

Human DCM, ICM Pokreisz et al., 2009; Lu et al., 2010; Shan et al., 2012; Nakano et al., 
2016

Human RV hypertrophy, DCM, AS Nagendran et al., 2007; Vandenwijngaert et al., 2013 Shan X et al, 
2012

Mouse TAC-induced HCM Lu et al., 2010; Vandenwijngaert et al., 2013

9A Increased
Human DCM, HF and AS

Lee et al., 2015
Mouse TAC-induced HCM

ISO (isoproterenol); AII (angiotensin II); TAC (transaortic constriction); HCM (hypertrophic cardiomyopathy); DCM (dilated cardiomyopathy); 
ICM (ischemic cardiomyopathy); RV (right ventricle); AS (aortic stenosis); HF (heart failure)
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