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Abstract

Since the first report on biventricular pacing in 1994, cardiac 

resynchronization therapy (CRT) has become standard for pa-

tients with advanced heart failure (HF) and ventricular con-

duction delay. CRT improves myocardial function by resyn-

chronizing myocardial contraction, which results in reverse 

left ventricular remodeling and improves symptoms and clin-

ical outcomes. Despite the accelerated development of CRT 

device technology and its increased application in treating HF 

patients, almost one-third of these patients do not respond 

to the therapy or gain any clinical benefit from device implan-

tation. Over the last decade, multiple cardiac imaging modal-

ities have provided a deeper understanding of myocardial 

pathophysiology, thereby improving HF treatment manage-

ment. However, the optimal strategy for improving the CRT 

response remains debatable. This article provides an updated 

overview of the electropathophysiology of myocardial dys-

function in ventricular conduction delay and the diagnostic 

approaches involving the use of multiple modalities.

© 2019 S. Karger AG, Basel

Introduction

The selection of patients with heart failure (HF) and 
ventricular conduction delay who will benefit from car-
diac resynchronization therapy (CRT) requires both an 
accurate assessment of myocardial structure and func-
tion and a clinical evaluation. According to recent guide-
lines, patients are considered candidates for CRT if they 
have HF symptoms of New York Heart Association 
(NYHA) class II–IV, left ventricular (LV) ejection frac-
tion (LVEF) ≤35%, and a QRS duration > 130 ms on ECG 
[1, 2]. Despite the selection criteria, 30–35% of patients 
are nonresponders with no symptomatic improvement 
or reverse LV remodeling [3, 4]. Some individuals even 
experience a clinical deterioration following device im-
plantation [3, 4]. In addition, the parameters used to pre-
dict CRT response have not been significantly associated 
with an increase in the responder rate. Of note, left bun-
dle branch block (LBBB) morphology, a QRS duration of 
≥150 ms, and adequate coronary sinus anatomy have 
been most closely associated with a favorable CRT re-
sponse [3, 4]; mitral valve regurgitation (MR), right ven-
tricular (RV) dysfunction, and atrial fibrillation (AF) 
have been shown to have a negative impact on patient 
response [5–7]. However, all these conditions are highly 
and concomitantly prevalent in patients undergoing 
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CRT, which makes their use challenging. Finally, CRT-
device programing parameters that delay the progression 
of myocardial damage have largely remained unidenti-
fied.

During the past 2 decades, several echocardiography- 
or ECG-derived strategies to improve outcomes in CRT 
patients have been proposed [8, 9]. However, the exact 
cut-off values to predict the response and clinical out-
come post-CRT are not yet established. Studies are ongo-
ing to improve the role of imaging in predicting CRT re-
sponse, including EuroCRT, a large European multi-
center prospective observational study [10]. Furthermore, 
several CRT-device programming approaches for CRT 
optimization have emerged [11]. It has become clear that 
the development of appropriate strategies to improve 
CRT response will require answering a range of both clin-
ical and technological questions. Novel bio-imaging 
markers associated with myocardial function restoration 
post-CRT are still to be identified and the available CRT 
technology needs further adjustment. This review pro-
vides an updated overview of the pathophysiology of 
myocardial dysfunction in ventricular conduction delay 
and the diagnostic approaches for CRT that involve mul-
tiple modalities. 

Pathophysiology of Myocardial Dysfunction in LV 

Conduction Delay 

Mechanical contractility is a consequence of electrical 
activation of the heart. Hence, early detection of abnor-
mal electrical-mechanical patterns is important. LV sys-
tolic function is inversely correlated with electrical width 
and vector of the QRS complex on ECG. However, in 
clinical practice, electrical reverse remodeling is not al-
ways accompanied by mechanical reverse remodeling. 
Accordingly, CRT optimization focused on achieving the 
shortest-paced QRS duration has yielded mixed echocar-
diographic and clinical results [12]. The major determi-
nants of myocardial performance and cardiac output are 
preload, myocardial contractility, and afterload [13, 14]. 
In the dyssynchrony pattern, the systolic stretching leaves 
the septum in a hibernation state characterized by switch-
ing metabolism from free fatty acids to glucose as the pre-
ferred substrate; consequently, the septum no longer con-
tributes to LV systolic function and stroke volume [15]. 
The systolic stretching caused by LV free-wall shortening 
impairs the work performed by the septal segment and 
the septum absorbs energy. In LBBB, the abnormal early 
activation may result in a partial or complete loss of sep-

tum contribution. These changes in myocardial function 
can eventually lead to alterations in adrenergic density as 
well as the deterioration of the resting function, inotropic 
reserve, and function recovery [16]. In HF patients with 
ventricular conduction delay, impaired LV function has 
been considered a reversible process which can be im-
proved by restoring the myocardial function using CRT, 
but the most favorable effects are observed in patients 
with significant myocardial viability and contractile re-
serve. Such patients have the potential to improve after 
CRT therapy [15, 17]. 

Patterns of Motion and Deformation

In patients with LBBB, the apex exhibits a pre-ejection 
rocking motion, due to active septal contraction unop-
posed by the absence of activation of LV lateral wall con-
traction. Many researchers suggested using visual mark-
ers of cardiac motion including apical rocking and septal 
flash as indicators for dyssynchrony [18, 19]. However, 
dyssynchrony is often subtle, and so it cannot be quanti-
fied by visual assessment alone. Quantitative tools should 
be used to complement the visual description of myocar-
dial deformation [18–20].

Since 2002, cardiac motion dyssynchrony has tradi-
tionally been described by parameters such as a septal-to-
posterior wall motion delay ≥130 ms measured by M-
mode echocardiography [21]. More recently, myocardial 
deformation has been assessed by imaging tools such as 
color-coded or pulsed tissue Doppler imaging, with dys-
synchrony indicated by an opposing wall delay of ≥65 ms 
and a time to onset systolic velocity of ≥100 ms. How-
ever, these indicators have many technical limitations 
[21]. 

Speckle-tracking echocardiography (STE) imaging 
applied to routine echocardiography can provide higher 
accuracy to predict reverse LV remodeling post-CRT, as 
defined by an acute improvement of LVEF or LV end-
systolic volume [22]. An acute increase in magnitude, to-
gether with more extensive synchronization of LV longi-
tudinal strain, has been associated with improved func-
tional capacity and NYHA class post-CRT [23]. This 
finding supports the use of STE to assess global longitu-
dinal and radial strains to predict the extent of reverse LV 
remodeling following CRT (Fig. 1). Furthermore, region-
al strain patterns, particularly of septal strain, may help in 
assessing myocardial deformation in dyssynchronous 
HF, although the extent of acute change that predicts the 
clinical outcome remains unknown [24, 25].
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Tissue tracking by using cine cardiac magnetic reso-
nance (cine-CMR) has shown promising results, with re-
cent studies reporting comparable results for radial dys-
synchrony between cine-CMR and STE [26]; CMR can 
also be used to identify and evaluate mechanical dyssyn-
chrony in patients with LBBB [27]. However, CMR has 
technical limitations in HF patients with LBBB, and fur-
ther evaluation is needed before it can be clinically imple-
mented [27]. Other limitations are high costs and limited 
availability.

Myocardial Viability and Fibrosis

CRT response may be reduced by diminished myocar-
dial viability associated with extensive LV scarring [28]. 
Moreover, CRT electrodes should not be placed in seg-
ments with scar tissue which can be easily identified on 
CMR [29, 30]. Patients with ischemic LV dysfunction and 
LBBB may have various amounts of focal myocardial fi-
brosis including in the interventricular septum. In con-
trast, patients with nonischemic cardiomyopathy may 
have a high level of diffuse fibrosis in the septum. A de-
tailed description of regional myocardial fibrosis in dys-
synchrony is needed (Fig. 2).

Advanced imaging methods, such as CMR, allow 
quantitative assessment of focal and diffuse myocardial 
fibrosis, but they do have limitations. CMR with late gad-
olinium enhancement, in particular, shows wide varia-
tion in quantifying focal fibrosis and cannot detect diffuse 
fibrosis [31, 32]. Other CMR approaches, such as T1 map-

ping and extracellular volume mapping, are affected by 
specific CMR techniques and magnetic field strength; 
they lack reference ranges, and there is a significant over-
lap of T1 mapping values of healthy and disease states  
[31, 32].

Using innovative imaging tools in this field is key to 
understanding the disease of the myocardial muscle, in 
terms of cellular and tissue abnormalities. Nuclear imag-
ing, including positron emission tomography (PET), 
demonstrates reduced myocardial perfusion, glucose up-
take, and oxidative metabolism in the septum of LBBB 
patients [33]. CRT partially normalizes these changes; 
therefore, measuring these radionuclide parameters may 
offer an improved approach for selecting CRT candidates 
[33]. Similarly, single-photon emission computed to-
mography (CT) supplies information about perfusion 
and is complementary to PET, which reflects metabolism. 
Radiation dose and the limited availability of PET may 
hamper routine clinical use. The advantages and limita-
tions of different imaging techniques are summarized in 
Table 1.

Concomitant Cardiac Conditions

RV dysfunction is associated with a poor prognosis for 
HF patients [34]. Its role in CRT candidates is controver-
sial. Impaired RV function pre-CRT, similar to HF, is as-
sociated with worse survival post-CRT [35], but a study 
has shown that CRT may improve RV function and prog-
nosis in patients with RV dysfunction [36]. A previous 

Fig. 1. Speckle-tracking echocardiography showing global longitudinal strain of the left ventricle in a patient with 
heart failure treated by cardiac resynchronization therapy (CRT). Left, before implanting CRT; right, echocar-
diography-based CRT optimization at 3 months.
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Fig. 2. Examples of resting global longitu-
dinal strain (GLS) of the left ventricle com-
pared with the extent of hypoperfusion and 
the distribution of myocardial fibrosis in a 
patient with complete left bundle branch 
block and significantly reduced biventricu-
lar function. a Late gadolinium enhance-
ment on cardiac magnetic resonance imag-
ing demonstrating a dense septal scar in the 
left ventricular septal wall. b Scintigraphy 
image of a very large area of severe myocar-
dial hypoperfusion and extensive transmu-
ral infarction in the septum. c, d Tissue 
Doppler image of myocardial dyssynchro-
ny with a reduced magnitude of 2D GLS 
measured by speckle-tracing echocardiog-
raphy. 

Table 1. Cardiovascular imaging modalities and their advantages and limitations for the selection of cardiac resynchronization therapy 
candidates and optimizing therapy

Advantages Limitations

Echocardiography Widely used; safe after CRT implantation Relative subjectivity in quantifying 
myocardial dynamics

Tissue tracking with STE Non-Doppler angle-independent evaluation of myocardial 
deformation evaluation; good reproducibility

Tracking affected by out-of-plane 
cardiac motion; intervendor variability

CMR mapping More objective quantification of myocardial systolic 
dynamics; LGE and T1 mapping are promising methods for 
detecting focal and diffuse myocardial fibrosis, respectively

High cost and limited availability; 
adverse reaction to gadolinium; relative 
complexity of acquisition

Tissue tracking with CMR Imaging possible in any plane; complete myocardium 
visualization

Technical limitations in HF patients 
with LBBB; time-consuming

PET and SPECT Complementary assessment of CRT candidate with ischemic 
cardiomyopathy

Not widely used

X-ray fluoroscopy Guides the position of the CRT leads by contrast injection 
through the right heart cavity and coronary sinus

Limited used for guiding the CRT leads 
during the procedure

MSCT Visualization of cardiac veins; evaluation of structural 
remodeling in patients with inadequate echocardiographic 
images and CMR contraindications

High radiation dose

CRT, cardiac resynchronization therapy; STE, speckle-tracking echocardiography; CMR, cardiac magnetic resonance; LGE, late 
gadolinium enhancement; HF, heart failure; LBBB, left bundle branch block; PET, positron emission tomography; SPECT, single-pho-
ton emission computed tomography; MDCT, multidetector computed tomography.
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meta-analysis revealed that echocardiographic parame-
ters of RV function do not predict CRT response-related 
changes in LVEF [37]. In contrast, a recent study report-
ed that RV systolic dysfunction before CRT implantation 
could identify patients that might not benefit from CRT 
[38], and a prospective study concluded that CRT induc-
es RV reverse remodeling and improves RV function with 
improved interventricular dependence [39]. Further-
more, a higher baseline RV-pulmonary artery (PA) cou-
pling is associated with improved LV reverse remodeling 
and independently associated with a better prognosis 
[40]. Of note, the response to CRT was strongly associ-
ated with RV-PA coupling in both studies [39, 40]. How-
ever, using the RV-to-PA ratio as a potential guide for 
CRT in patients with diseases in whom RV failure pre-
dominates needs further investigation [39, 40]. 

Patients with congenital heart disease (CHD) may 
benefit from CRT. A recent German registry revealed that 
CRT can be used as an adjunct in the HF treatment of se-
lected CHD patients [41]. A retrospective review on 20 
patients with congenitally corrected transposition of the 
great arteries reported that CRT implantation is feasible, 
and that the long-term outcome is favorable but linked to 
systematic morphologic RV dysfunction in some patients 
[42]. Since most of the studies available are retrospective 
in nature, the impact of CRT on long-term prognosis in 
this population is still unknown [43, 44]. 

Several studies have shown that CRT improves sec-
ondary MR [45, 46]. A less favorable effect on MR has 
been reported in ischemic LV dysfunction with extensive 
scarring. Larger residual MR (an effective orifice area 
≥0.20 cm2) following CRT has been associated with in-
creased mortality and HF hospitalizations [47]. A recent 
study on 277 HF patients observed that MR severity at 6 
months decreased in 48 (42%), remained stable in 42 
(37%), and worsened in 24 (21%). Four-year adverse 
event rates were strongly predicted by the presence of at 
least moderate MR after, but not before, CRT [48]. On the 
other hand, a prospective study on 198 patients demon-
strated that significant secondary MR after CRT is associ-
ated with higher morbidity and mortality, i.e., MR despite 
CRT provides important prognostic information beyond 
LV reverse remodeling [49].

Patients with AF before and after CRT represent a 
challenging cohort with insufficient data to guide clinical 
decision-making. CRT is recommended in patients with 
AF and ≤35 LVEF who meet the CRT criteria and in 
whom atrioventricular (AV) node ablation or pharmaco-
logical rate control allow approximately 100% ventricular 
pacing with CRT [50]. Although CRT improves some risk 

factors for AF, such as atrial size and LV systolic function, 
it does not reduce AF recurrence [50]. It is of note that, in 
HF with AF, pulmonary vein isolation may result in a bet-
ter control of symptoms at short-term follow-up com-
pared than CRT plus AV node ablation [51]. However, 
because the long-term effects remain unknown, pulmo-
nary vein isolation should be only performed in selected 
individuals, taking into account patients’ preference [51]. 
Further data on these patients are needed for developing 
a standardized approach. 

Noncardiac Comorbidities

Many noncardiac comorbidities, e.g., diabetes, hyper-
tension, dyslipidemia, obesity, respiratory insufficiency, 
and renal dysfunction, negatively affect myocardial con-
tractility. CRT response is associated with the stabiliza-
tion or improvement of renal function, which, in turn, is 
associated with lower mortality [52, 53]. A meta-analysis 
suggested that diabetic patients with advanced HF who 
received CRT exhibited higher total mortality than non-
diabetic patients [54]. However, the increased mortality 
might have been attributable to insulin administration 
[54]. In the same context, another retrospective analysis 
showed that coexisting chronic obstructive pulmonary 
disease was an independent predictor of a nonresponse to 
CRT [55]. Cardiac disease but also noncardiac concomi-
tant diseases should be taken into consideration when se-
lecting patients for CRT [56].

Blood Biomarkers

Blood biomarkers, such as N-terminal pro-B-type na-
triuretic peptide (NT-proBNP), troponin T, galectin-3, 
and plasma miRNA-21, reflect myocardium status in HF 
patients. A reduction in the levels of these markers is 
mostly associated with a favorable CRT response [57]. 
The BIOCRT study revealed that NT-proBNP levels were 
20% higher in the coronary sinus than in the peripheral 
veins [58]. It suggested that the coronary sinus sampling 
of HF biomarkers is more accurate than the peripheral 
venous blood sampling for predicting CRT outcomes. 
This study also reported that elevated galectin-3 levels 
during CRT device implantation are associated with the 
absence of MR improvement after CRT [59]. Thus, high 
circulating levels of these markers at the coronary sinus 
or peripheral veins may predict the CRT response and 
could therefore be used to document therapy success.
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AV and Ventriculoventricular Time Interval

Prolonged PR intervals may impair AV mechanical 
coupling and the restoration of AV mechanical coupling 
with CRT may improve survival [60]. Following CRT im-
plantation, AV interval optimization is of crucial impor-
tance to allow the completion of the atrial contribution to 
diastolic filling, resulting in the most favorable preload 
before ventricular contraction [61]. Several approaches 
have been used to optimize AV time interval. The CRT 
device’s AV interval time setting has been considered the 
cornerstone for restoring myocardial contractility and 
performance. Doppler echocardiography-derived AV 
optimization has been associated with an improvement 
in both LV systolic function and presystolic MR. In brief, 
AV delay is programmed so that the end of atrial contrac-
tion is timed to coincide with the onset of ventricular con-
traction [62]. Because AV dyssynchrony is common and 
modifiable, Doppler echocardiography-guided AV opti-
mization after CRT is warranted, particularly in nonre-
sponders with a fused or truncated LV filling pattern [63]. 
The clinical efficacy of AV optimization has yet to be es-
tablished. 

The ventriculoventricular (VV) interval optimization, 
which is affected by LV and RV function, is rarely per-
formed because it is time-consuming and without proven 
clinical benefit [64]. The methods used for VV optimiza-
tion may be suboptimal to achieve adequate inter- and 
intraventricular resynchronization. However, it is still 

necessary to demonstrate its clinical relevance, and VV 
interval modification may be proposed to reduce the per-
sistent asynchrony in nonresponders [65]. In summary, 
in clinical practice, CRT system parameters are often set 
empirically, using a shortened AV interval (90–120 ms) 
and simultaneous biventricular (BiV) pacing, with no 
further optimization during follow-up.

Mechanical Work 

To assess myocardial reverse remodeling which direct-
ly affects the cardiac output following CRT, previously, 
studies used simple visual patterns such as apical rocking 
and septal flash to predict CRT responders [19, 20, 66]. 
Furthermore, it was reported that the correction of me-
chanical dyssynchrony versus the volumetric response 
was associated with long-term survival [67]. Recently, the 
calculation of the systolic dyssynchrony index (SDI) via 
real-time 3D echocardiography showed a superiority in 
the assessment of LV performance following CRT [68]. In 
contrast to a previous small study which reported that 
CRT optimization of interventricular delay by using SDI 
(vs. QRS width) assessment did not reveal any significant 
difference in terms of volumetric and clinical response at 
the 12-month follow-up [69], recent large studies have 
demonstrated that a more pronounced reduction in SDI 
immediately after CRT is independently associated with 
a superior long-term outcome [70], and that SDI derived 

Fig. 3. Regional and global myocardial work in a heart failure patient responded to cardiac resynchronization 
therapy (CRT). Left, before implanting CRT; regional work was inhomogeneous in the septal segments. Right, 
after 12 months; CRT increases the global myocardial work and this inhomogeneity disappeared. 
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by 3D speckle-area tracking shows a good correlation 
with the reduction of end-systolic volume post-CRT [71]. 
However, there is no consensus regarding the feasibility 
of using SDI to optimize the CRT. 

Recently, noninvasive methods of calculating myocar-
dial work have been applied in research into CRT re-
sponse. Recent studies focused on mechanical dyssyn-
chrony by taking into account the wasted and construc-
tive myocardial work by means of strain analyses and 
hemodynamic data [72, 73]. The assessment of regional 
distribution to myocardial work based on different he-
modynamics patterns can be used to determine the im-
pact of elevated load on myocardial performance in HF 
patients that qualify for CRT [74]. These myocardial work 
indices derived from pressure-strain loops may provide 
comparable beneficial effects to serial evaluation of LV 
function (Fig. 3). At present, it is reasonable to consider 
these indices as semiquantitative novel tools to aid in 
guiding CRT, but caution is needed until this is validated 
in larger prospective studies. Echocardiography-based 
CRT candidate selection criteria and response optimiza-
tion are summarized in Table 2.

The assessment of BiV performance by echocardiog-
raphy stress test should be interpreted to identify path-
ways and targets, so that we can address different phase 
patterns of ventricular remodeling and determine the de-

gree of residual dyssynchrony, particularly in nonre-
sponders [75]. On the other hand, cardiopulmonary ex-
ercise testing (CPET) might be helpful to assess the exer-
cise capacity of HF patients with diseases of heart muscle 
and other significant diseases underestimated by rest 
evaluation [76]. Contemporary trends suggest that com-
bined CPET imaging stress test can be implemented in 
clinical practice to assess BiV dysfunction in different HF 
phenotypes not detectable with rest evaluation [77]. 

Lead Placement

Optimal LV lead placement is crucial for a favorable 
CRT response. Accumulated evidence suggested that 
mechanical resynchronization is the primary mecha-
nism underlying CRT response. Accordingly, in the ab-
sence of scarring, the optimal LV lead position is gener-
ally lateral or posterolateral because this is often the latest 
segment to contract in the presence of LBBB [78]. In con-
trast, apical pacing and pacing in a densely scarred region 
should be avoided when tailoring the therapy and to pre-
vent adverse events [78, 79]. A multimodality comple-
mentary approach is ideal to establish the optimal CRT 
lead placement precisely. Multidetector CT can be used 
for preoperative mapping of the cardiac veins to assess 

Table 2. Echocardiography-based cardiac resynchronization therapy candidate selection criteria and response optimization

Method Useful markers and parameters Comments

M-mode Septal-to-posterior wall motion delay of ≥130 ms Limited assessment in clinical practice

B-mode LVEF improvement and ≥15% ESV reduction
relative to baseline

Standard parameters for predicting 
CRT response

Color-coded tissue Doppler imaging Opposing wall delay of ≥65 ms Many technical limitations

Pulsed tissue Doppler imaging Delay in time-to-onset systolic velocity of ≥100 ms Many limitations

Standard views based on LV
mechanical description

Apical rocking and septal flash introduced to
describe myocardial dyssynchrony

Relatively subjective

STE-derived strain STE-derived regional strain and global strain
measurement to determine LV reverse remodeling

Non-Doppler; angle-independent; 
underutilized

Area tracking using 3D STE Area strain dyssynchrony index may enable a more 
objective quantification of myocardial systolic
dynamics

Good image quality required for 3D 
STE; debatable STE standardization

Assessment of wasted myocardial
work

Pressure-strain loops describe strain dispersion
due to load change

Further investigation required

CRT, cardiac resynchronization therapy; LVEF, left ventricular ejection fraction; ESV, end-systolic volume; LV, left ventricular; STE, 
speckle-tracking echocardiography.
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the availability of suitable veins in potential target seg-
ments prior to CRT implantation [80]. The CRT out-
come can be predicted by analyzing the 3D coronary si-
nus lead-tip trajectory and optimizing its placement 
based on advanced imaging methods [81]. Clearly, the 
introduction of a LV quadripolar lead provides multiple 
ways to pace the ventricle, and thus more options to 
avoid negative workload of the LV segments and achieve 
CRT optimization [82]. 

Maximal electric separation-guided placement of the 
RV defibrillation lead during CRT should be considered. 
The results of recent studies clearly show the benefits, in 
terms of reverse LV remodeling and clinical response, 
that can be obtained with optimization of the RV lead 
pacing position; the placement of the RV lead guided by 
maximal electric separation compared with standard api-
cal placement not only improves cardiac function but can 
also reduce the risk of ventricular arrhythmia [83, 84]. For 
CRT therapy, multipoint pacing, guided by noninvasive 
hemodynamics, shows a positive LV structural remodel-
ing [85]. However, many limitations in LV lead implanta-
tion, due to anatomical or other constraints, need to be 
considered. At present, permanent His-bundle pacing is 
a feasible alternative for patients in whom BiV pacing 
provided no clinical response. His-bundle pacing allows 
for the recruitment of BBB disease and ventricular activa-
tion in a more physiological fashion, specifically in pa-
tients with right BBB and those with AV block [86]. 

Emerging Optimization Strategy

A timely upgrade to BiV- or His-bundle-pacing de-
vices needs to be considered in patients with CRT. A sin-
gle-center registry involving 304 patients demonstrated 
that daily remote monitoring can be useful to identify the 
percentage of BiV pacing, and that a higher percentage 
improves the long-term prognosis after CRT [87]. More-
over, a recent study including 201 candidates reported 
that a higher percentage of BiV pacing (> 98% at 6 months 
after CRT) is essential for patients to become superre-
sponders [88]. However, the real clinical value of BiV-
pacing percentage still needs to be validated in multi-
center prospective studies.

Sensor-derived approaches are rapidly developing in 
modern cardiology. In CRT patients, the SonR sensor, 
which is embedded in the right atrial lead and picks up 
the intensity of the first heart sound as a surrogate for car-
diac contractility, has been used to optimize CRT settings 
[89]. It provides the opportunity for continuous reading 

of myocardial contractility during rest and exercise. This 
allows continuous adaptation of the AV and VV interval 
setting of the CRT device according to the instantaneous 
needs of the patient [89]. A comparative study demon-
strated that automatic optimization with the SonR sensor 
is as effective as echo-guided optimization, allowing the 
primary efficacy end point to be met with a 35% signifi-
cant reduction in HF hospitalization rates during long-
term follow-up [90].

Advanced Computer Modeling

Advanced computer modeling combined with ma-
chine learning may provide mechanistic insights into 
CRT efficacy. It may help to solve complex problems in-
volving big data by identifying interaction patterns among 
multiple variables in potential CRT candidates [91, 92]. 
The application of neural networks and deep learning in 
cardiovascular medicine plays a crucial role in imaging 
accusation, reconstruction, quantification, and analysis 
[93]. A combined deep-learning and deformable-model 
approach is a promising tool for fully automatic segmen-
tation of the myocardium in CMR [94]. 

Thanks to recent advances in addictive manufacturing 
technologies, computational modeling and 3D printing 
have become powerful tools to describe the heart struc-
ture and the properties of myocardial tissue [95]. The en-
couraging results highlight clinical perspectives on the 
use of computer-aided design models to monitor myo-
cardial structural changes following CRT and ultimately 
shape a favorable remodeling response to CRT [96, 97]. 
Certainly, the integration of imaging and nonimaging in-
formation based on computer-aided diagnosis will allow 
us to determine not only the effect of CRT on myocardial 
performance in the different phenotypes of cardiomyop-
athy, but also the long-term impact of CRT on the differ-
ent symptomatic classes of HF patients [98]. 

Conclusion

CRT has shown significant clinical benefits for pa-
tients with HF refractory to medical therapy. Despite the 
great advances in CRT technology over the past decade, a 
further improvement of device settings, lead placement, 
and imaging tools is needed to improve the efficacy of 
CRT. However, programming devices to optimize the de-
livery of CRT remains challenging, and there are still no 
parameters that are routinely indicated to predict CRT 
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response or guide CRT optimization. At present, multi-
variate computational models are promising tools used in 
the assessment of electromechanical dyssynchrony, and 
the latent strength of these methods to optimize CRT has 
shown great promise. Future advances will hopefully fa-
cilitate the identification of new bio-imaging markers and 
technical approaches to increase the responder rate. The 
promising results of pilot studies to date need to be vali-
dated in a multicenter, prospective setting.
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