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The clinical problem
Ischemic and non-ischemic cardiomyopathies eventually lead to
left ventricular dysfunction and heart failure. Heart failure impedes
quality of life, decreases life expectancy and increases medical costs
dramatically, and thus constitutes a major health problem
(McMurray and Pfeffer, 2005). As the population ages, the
prevalence of heart failure will increase. Current therapy provides
some survival benefit and improvement of symptoms, but cannot
reverse the condition of cardiac tissue from a diseased to a healthy
state. Recent developments in stem cell biology and regenerative
medicine may offer ways to manage heart failure by replacing
damaged or lost cardiac muscle with healthy tissue, and thus
improve the quality of life and survival in patients with various
cardiomyopathies.

The disease process of ischemic cardiomyopathy
Myocardial infarction usually results from coronary artery
occlusion owing to acute atherosclerotic plaque rupture and platelet
aggregation, which leads to thrombosis within the vessel (Antman
and Braunwald, 2001). Severe ischemia downstream from occluded
arteries causes cardiomyocytic apoptosis within minutes. The
widespread injury and cell death, often exacerbated by re-
oxygenation following reperfusion, floods the region with reactive
oxygen species and toxic agents (Yellon and Hausenloy, 2007). In
response, cells in and around the affected areas upregulate and

secrete cytokines and chemokines such as tumor necrosis factor-
α (TNF-α), monocyte chemoattractant protein-1 (MCP-1),
interleukin (Il)-1β, Il-6 or Il-8, which trigger an immediate and
massive infiltration of circulating leukocytes into the ischemic core
(Frangogiannis, 2008). Adjacent endothelial cells bolster the
recruitment of pro-inflammatory immune cells by upregulating
their expression of cell adhesion molecules such as E-selectin,
intercellular adhesion molecule-1 (ICAM-1) and vascular cell
adhesion molecule-1 (VCAM-1). The initial wave of infiltrating cells
is followed by monocytes that home to the damaged area and
mature into macrophages. The immune cells gradually clear out
cellular debris and matrix degradation products in the injury site,
leaving behind sparse tissue with enlarged capillaries.

After cellular debris is removed from the injured area, the gap
left behind fills with granulation tissue. This process begins with
the arrival of myofibroblasts a few days after the initial injury
(Frangogiannis, 2008). Granulation tissue is composed mainly of
blood vessels, macrophages and myofibroblasts, the latter
depositing collagen and other extracellular matrix proteins. A week
after the infarction, the granulation tissue starts to develop into a
dense scar with collagen deposits intermingled with myofibroblasts
(Fig. 1).

The ischemic area is rich in inflammatory cytokines and
protease activity, which harms surrounding healthy cells
(Vanhoutte et al., 2006). The extra mechanical burden on the
remaining ventricular cells, further compromises the integrity of
the cardiac tissue. Thus, the initial localized injury creates a ripple
effect that spreads slowly to larger areas of the heart. The loss of
functional tissue and subsequent remodeling eventually causes
ventricular dysfunction and electrical instability, leading to heart
failure and malignant arrhythmias (Pfeffer and Braunwald, 1990;
Sun, 2009).
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Acute ischemic injury and chronic cardiomyopathies damage healthy heart tissue. Dead cells are gradually replaced by
a fibrotic scar, which disrupts the normal electromechanical continuum of the ventricular muscle and compromises its
pumping capacity. Recent studies in animal models of ischemic cardiomyopathy suggest that transplantation of various
stem cell preparations can improve heart recovery after injury. The first clinical trials in patients produced some
encouraging results, showing modest benefits. Most of the positive effects are probably because of a favorable
paracrine influence of stem cells on the disease microenvironment. Stem cell therapy attenuates inflammation, reduces
apoptosis of surrounding cells, induces angiogenesis, and lessens the extent of fibrosis. However, little new heart tissue
is formed. The current challenge is to find ways to improve the engraftment, long-term survival and appropriate
differentiation of transplanted stem cells within the cardiovascular tissue. Hence, there has been a surge of interest in
pluripotent stem cells with robust cardiogenic potential, as well as in the inherent repair and regenerative mechanisms
of the heart. Recent discoveries on the biology of adult stem cells could have relevance for cardiac regeneration. Here,
we discuss current developments in the field of cardiac repair and regeneration, and present our ideas about the future
of stem cell therapy.
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Non-ischemic cardiomyopathies (caused by genetic mutations,
viral infections, drug abuse, chemotherapy, etc.) can also destroy
cardiomyocytes leading to inflammation, scar formation,
ventricular remodeling and heart failure (Schönberger and
Seidman, 2001).

Stem cells repair damaged cardiac tissue
Until a few years ago, damage to cardiac tissue and the gradual
deterioration towards heart failure were regarded as irreparable.
A series of studies in animal models, showing that transplantation
of various progenitor cell preparations of bone marrow, skeletal,
or embryonic origin improve ventricular function after injury, are
challenging this view (Segers and Lee, 2008). Some reports
document significant rates of stem cell differentiation to
cardiovascular tissue, whereas other studies do not. Thus, there is
some controversy about the benefits of stem cell transplantation.
It is likely that the positive outcome of stem cell application depends
on two factors: (1) the ability of transplanted progenitor cells to
differentiate, even with low frequency, to cardiac and vascular cells;
and (2) the secretion of survival factors by progenitor cells to
stimulate tissue recovery after ischemic injury and minimize the
infarct size (Kupatt et al., 2005a; Kupatt et al., 2005b; Gnecchi et
al., 2005; Uemura et al., 2006; Gnecchi et al., 2008). Recent studies
show that products of transplanted progenitor cells such as β4
thymosin, which promotes wound healing, or the Wnt antagonist
secreted frizzled-related protein 2 (sFRP2), have favorable effects
on cell survival and preservation of cardiac function after
myocardial infarction (Mirotsou et al., 2007; Hinkel et al., 2008;
Alfaro et al., 2008).

Cardiac repair using exogenous progenitor cells
As the isolation and characterization of embryonic and adult stem
cells increased over the last decade, it became evident that many
cell types have cardiogenic potential in vitro, either as part of the
natural course of their differentiation program (e.g. embryonic stem
cells) (Doetschman et al., 1985) or under specific inductive
conditions (e.g. mesenchymal stem cells) (Reinecke et al., 2008).
These findings led to numerous experimental studies in animal
models of cardiovascular disease to assess the potential of
progenitor cell populations to replace lost ventricular tissue and
improve cardiac function. The most prominent cell types now
considered for cardiac repair are discussed briefly below.

Mesenchymal stem cells
Mesenchymal stem cells (MSCs) are found in the bone marrow
stroma and adipose tissue, as well as in other organs (Uccelli et al.,
2008). They can be isolated readily and expanded in culture to
obtain large numbers that are adequate for cell therapy. MSCs are
multipotent and give rise to adipocytes, chondrocytes, osteoblasts
and endothelial cells (Pittenger et al., 1999; Jiang et al., 2002). In
culture, they can also differentiate into contracting cardiomyocytes,
but only with low efficiency and specialized culture conditions
(Makino et al., 1999; Tomita et al., 1999; Shiota et al., 2007). An
interesting aspect of MSCs is that they appear to have low
immunogenicity, which promotes their use in allogeneic recipients
(Aggarwal and Pittenger, 2005; Amado et al., 2005; Dai et al., 2005).

Transplantation of MSCs in animal models of myocardial
infarction and dilated cardiomyopathy significantly improves left
ventricular cardiac function (Tomita et al., 1999; Toma et al., 2002;
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Fig. 1. Schematic representation of cellular events after
cardiac ischemic injury. Severe ischemia downstream from an
occluded coronary artery results in cardiomyocytic apoptosis
within minutes after the supplying blood vessel is closed. Cell
death and the release of toxic products trigger a massive
inflammatory response. After the cellular debris is cleared, the
injury site fills with granulation tissue that is composed mainly
of enlarged capillaries, macrophages and myofibroblasts,
which deposit collagen and other extracellular matrix proteins
to build a dense scar. The disease milieu affects neighboring
cardiomyocytes, leading to a gradual spread of the original
injury to relatively healthy tissue.
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Kudo et al., 2003; Amado et al., 2005; Dai et al., 2005; Silva et al.,
2005; Grauss et al., 2008). Besides functional improvement,
mortality also decreases in animals after cell transplantation
(Miyahara et al., 2006). However, despite enhanced cardiac function,
the differentiation of MSCs to cardiomyocytes is limited (Fazel et
al., 2005; Silva et al., 2005; Noiseux et al., 2006; Rose et al., 2008).
The beneficial effects of MSCs are postulated to come from their
influence on neovascularization of the ischemic tissue and their
protection of resident cells (Caplan and Dennis, 2006; Gnecchi et
al., 2008). This ‘cell-help-cell’ effect is enhanced further when MSCs
are engineered to express the pro-survival kinase Akt1 (Mangi et
al., 2003; Gnecchi et al., 2005; Noiseux et al., 2006). Akt1-expressing
MSCs secrete sFRP2 that protects cardiomyocytes from hypoxia-
induced apoptosis (Mirotsou et al., 2007; Zhang, Z. et al., 2009).

The positive effects of transplanted MSCs, and the ability to
genetically modify them, promotes their use as a cellular vehicle
to deliver angiogenic proteins [e.g. angiopoietin-1 (Ang1)] (Sun, L.
et al., 2007), survival factors [insulin-like growth factor-1 (IGF-1)]
(Haider et al., 2008), chemokines [stromal cell-derived factor-1
(SDF-1)] (Zhang et al., 2007) or Wnt antagonists (sFRP2) (Alfaro
et al., 2008) to further enhance the recovery of injured myocardium.
However, it should be noted that MSC transplantation after
myocardial infarction produced calcification and ossification
islands inside the ventricular tissue in some mice (Breitbach et al.,
2007). In one study, this was also observed in approximately 28%
of rats analyzed, raising concerns about the direct use of MSCs in
cardiovascular cell therapy (Yoon et al., 2004).

Skeletal myoblasts
Skeletal myoblasts, or satellite cells, are found in the basal
membrane of muscle fibers and maintain the homeostasis of
skeletal tissue (Shi and Garry, 2006; Buckingham and Montarras,
2008). Myoblasts are easy to isolate from small muscle biopsies as
they can proliferate and expand substantially in culture. Obvious
similarities between skeletal and cardiac muscle tissue suggest that
satellite cells may adopt a cardiomyocytic fate once inside
ventricular tissue. Moreover, they are resistant to hypoxia-induced
apoptosis, providing another potential advantage for them in
repopulating the ischemic myocardium (Menasché, 2007).

Animal studies show that myoblasts that are injected into cardiac
tissue after ischemic injury cause global and regional functional
improvements (Murry et al., 1996; Taylor et al., 1998; Ghostine et
al., 2002). In a chronic heart failure dog model, transplantation of
myoblasts also led to a significant recovery in left ventricular
hemodynamics (He et al., 2005). In similar fashion, intramyocardial
delivery of myoblasts in rabbits with an acute myocardial infarction
demonstrated an increase in regional left ventricular wall thickness
by magnetic resonance imaging and a decrease in the deleterious
effects of post-infarction cardiac remodeling (van den Bos et al.,
2005). However, even though myoblasts seem to incorporate into
the infarct site and develop contraction-like characteristics, they
generally fail to form intercalated disks and appropriate gap
junctions with resident cardiomyocytes (Reinecke et al., 2002). The
lack of electromechanical coupling with the surrounding host
cardiac tissue caused arrhythmias in a number of cases (Leobon
et al., 2003).

Although straightforward application of skeletal myoblasts may
have limited future use in cardiovascular cell therapy, satellite cells

could offer an ample source of cellular material that is similar to
cardiac progenitor cells and that might be reprogrammed with
cardiac-specific regulatory factors. Skeletal myoblasts may also be
engineered to form connections with resident cardiomyocytes by
expressing appropriate gap junction proteins before transplantation
(Roell et al., 2007).

Bone marrow-derived progenitor cells
Bone marrow (BM)-derived progenitor cells have been used widely
in animal models to enhance the repair of injured myocardium.
This area was fueled by results which show that the hearts of female
patients, who received male BM, contain Y-chromosome-positive
cardiomyocytes, indicating that the new cardiac cells originated
from BM (Deb et al., 2003; Bayes-Genis et al., 2007). Transplants
of female hearts in male recipients were also found to contain Y-
chromosome-positive cardiomyocytes, suggesting an extracardial
source of new cells (Laflamme et al., 2002; Bayes-Genis et al., 2002;
Quaini et al., 2002; Müller et al., 2002). Moreover, certain
subpopulations of BM cells, or of circulating BM-derived peripheral
blood progenitor cells, can differentiate into cardiomyocytes,
endothelial cells or smooth muscle cells under certain conditions
in culture (Badorff et al., 2003; Yeh et al., 2003; Belema Bedada et
al., 2005; Koyanagi et al., 2005; Koyanagi et al., 2007; Pallante et
al., 2007; Flaherty et al., 2008). Consistent with these in vitro results,
some transplantation studies suggest extensive differentiation of
donor BM-derived cells to both vascular and cardiac cells in the
host (Orlic et al., 2001a; Orlic et al., 2001b; Yeh et al., 2003; Kajstura
et al., 2005; Rota et al., 2007). By contrast, other studies find that
transplanted BM cells only make a significant contribution to
vascular structures (Jackson et al., 2001), or show that there is very
little, if any, differentiation of BM cells to cardiovascular cell types
in vivo (Balsam et al., 2004; Murry et al., 2004). Future work may
resolve the controversy surrounding the regenerative potential of
BM cells for cardiac repair.

Despite the discrepancies regarding the differentiation of BM
cells into cardiovascular tissue in vivo, most experimental studies
demonstrate that transplanted BM cells have beneficial effects,
including a robust stimulation of angiogenesis (Zhao et al., 2008).
The pioneering work of T. Asahara and the late J. Isner first showed
that CD34+ cells from the vascular circulation could differentiate
into endothelial cells in culture and promote neovascularization
in vivo (Asahara et al., 1997). It is possible that the
CD34+/CD133+/VEGFR2+ subpopulation of BM cells, also
described as endothelial progenitor cells (EPCs), contributes
directly or indirectly to neovascularization, thus promoting
angiogenesis and reperfusion of ischemic tissue (Kocher et al., 2001;
Kawamoto et al., 2003; Young et al., 2007; Lamparter and
Hatzopoulos, 2007). The potential of EPCs for cell therapy of
vascular disease has been reviewed recently (Gulati and Simari,
2009).

A second possible explanation for the positive action of BM-
derived cells on cardiac regeneration is that BM isolates often
contain MSCs, which, as discussed already, produce beneficial
effects on their own. Also, monocytic cells are part of the BM
mononuclear cell population and may promote arteriogenesis and
growth of collateral vessels (Kamihata et al., 2001; Kinnaird et al.,
2004). Thus, BM mononuclear cells may improve the perfusion
index of ischemic areas, which shrinks the infarct territory and
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improves cardiac function. Although BM cells might have limited
regenerative capacity on their own, they could be useful as an
accessory transplant in combination cell therapies, together with
stem cells of high cardiomyocytic potential, to enhance
angiogenesis and promote stem cell survival in the ischemic
environment.

Embryonic stem cells
Embryonic stem (ES) cells originate from the inner cell mass of
pre-implantation blastocysts. The first ES cells were isolated from
mice at around day 3.5 of development (Evans and Kaufman, 1981;
Martin, 1981). Since then, ES cell lines have been derived from other
mammalian species, including humans (Thomson et al., 1998).
Although in mice the inner cell mass consists of only about 15-20
cells, these few cells replicate almost indefinitely without
differentiating in culture, providing an almost inexhaustible source
of stem cells. Injection of culture-expanded mouse ES cells into
blastocysts proved that they are pluripotent; that is, they are able
to give rise to all embryonic lineages including germ cells.

Mouse and human ES cells can differentiate into a broad variety
of organ-specific cells types in vitro, offering a rich source of cells
for regenerative purposes (Doetschman et al., 1985; Keller, 2005;
Murry and Keller, 2008), including cardiovascular cell lineages
(Kehat et al., 2001; Xu et al., 2002; Sachinidis et al., 2003; Kattman
et al., 2006; Moretti et al., 2006; Wu et al., 2006; Yang, L. et al.,
2008).

After transplantation, ES cells and ES cell-derived cardiac cells
have been shown to integrate into heart tissue and improve cardiac
function in ischemic or cryoinjury models (Klug et al., 1996; Kehat
et al., 2001; Kehat et al., 2004; Behfar et al., 2002; Min et al., 2002;
Roell et al., 2002; Hodgson et al., 2004; Kofidis et al., 2005;
Laflamme et al., 2005; Laflamme et al., 2007; Yan et al., 2009). In
myocardial infarction mouse models, ES cells that were injected
directly into the infarcted myocardium differentiated into
cardiomyocytes, vascular smooth muscle cells and endothelial cells.
The ES cell transplant caused a significant increase in left
ventricular systolic function and a decrease in cardiac tissue
remodeling, suggesting that the size of the injury was reduced
(Singla et al., 2006).

ES cell therapy might also be beneficial in non-ischemic heritable
cardiomyopathies. In Kir6.2-knockout mice, which lack functional
KATP channels (recapitulating human dilated cardiomyopathy 10),
ES cell transplant results in an improvement in systolic dysfunction
and electrical synchronization; a decrease in left ventricular
remodeling; and an increase in survival (Yamada et al., 2008).

It appears that the differentiation rate of ES cells into new
cardiovascular tissues is the most efficient among the stem cell types
tested so far. Still, there are several disadvantages that may
complicate their use in clinical investigations. First, ES cells have
the propensity to develop teratomas, tumors that contain a wide
array of different cell types (Nussbaum et al., 2007). Studies show
that the number of ES cells used in treatments may need to be
titrated carefully to avoid uncontrolled tumor growth. Interestingly,
the tumorogenicity is curtailed in mice that overexpress TNF-α in
the heart (Behfar et al., 2007). Second, ES cells differentiate into
heterogeneous populations. This means that the number of cardiac
cells created under normal differentiation conditions is rather low
(usually less than, or around, 1% of the total cells in the culture).

Elaborate protocols may be needed to increase the production of
cardiac cells so that they can be selected from cells of other lineages.
So far, a number of ways have been described to manipulate the
differentiation process of ES cells in order to increase cardiac cell
output (Yuasa et al., 2005; Qyang et al., 2007; Ueno et al., 2007;
Hao et al., 2008; Yan et al., 2009). The next challenge is to direct
ES-derived cardiac progenitors to monotypic cultures of specialized
cell types, such as ventricular and atrial myocytes, or to pacemaker
and conduction system cells (Behfar et al., 2008; Chien et al., 2008).
Third, transplantation of allograft ES cells can create an
immunologic response and cell rejection (Swijnenburg et al., 2005).
These technical difficulties are in addition to the ethical issues
voiced by some people, which further preclude the straightforward
application of ES cells in clinical studies. New developments
regarding the possibility to generate ES-like cells, called inducible
pluripotent stem (iPS) cells, by reprogramming adult somatic cells
(Takahashi et al., 2007; Wernig et al., 2007; Okita et al., 2007) or
by adapting adult spermatogonia (Guan et al., 2006), may bypass
some of these technical and ethical issues.

Inducible pluripotent stem cells
iPS cells are generated by expressing specific pluripotency
transcription factors in somatic cells, such as fibroblasts or epithelial
cells, using viral vectors (Takahashi et al., 2007; Wernig et al., 2007;
Okita et al., 2007). Pluripotency factors include proteins that are
crucial for the maintenance of the stem cell phenotype, for example
Oct3/4, Sox2, Klf4, Nanog or c-Myc. The pluripotency factors
gradually suppress the expression of genes that are associated with
somatic cell function, shutting down differentiation programs and
activating the expression of endogenous stem cell pluripotency
factors (Jaenisch and Young, 2008). Within several weeks, the
altered gene expression reprograms the somatic cells to acquire
similar morphological, molecular and functional characteristics to
ES cells. iPS cells can generate mice after blastocyst injection and
can also differentiate into various lineages in culture, including
cardiovascular cells (Schenke-Layland et al., 2008; Narazaki et al.,
2008; Mauritz et al., 2008; Zhang, J. et al., 2009).

The same technical challenges of ES cell therapy (low cardiogenic
output, heterogeneous differentiation, limited differentiation to
specialized cell types, and tumorogenicity) must be resolved before
clinical applications of iPS cells are realized fully. Already, studies
show that reprogramming can be achieved with only two
pluripotency factors, eliminating the need for oncogenic c-Myc, or
without viral integration into the genome, which can lead to
pathological complications (Huangfu et al., 2008; Stadtfeld et al.,
2008).

Clinical studies
The experimental success of using progenitor cells to improve heart
recovery after ischemic damage in animals led clinicians to test the
safety and efficacy of cell therapy in patients with myocardial
damage following myocardial infarction (Dimmeler and Zeiher,
2008; Segers and Lee, 2008; Burt et al., 2008). Randomized clinical
trials with a variety of cell preparations, including BM-derived cells
(Wollert et al., 2004; Ruan et al., 2005; Assmus et al., 2006; Lunde
et al., 2006; Schächinger et al., 2006a; Janssens et al., 2006; Ge et
al., 2006; Hendrikx et al., 2006), circulating progenitor cells (Erbs
et al., 2005; Assmus et al., 2006; Kang et al., 2006), skeletal
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myoblasts (Menasché et al., 2008) and MSCs (Chen et al., 2004;
Chen et al., 2006), with intracoronary or intramuscular delivery,
suggest that these approaches are safe and may improve ventricular
function (Table 1). Although some trials failed to demonstrate a
significant increase in cardiac function after cell transplantation
when compared with controls, several other randomized trials
showed measurable improvements that were comparable to
established therapeutic regimes (Reffelmann et al., 2009). Non-
randomized, smaller-scale trials also produced variable results,
ranging from no significant changes in left ventricular ejection
fraction to a significant improvement, of up to a 14% increase,
during the follow-up period (Strauer et al., 2002; Perin et al., 2004;
Fernandez-Aviles et al., 2004; Ince et al., 2004; Strauer et al., 2005;
Katritsis et al., 2005; Bartunek et al., 2005; Mocini et al., 2006; Gavira
et al., 2006; Ahmadi et al., 2007; Choi et al., 2007; Klein et al., 2007;
Li et al., 2007; Stamm et al., 2007; Tatsumi et al., 2007).

To date, the largest clinical trial to assess the benefit of skeletal
myoblast therapy is the MAGIC (Myoblast Autologous Grafting in
Ischemic Cardiomyopathy) trial, which randomized patients to
receive either stem cell injection or culture medium. Although early
fears of severe arrhythmias did not materialize, the results have
been disappointing, showing no significant benefit with skeletal
myoblast cell implantation (Menasché et al., 2008). By contrast, a

meta-analysis of 18 randomized and non-randomized trials
involving a total of 999 acute myocardial infarction or chronic
ischemic cardiomyopathy patients found that transplantation of
adult BM-derived stem cells improved left ventricular ejection
fraction by 5.40% (P<0.001); decreased infarct scar size by 5.49%
(P=0.003); and lowered left ventricular end-systolic volume by 4.80
mls (P=0.006) (Abdel-Latif et al., 2007). It is also encouraging that
a multicenter, randomized clinical trial of 204 patients with acute
myocardial infarction showed that intracoronary delivery of BM
cells (at 3 to 7 days post-reperfusion therapy) decreased the
incidence of myocardial infarction and death, or revascularization,
at a 12-month follow-up when compared with placebo (P=0.009)
(Schächinger et al., 2006b).

Cell therapy also shows promise to relieve chronic angina
symptoms. In patients with Canadian Cardiovascular Society
(CCS) class III or IV angina, intramyocardial transplantation of
autologous CD34+ stem cells decreased the frequency of angina,
resulting in an improvement in CCS class, exercise times and
nitroglycerin use when compared with patients who did not receive
CD34+ cells (Losordo et al., 2007).

Perhaps the inconsistent results in clinical trials reflect both the
variety of stem cell types used and the route of administration, as
well as the quantity and quality of the injected cells. For example,

Table 1. Stem cell and progenitor cell therapies: randomized clinical trials

Study Year

Clinical

setting n Cell type

Method of cell

transplantation

Cell number

transplanted

Mean

follow-up

(months)

% Change in LVEF

compared with

control

Menasché et al.

(MAGIC)
2008 ICMP 97 SMB Intramyocardial† 4 108 or 8 108 6 –1.0% or +0.8%; NS

Meluzin et al. 2008 AMI 60 BMMNC Intracoronary 1 108 12 +7.0%; P=0.03

Meyer et al. (BOOST) 2006 AMI 60 BMMNC Intracoronary 2.5 109 18 +2.8%; NS

Assmus et al.

(TOPCARE-CHD)
2006 ICMP 51 BMMNC Intracoronary 2 108 3 +4.1%; P<0.001

Schächinger et al.
(REPAIR-AMI)

2006 AMI 204 BMMNC Intracoronary 2.4 108 12 *

Schächinger et al.

(REPAIR-AMI)
2006 AMI 204 BMMNC Intracoronary 2.4 108 4 +2.5%; P=0.01

Ge et al. (TCT-STAMI) 2006 AMI 20 BMMNC Intracoronary 4 107 6 +6.7%; NS

Hendrikx et al. 2006 ICMP 20 BMMNC Intramyocardial† 6 107 4 +2.5%; NS

Janssens et al. 2006 AMI 67 BMMNC Intracoronary 1.7 108 4 +1.2%; NS

Lunde et al. (ASTAMI) 2006 AMI 100 BMMNC Intracoronary 8.7 107 6 –3.0%; P=0.05

Ruan et al. 2005 AMI 20 BMC Intracoronary Not available 6 +9.2%; P<0.05

Chen et al. 2006 ICMP 45 MSC Intracoronary 5 106 12 –3.0%; NS

Chen et al. 2004 AMI 69 MSC Intracoronary 6 1010 6 +12.0%; P=0.01

Assmus et al.

(TOPCARE-CHD)
2006 ICMP 47 CPC Intracoronary 2.2 107 3 +0.8%; NS

Kang et al. 2006 AMI/ICMP 82 CPC Intracoronary 1.4 109 6 –0.2%; NS

Erbs et al. 2005 ICMP 26 CPC Intracoronary 7 107 3 +7.2%; NS

Losordo et al. 2007 ICMP 24 CD34+ Intramyocardial‡ 5 104, 1 105 or

5 105

6 **

AMI, acute myocardial infarction; BMC, bone marrow cells; BMMNC, bone marrow mononuclear cells; CPC, circulating progenitor cells; LVEF, left ventricular

ejection fraction; ICMP, ischemic cardiomyopathy; MSC, mesenchymal stem cells; NS, non-significant; SMB, skeletal myoblasts. †Intramyocardial through
surgical transepicardial approach. ‡Intramyocardial through percutaneous transendocardial approach. *BMMNC therapy resulted in significant decrease in

death, myocardial infarction and revascularization at 12 months, whereas LVEF was not included in the pre-specified cumulative endpoint. **In CCS class III or
IV angina patients, CD34+ cell therapy resulted in a trend towards a decrease in the frequency of angina and improvement in CCS class, exercise times and

nitroglycerin use.
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mononuclear BM cell transplantation improves left ventricular
ejection fraction in post-myocardial infarction patients when a
higher number of cells are injected (i.e. 108 cells compared with
107 cells) (Meluzín et al., 2006). In addition, the ability of BM-
derived cells to migrate, or induce neovascularization, might be
impaired in heart disease patients, which would affect the efficacy
of autologous cell therapy (Heeschen et al., 2004; Walter et al., 2005).
The timing of left ventricular assessment after cell transplantation
in patients may further explain some of the discrepancies in
ventricular function since a number of benefits appear to be
transient (Meyer et al., 2006; Meluzín et al., 2008), consistent with
findings in animal studies of ES cell transplantation (van Laake et
al., 2008). Finally, the portion of stem cells retained at the area of
interest may be low, thereby diminishing the beneficial effects, as
discussed in the next section.

Methods of stem cell delivery
In the clinical setting, stem cells have been delivered by
intracoronary injection; intravenous infusion; by direct injection
into cardiac muscle through the endocardium by a percutaneous
approach; or through the epicardium during open-heart surgery.

The infusion of stem cells into the coronary arterial circulation
is relatively straightforward. In this situation, the cells are
surrounded by nutrients and oxygen, which creates a favorable
environment. However, the number of stem cells retained in the
ventricular area of interest might be low. For example, in patients
who sustained an ST-segment myocardial infarction and received
a coronary stent, it was estimated that only 1.2-3.6% of BM cells
that were delivered through an intracoronary route remained
within the myocardium (Hofmann et al., 2005).

The homing of progenitor cells requires interaction with the
vascular wall and transendothelial migration towards injured or
ischemic areas, which may involve similar mechanisms to those
involved in the recruitment of immune system cells to sites of
inflammation (Vajkoczy et al., 2003; Chavakis et al., 2005; Chavakis
et al., 2008). Thus, activation of adhesion molecules in the host
vasculature and donor progenitor cells before cell delivery may
stimulate homing efficiency. For example, adenosine increases the
adhesion of EPCs to the vascular wall in experimental models
(Ryzhov et al., 2008). Adenosine can be delivered directly into the
coronary circulation in humans without significant adverse events
and it has a short half-life in the bloodstream; thus, it may increase
progenitor cell retention locally in a clinically feasible way (Leesar
et al., 1997; Shen and DiCorleto, 2008).

Direct injection of stem cells into injured myocardium ensures
that cells are placed in the area of interest. Nevertheless, ischemic
conditions along with inflammation and scar tissue make a less
than ideal environment for cell survival. Moreover, mechanical loss
further diminishes the engraftment of injected cells. Estimates
suggest that, during open-heart surgery, the leakage of injected
microspheres is 33% and 89% in non-beating and beating porcine
hearts, respectively (Teng et al., 2006). Low retention efficiency
(approximately 3%) was also recorded for EPCs that were injected
directly into the myocardium of rats (Aicher et al., 2003), or for
BM cells in infarcted hearts of sheep (Bel et al., 2003); moreover,
only a small percentage of myoblasts (approximately 7%) that were
injected directly into infarcted mouse hearts survived for longer
than 72 hours (Suzuki et al., 2004). Thus, intraventricular delivery

may not improve cell homing compared with intracoronary
injection in all cases.

The modest, short-term cardioprotective effects of
transplanted cells underscore the need to maximize delivery and
differentiation of stem cells in order to produce functional
cardiovascular tissue with long-term survival and engraftment
within diseased tissue. Current roadblocks to the use of
exogenous cells are renewing research interest in the inherent
regenerative and reparative mechanisms of cardiac tissue in
order to develop novel tools and strategies to enhance the
efficacy of current cell therapy protocols.

Endogenous stem cells in cardiac regeneration
Classically, the heart is thought of as a terminally differentiated,
postmitotic organ without intrinsic mechanisms to replace lost
cardiomyocytes. However, a number of recent studies show that
the adult heart contains cell populations with stem cell
characteristics and that cardiac homeostasis is maintained by
replenishing damaged cells (Ellison et al., 2007; Kajstura et al.,
2008). Genetic fate-mapping studies show that a considerable
number of new cardiomyocytes form in the adult mouse heart
after injury (Hsieh et al., 2007), and incorporation of 14C (which
did not exist naturally before nuclear tests) into the DNA of
human cardiomyocytes estimates that about 50% of adult
cardiomyocytes are exchanged during a normal life span,
suggesting a renewal mechanism (Bergmann et al., 2009). The
properties of cardiac progenitor cells in the adult heart are
discussed briefly below.

Side population cells
A typical property of some stem cell populations is the exclusion
of the vital dyes Hoechst 33342 and rhodamine 123. The cells that
do not take up the dyes are called the side population (SP) (Goodell
et al., 1996). Dye exclusion in SP cells is the result of high efflux
rates mediated by ATP-binding cassette transporters such as
ABCG2 and MDR1 (Challen and Little, 2006). SP cells are
multipotent and have been identified in various organs including
the BM, skeletal muscle and adipose tissue (Challen and Little,
2006).

The dissociation of heart tissue and dye stains show that the adult
heart also has a resident pool of SP cells (Hierlihy et al., 2002; Martin
et al., 2004). Isolated SP cells from heart tissue can be induced to
express cardiac-specific genes in vitro when co-cultured with
cardiomyocytes or when treated with agents such as oxytocin or
the histone deacetylase inhibitor trichostatin A (Pfister et al., 2005;
Oyama et al., 2007). The cardiogenic potential is higher in the
subgroup of SP cells that express the stem cell antigen-1 (Sca-1+),
but are negative for the endothelial marker CD31 (Pfister et al.,
2005).

The number of SP cells in the mouse heart changes after
myocardial infarction through proliferation of resident SP cells, as
well as homing of BM-derived SP cells (Mouquet et al., 2005), but
this might depend on the injury model used (Oyama et al., 2007).
There is limited information about the regenerative potential of SP
cells in vivo. One study showed homing of SP cells to the injured
heart and differentiation of these cells into cardiomyocytes,
endothelial cells and smooth muscle cells (Oyama et al., 2007). In
another report, isolated SP cells that were allowed to form
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cardiospheres in culture displayed features of neural crest (NC)
progenitor cells in vitro and in vivo, with the potential to
differentiate into glia, neurons, smooth muscle and cardiomyocytes,
suggesting that at least a portion of SP cells are of neural crest origin
(Tomita et al., 2005).

c-Kit+ progenitor cells
A second resident progenitor population is the c-Kit+ cells, which
are located in small clusters within the ventricles and atria of the
adult heart (Beltrami et al., 2003). Isolated c-Kit+ cells do not
differentiate fully into cardiovascular cell types in culture, but show
impressive regenerative potential after transplantation in the injured
rat heart, where they give rise to cardiomyocytes, endothelial cells
and smooth muscle cells (Beltrami et al., 2003; Dawn et al., 2005;
Rota et al., 2008). Cardiac c-Kit+ stem cells improve left ventricular
ejection fraction after myocardial infarction by 11% compared with
control rats that did not receive cell transplantation at a 20-day
follow-up (Beltrami et al., 2003). An equivalent c-Kit+ cell
population has been isolated from small samples of human
myocardium (Bearzi et al., 2007).

Sca-1+ progenitor cells
A third reported stem cell type in the heart expresses Sca-1, but
is c-Kit– (Oh et al., 2003). Sca-1+ cells express some of the early
regulatory factors of cardiogenesis, such as GATA4, and they can
be induced to express Nkx2.5 and sarcomeric proteins after 5-
azacytidine (5-Aza-C) treatment. When given intravenously in
mice, they home to infarcted myocardium and yield
cardiomyocytes around the injury area, although a degree (about
50%) of cell fusion with resident myocytes was noted (Oh et al.,
2003). A rare Sca-1+/c-Kit+ cardiac cell type that differentiates into
cardiomyocytic cells upon oxytocin treatment was also identified
in mice (Matsuura et al., 2004). Finally, a Sca-1+/CD31– cell
population was isolated and induced to differentiate to both
cardiomyocytes and endothelial cells using combinations of
fibroblast growth factor (FGF) proteins, the Wnt antagonist Dkk-
1, and 5-Aza-C treatment (Wang et al., 2006). Transplantation of
Sca-1+/CD31– cells after myocardial infarction in mice improved
cardiac function and enhanced neovascularization. However, the
benefits seem to be the result of favorable paracrine effects of the
transplanted cells on new blood vessel formation and resident
cardiomyocytes (Wang et al., 2006).

Cardiosphere-derived progenitor cells
An elaborate technique for isolation of cardiac progenitors from
mouse hearts and human biopsies was described following gentle
enzymatic digestion to release round cells that form so-called
cardiospheres (CS) in suspension (Messina et al., 2004; Smith et
al., 2007). CS-derived cells express endothelial and stem cell
markers; show contractile activity in culture; and can differentiate
into cardiomyocytes, endothelial cells and smooth muscle cells.
Transplantation of these cells improved ventricular function in mice
and swine owing to the formation of vascular and cardiac cells, and
positive paracrine effects (Smith et al., 2007; Takehara et al., 2008).
However, other attempts to obtain cardiac progenitor cells following
a similar approach, but without cardiosphere formation, failed to
recapitulate the differentiation and regenerative potential of these
cells (Shenje et al., 2008).

Adult cardiac homeostasis and repair
The isolation of various cardiac tissue stem cell types with novel
characteristics suggests that they represent either distinct cell
populations or different developmental stages of a single cell
lineage. Much of the origin and biological properties of cardiac stem
cells remain poorly defined. It is unclear whether the cardiogenic
stem cells home from the BM, reside in specialized niches, are
remnants of embryonic cell populations, or are artifacts of the
isolation procedures (Slack, 2008). These possibilities are not
mutually exclusive.

Epithelial- and endothelial-to-mesenchymal transitions
generate cardiovascular progenitor cells during
embryogenesis
It is reasonable to expect that the mechanisms that give rise to
cardiac progenitor cells in the adult heart share similar pathways
with the specification and differentiation of embryonic cardioblasts.
During development, a key process that generates progenitor cells
that differentiate into various tissues is the epithelial-to-
mesenchymal transition (EMT). EMT produces mesodermal cells
from primitive ectoderm during gastrulation and neural crest stem
cells from neuroepithelium (Nakaya and Sheng, 2008; Sauka-
Spengler and Bronner-Fraser, 2008). Although cardiac development
is a complex morphogenetic operation (van den Berg and
Moorman, 2009; Perez-Pomares et al., 2009) involving the well-
orchestrated action of scores of genes (Brand, 2003; Olson, 2006),
it can also be divided into a series of EMT events, each generating
a distinct set of cardiovascular progenitor cells that differentiate
into the cellular components of the mature heart.

The first EMT that gives rise to cardiovascular progenitor cells
takes place during gastrulation, when epithelial cells of the epiblast
begin to delaminate, adopt mesenchymal characteristics, and
migrate to form the mesoderm layer that occupies the space
between the two outer epithelia of endoderm and ectoderm
(Nakaya and Sheng, 2008). The timing and location of epithelial
cell delamination within the primitive streak determines the
destination of the migrating mesodermal/mesenchymal cells in the
developing embryo and this specifies their subsequent fate (Abu-
Issa and Kirby, 2007). Mesodermal cells in the lateral plate adjacent
to the foregut differentiate into progenitor cells that express early
cardiac regulatory genes, such as Nkx2-5, Mef2c and Gata4 (Brand,
2003; Moorman et al., 2007). Early cardioblasts are divided into
two types representing the primary and secondary cardiac fields
(Buckingham et al., 2005).

The cardiac stem cells of the primary field form the original heart
tube that surrounds the endocardial vascular layer, contributing
mainly to the future left ventricle; the secondary field cells then
migrate and wrap around the primitive heart and contribute to the
formation of the atria, the right ventricle, and part, or most, of the
left ventricle (Cai et al., 2003; Yang et al., 2006; Sun, Y. et al., 2007;
Prall et al., 2007; Ma et al., 2008). The role of the primary heart field
progenitors may be limited to the formation of the original cardiac
tube during embryogenesis, whereas the secondary field cells,
marked by Isl1+ expression, are maintained throughout development,
contribute to the neonatal heart growth, and remain present, albeit
in small numbers, in the adult heart (Laugwitz et al., 2008). Isolated
Isl1+ cells can give rise to cardiomyocytes, smooth muscle and
endothelial cells (Laugwitz et al., 2005; Moretti et al., 2006).
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The second mesenchymal transformation that shapes the heart
takes place when a subpopulation of endocardial cells (the
endothelial cells of the original inner cardiac tube) in the
atrioventricular canal area undergo endothelial-to-mesenchymal
transition (EndMT), migrate into the adjacent cardiac jelly, and
build the endocardial cushions that develop into the heart valves
(Person et al., 2005; Norris et al., 2008). There is evidence that
EndMT continues in the adult valves, supplying cells to maintain
and repair the valvular leaflets (Yang, J. et al., 2008).

The third EMT occurs in the epithelium formed by the
epicardial cells at the outer surface of the heart. Pre-epicardial
tissue, which appears as a cauliflower structure from
splachnopleuric mesoderm during development, attaches to the
exterior surface of the heart and spreads out over the entire organ
in a single epithelial cell layer called the epicardium (Winter and
Gittenberger-de Groot, 2007). Shortly thereafter, the epicardial
epithelium undergoes EMT, generating a mesenchymal stem cell
population named the epicardial-derived progenitor cells or
EPDCs. EPDCs invade the cardiac tissue and differentiate into
interstitial fibroblasts, perivascular fibroblasts and smooth muscle
cells of the developing coronary blood vessels (Reese et al., 2002;
Wessels and Pérez-Pomares, 2004). Cell-lineage-tracing
experiments using Cre-recombinase technology show a
considerable contribution of epicardium to ventricular myocytes,
suggesting a more substantial role of EPDCs in heart tissue
formation than was thought previously (Cai et al., 2008; Zhou et
al., 2008). Transplantation of embryonic EPDCs improved cardiac
function after myocardial infarction in mice, but the cells did not
differentiate into cardiovascular cells (Winter et al., 2007).

The fourth EMT takes place in the neural tube and generates
the cardiac NC progenitor cells, between the cranial and trunk
neural crest, that migrate to the heart and take part in the
remodeling of the aortic arch arteries and the septation of the
common outflow tract into the aortic and pulmonary arteries
(Hutson and Kirby, 2007; Snider et al., 2007). Lineage-tracing
experiments, using transgenic mice with gene markers that are
under the control of NC-specific promoter elements or Cre
recombinase technology, suggest that NC cells also contribute to
the conduction system and epicardium, but this remains
controversial (Stottmann et al., 2004; Stoller and Epstein, 2005;
Poelmann et al., 2004; Nakamura et al., 2006). Recent reports show
that nestin+ stem cells of neural crest origin reside in the adult heart
and take part in de novo blood vessel formation and reparative
fibrosis after ischemic injury (El-Helou et al., 2008).

EMT and EndMT contribute to cardiac repair and
regeneration after injury
Although the importance of EMT in tissue development during
embryogenesis is well documented, the contribution of EMT in
regenerative processes in the adult organism is not. EMT has been
implicated in the emergence of tumor cells that are highly
proliferative (or carcinogenic) and motile (or metastatic), suggesting
that it plays a key role in the generation and spreading of tumor
stem cells (Hollier et al., 2009). A recent study indicates that EMT
also yields adult cells with stem cell characteristics (Mani et al.,
2008). Therefore, one could predict that, in line with their role
during heart development, EMT and EndMT contribute to the pool
of cardiovascular progenitor cells to maintain cardiac homeostasis.

Besides the connection of mesenchymal transition to the
emergence of stem cells, both EMT and EndMT are recognized as
important mechanisms in the generation of the myofibroblasts that
take part in fibrosis (Kalluri and Neilson, 2003; Wynn, 2008).
Therefore, it is possible that EMT and EndMT contribute to both
cardiac regeneration and fibrosis after injury. In the last few years a
number of studies have provided supportive evidence for this notion.

For example, EndMT in the adult mouse heart gives rise to
myofibroblasts that migrate and produce scar tissue in mouse
models of pressure overload and chronic allograft rejection,
recapitulating pathways that take place during formation of the
atrioventricular cushions in the embryonic heart (Zeisberg et al.,
2007). Moreover, isolated adult epicardial cells can undergo EMT
in culture, differentiating to smooth muscle and endothelial cells
(van Tuyn et al., 2007; Smart et al., 2007). Epicardial cells that
express stem cell markers are induced after injury, migrate to the
infarct, and contribute to both cardiac and vascular cell types
(Limana et al., 2007). These experiments suggest a function of
epicardial cells that echoes their role in the regeneration of the adult
zebrafish heart after partial resection (Lepilina et al., 2006).
Therefore, both endothelial and epicardial cells become activated
after injury and give rise to cardiac, vascular and myofibroblast/
smooth muscle cells; this seems similar to their capacity during
development.

Wnt signaling, stem cells and fibrosis
The experimental evidence outlined above links EMT to the
production of stem cells and fibrosis. Although these two processes
are controlled by complex regulatory networks (Neilson, 2006;
Lowry and Richter, 2007), a common molecular thread that has
been studied extensively is the canonical Wnt signaling pathway
(Thiery and Sleeman, 2006; Nusse, 2008). The canonical Wnt
pathway has been implicated in the generation, maintenance and
growth of all stem cell types that have been investigated so far,
including neuronal stem cells, hematopoietic stem cells, gut
epithelium stem cells, muscle satellite cells, hepatic stem cells, lung
stem cells and others (Kalani et al., 2008; Luis et al., 2009;
Haegebarth and Clevers, 2009; Otto et al., 2008; Yang, W. et al.,
2008; Zhang et al., 2008). The canonical Wnt pathway is also crucial
for the formation of embryonic cardiac stem cells in vitro and in
vivo (Nakamura et al., 2003; Kwon et al., 2007; Lin et al., 2007;
Qyang et al., 2007; Cohen et al., 2008; Laugwitz et al., 2008).
Conversely, blockade of canonical, and activation of non-canonical,
Wnt signaling is crucial for the differentiation of embryonic and
adult progenitor cells into cardiomyocytes (Koyanagi et al., 2005;
Flaherty et al., 2008; Cohen et al., 2008; David et al., 2008).

The canonical Wnt pathway inactivates glycogen synthase
kinase-3β (GSK-3β) leading to dephosphorylation and stabilization
of cytoplasmic β-catenin, which then translocates to the nucleus
where it activates a host of target gene loci. Among them are the
transcriptional repressors Slug and Snail that shut down the
expression of the cell adhesion protein E-cadherin to loosen the
junctions between epithelial cells (Thiery and Sleeman, 2006;
Nusse, 2008). Liberated epithelial cells quickly rearrange their
cytoskeletal structure and adopt a highly proliferative phenotype
with a mesenchymal morphology; this is regulated by β-catenin,
which induces genes such as those encoding cyclin D and c-Myc
(Clevers, 2006). Thus, Wnt signaling is a central regulatory knot
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that controls two of the landmark events in the biology of stem
cells, EMT and cell cycle regulation. Interestingly, Wnt signaling
also regulates fibrosis, controlling the generation of mesenchymal
cells by EMT as well as their proliferation and motility (Cheon et
al., 2002; Bowley et al., 2007; Alfaro et al., 2008). Collectively, these
data suggest that proper modulation of Wnt signaling is key in
balancing cardiac fibrosis and regeneration after injury.

Reparative and regenerative cells: two sides of the
same coin?
The parallels between the cellular and molecular biology of reparative
(myofibroblasts) and regenerative (stem) cells raise the possibility
that the two cell phenotypes are connected intrinsically. Moreover,
similar to stem cells, myofibroblasts have been shown to derive from
multiple sources, such as the BM and resident MSCs, as well as by
EMT and EndMT (Hinz et al., 2007). It is possible that mesenchymal
cells with stem cell properties follow a default pathway after injury
that steers them towards producing scar tissue in order to seal off
the necrotic areas and save the surrounding healthy penumbra. These
same cells might differentiate to tissue-specific cell types when the
conditions favor replacement of malfunctioning or dying cells during
organ homeostasis (Fig. 2). This model is consistent with recent
findings in skeletal muscle where stem cells switch from a
regenerative to a pro-fibrotic phenotype with aging, owing to
increased Wnt signaling (Brack et al., 2007).

Too many stem cells, too little regeneration?
Our current knowledge suggests that a multicellular army of
progenitor cells, of BM, endothelial, epicardial and neural crest
origin, respond to cardiac tissue injury and take part in the repair
process. Why is there a need for so many different cell types? Does
a particularly crucial situation, resulting from a catastrophic event,

mobilize all of the available forces at the disposal of the organ? Or,
do the different cell types perform distinct functions, such as
replenishing specific cell types, including cardiomyocytes,
endothelial cells, smooth muscle cells, conduction system cells and
neurons, that have been destroyed during ischemic injury?

If progenitor cells are mobilized after injury, why does the
function of myofibroblasts and fibrosis predominate? This is
particularly disappointing, since the various stem cells that have
been analyzed are able to produce cardiomyocytes, smooth muscle
cells and endothelial cells in vitro. It is plausible that stem cells
perform their respective roles under normal conditions to maintain
cardiac homeostasis, but assume a reparative or pro-fibrotic
phenotype when confronted with inflammatory proteins, toxic
products of apoptotic cells, ischemia and a disintegrating
extracellular matrix. Consistent with this, MSCs adopt different
fates depending on extracellular matrix tension and other
environmental factors (Engler et al., 2006). It is also conceivable
that only myofibroblasts survive in the hostile disease environment.

Over the last few years, we have learned a great deal about the
individual pieces in the reparative and regenerative puzzle of the
heart, but it is unclear how the different components will fit
together. Although the findings point to a complex healing process
that relies on many different types of repair/stem cells, they reflect
the natural program of cardiopoiesis, where a variety of progenitor
cells contribute to new cardiac tissue at distinct stages of embryonic
development. Our current challenge is to isolate and study the
different stem cell-like populations in the heart and identify their
individual roles during cardiac repair and regeneration. It is also
important to understand how the mission of progenitor cells is
adjusted during a severe injury such as a myocardial infarction. If
progenitor cells in the heart are confronted with a choice between
tissue regeneration and scar formation, it is crucial to recognize
the intrinsic molecular mechanisms and environmental factors that
determine the outcome of this decision. This information will help
devise novel strategies to fortify the endogenous regenerative
capacities of the adult heart and to optimize the cardiovascular
differentiation of transplanted stem cells.
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