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Aims Increased cardiac sympathetic neuron (SN) activity has been associated with pathologies such as heart failure and
hypertrophy, suggesting that cardiac innervation regulates cardiomyocyte trophism. Whether continuous input
from the SNs is required for the maintenance of the cardiomyocyte size has not been determined thus far.

Methods
and results

To address the role of cardiac innervation in cardiomyocyte size regulation, we monitored the effect of pharmaco-
logical sympathetic denervation in mice on cardiac structure, function, and signalling from 24 h to 30 days in the
absence of other pathological stimuli. SN ablation caused an immediate reduction in the cardiomyocyte size with
minimal consequences on the resting contractile function. Atrophic remodelling was mediated by the ubiquitin–pro-
teasome system through FOXO-dependent early induction of the muscle-specific E3 ubiquitin ligases Atrogin-1/
MAFbx and MuRF1, which was followed by activation of the autophagy–lysosome system. MuRF1 was found to
be determinant in denervation atrophy as remodelling did not develop in denervated MuRF1 knock-out (KO)
hearts. These effects were caused by decreased basal stimulation of cardiomyocyte b2-adrenoceptor (AR), as
atrophy was prevented by treatment of denervated mice with the b2-AR agonist clenbuterol. Consistent with
these data, we also observed that b2-AR KO mice showed cardiac atrophy at rest.

Conclusion Cardiac SNs are strong regulators of the cardiomyocyte size via b2-AR-dependent repression of proteolysis, dem-
onstrating that the neuro-cardiac axis operates constitutively for the determination of the physiological cardiomyo-
cyte size. These results are of great clinical relevance given the role of b-AR in cardiovascular diseases and their
modulation in therapy.
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remodelling

1. Introduction
The heart adapts its mass in response to various stimuli including
mechanical, metabolic, and neuro/hormonal signals, all of which
cause changes in the relative rates of protein synthesis and degrad-
ation.1 Protein degradation occurs either via autophagy–lysosome
system, mainly involved in organelle removal, or through the
ubiquitin–proteasome system (UPS).2 The UPS relies on the activity
of three enzymes: E1, a ubiquitin-activating enzyme; E2, mediating

ubiquitin conjugation; and E3, a ubiquitin ligase enzyme.2,3

Atrogin-1/MAFbx and MuRF1 are muscle-specific ubiquitin ligases4,5

whose activity contributes to cell size regulation both in skeletal
and cardiac muscles. Consistent with their role in mediating proteoly-
sis, over-expression of cardiac atrogin-1/MAFbx or MuRF1 has been
shown to prevent surgically or pharmacologically induced cardiomyo-
cyte hypertrophy,6– 8 while genetic ablation of MuRF1 increases the
propensity to develop cardiac hypertrophy upon pressure overload.9

Conversely, it has been demonstrated that MuRF1 is up-regulated
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during regression of cardiac hypertrophy as well as in nutrient
deprivation- and dexamethasone-induced atrophy.10,11

Cardiac atrophy following food deprivation or mechanical unload-
ing is characterized both by increased proteolysis and decreased
protein synthesis.10,12 In skeletal muscle, similar changes in the relative
rates of protein synthesis and degradation13,14 leading to atrophy have
been shown to depend on the loss of neuro/hormonal signals upon
denervation, which resulted in increased MuRF1-mediated degrad-
ation of myosin heavy chain 15 and myosin-binding proteins.16

The heart is densely innervated by sympathetic neurons (SNs) that,
by releasing norepinephrine (NE) and activating b-adrenergic recep-
tors (b-ARs), operate physiologically as a short-term enhancer of
the heart rate, conduction velocity, and cardiac contractility to
match blood flow requirements of peripheral organs.17 b-Adrenergic
stimulation has also longer-lasting effects on cellular metabolism, sur-
vival and on the modulation of cardiomyocyte growth. Both mice
lacking the pre-synaptic a2-ARs, that are characterized by a higher
basal sympathetic outflow,18,19 and NGF-overexpressing mice,
which show sympathetic hyper-innervation, develop cardiac hyper-
trophy.20 Systemic administration of formoterol and salmeterol, two
b2-adrenoceptor (AR) agonists, elicits cardiac muscle hypertrophy,21

and b-AR activation prevents left ventricular (LV) atrophy experimen-
tally induced by cardiac haemodynamic unloading.22,23 Conversely,
mice with total b-AR deficiency,24 as well as rabbits chronically
treated with b-AR blockers25 have reduced the cardiac mass. Interest-
ingly, a link between b2-AR-dependent signalling and expression of
atrogin-1/MAFbx and MuRF1 has recently been proposed.26

Taken together, these data suggest that cardiac SN activity may
constitutively tune the physiological cardiac mass, by modulating the
cellular mechanisms of protein synthesis and degradation, but this hy-
pothesis has not been investigated directly thus far.

2. Methods

2.1 Mice
The following animal models were used in this study: CD1, C57BL/6J, and
FVB WT mice (Charles River, Milan, Italy), MuRF1 knock-out (KO) and
b2-AR KO mice, P1 Sprague-Dawley neonatal rats. All experimental pro-
cedures were performed according to the European Commission guide-
lines and have been approved by the local ethical committee and the
relevant Italian authority (Ministero della Salute, Ufficio VI), in compliance
of Italian Animal Welfare Law (Law n 116/1992 and subsequent modifica-
tions), and complying with the Directive 2010/63/EU of the European
Parliament.

2.2 Pharmacological sympathectomy
Pharmacological sympathectomy was obtained with 6-hydroxy-dopamine
(6-OH-DOPA) (100 mg/kg, ip) (Tocris Bioscience, R&D Systems, Inc.,
Minneapolis, MN, USA).39 The drug was administered at days t ¼ 0, t ¼
2, and t ¼ 7. Animals were sacrificed 2, 4, 8, and 30 days after the first
6-OH-DOPA injection using excess anaesthesia. Control mice were
treated with the vehicle (0.9% NaCl and 0.1% ascorbic acid).

2.3 Echocardiography
Echocardiography was performed both in control and 30-day-denervated
mice under anaesthesia during constant monitoring of temperature, re-
spiratory rate, and ECG, using a Vevo 2100TM (VisualSonics, Toronto,
Canada) system equipped with a 30 MHz transducer. For more details,
see Supplementary material online.

2.4 Tissue samples and immunofluorescence
analysis
For histological and immunofluorescence analyses, hearts were harvested
from mice and either frozen directly in liquid nitrogen or fixed in 1% par-
aformaldehyde (Sigma). More details and the primary antibodies used in
this are described in the Supplementary material online Section and
Table S1, respectively.

2.5 RT–qPCR analysis
Total RNA was prepared using the SV Total RNA Isolation System
according to the manufacturer’s protocol; for details, see Supplementary
material online. Primers are listed in Supplementary material online,
Table S2.

2.6 Western blotting
Total ventricular extracts from both the right and the left ventricles were
obtained as previously described41 and protein concentration was deter-
mined by the BCA assay (Pierce). SDS–PAGE was performed on 3–8 and
4–12% gradient gels (Invitrogen) loading from 10 to 60 mg protein/lane.
Extracts transferred onto PVDF (Invitrogen) were processed with the
primary antibodies described in Supplementary material online, Table S1
either 1 h at room temperature or over night at 48C. The blots were
then incubated with secondary antibodies conjugated to horseradish per-
oxidase and the reactivity was revealed by enhanced chemiluminescence
(Pierce).

2.7 Cardiomyocyte culture
Details of the procedure are described in the Supplementary material
online.

2.8 Statistical analysis
All data are expressed as the mean+ SEM. Comparison between the ex-
perimental groups was made by using the non-paired Student’s t-test and
ANOVA tests followed by Bonferroni correction, with P , 0.05 being
considered statistically significant.

3. Results

3.1 Pharmacological ablation of the cardiac
sympathetic nervous system causes
reduction in cardiomyocyte size
Cardiac sympathetic nerve terminals, as identified by immunoreactiv-
ity to tyrosine hydroxylase, DOPA b-hydroxylase, and synapsin I, are
interspersed among the cardiomyocytes in all regions of the adult
mouse heart, with a higher density in the right ventricle (RV) and
the subepicardium of both the LV and the RV (Supplementary mater-
ial online, Figure S1). To obtain cardiac sympathetic denervation, we
used 6-OH-DOPA, which induces peripheral autonomic neuron de-
generation without affecting central adrenergic neurons,27 with only
minimal consequences on resting blood pressure (BP) and cardiac
haemodynamics.28,29 Such treatment ablated �90% of cardiac sympa-
thetic nerve terminals already 24 h after the first 6-OH-DOPA injec-
tion, and caused complete and persistent denervation after 8 and 30
days (Figure 1A and C ). In accord with the removal of cardiac sympa-
thetic efferents, the chronotropic response to parasympathetic antag-
onism elicited by atropine administration was significantly reduced in
denervated mice, when compared with vehicle-treated controls
(Figure 1B).

Denervated hearts were characterized by a significant reduction in
size, as demonstrated by the decrease in the heart weight/body weight
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ratio (HW/BW), that started rapidly 24 h after treatment, and pro-
gressed with time, reaching a 15% decrease at Day 30 (Figure 1C
and D). This was confirmed by a significant reduction in the cross-
sectional area of ventricular cardiomyocytes, which was already
evident 8 days (data not shown) upon denervation and maximal at
Day 30 (Figure 1E). The denervated myocardium had normal histology
(Figure 2A), with no signs of infiltration, cardiomyocyte necrosis, or
interstitial fibrosis (Figure 2B), that retained normal sarcomeric organ-
ization (Figure 2C). The assessment of cardiac function by echocardi-
ography suggested that atrophic remodelling in the denervated
hearts was not dependent on reduced haemodynamic stress, even
when the degree of atrophic remodelling was maximal in this model
(e.g. 30 days), as the hearts of 6-OH-DOPA-treated mice had un-
changed contractility [fractional shortening (FS) denervated:
31.17+ 1.37% vs. control: 29.64+ 1.50%] and only a moderate

decrease of the ejection fraction (EF), when compared with vehicle-
treated controls (EF, denervated: 67.53+2.97% vs. control:
76.33+ 2.36%) (Supplementary material online, Figure S2). Further-
more, the assessment of myocardial strain using speckle tracking
imaging demonstrated that both circumferential and radial strain
were unchanged in the denervated mice (circumferential strain:
denervated: 215.89+2.58 vs. controls: 214.43+1.92; radial
strain: denervated 227.9+5 vs. controls: 227.8+8.1). In line
with the functional measurements, we did not detect changes in the
expression level of foetal genes associated to cardiac hypertrophy
and unloading atrophy (alpha-skeletal actin and atrial natriuretic
factor),30 with the exception of b-MHC, which was increased in
30-day-denervated hearts, when compared with controls
(Figure 2D–F). Nutrient deprivation is a well-accepted activator of
atrophic remodelling in both cardiac and skeletal muscles.31 In the

Figure 1 Cardiac sympathetic nervous system ablation induces heart atrophy. (A) Confocal immunofluorescence analysis of ventricular cryosection
from control and 30-day denervated hearts stained with an antibody against tyrosine hydroxylase (TOH, red signal). Bar: 100 mm. (B) Evaluation of
heart rate (HR) changes upon atropine injection in control, 3- and 8-day denervated mice (**P , 0.01; n ¼ 6 mice for each group). (C) Evaluation of
sympathetic neuron (SN) density and heart weight/body weight (HW/BW) in vehicle-treated control and 1-, 8-, and 30-day-denervated mice. Error
bars indicate SEM (**P , 0.01; n ¼ 16 mice for each group). (D) Hearts from adult vehicle-treated control, 8- and 30-day-denervated mice.
(E) Immunofluorescence analysis of cryosections from vehicle-treated and 30-day-denervated mice stained with an antibody to dystrophin (left
panel) and morphometric evaluation of the cardiomyocyte cross-sectional area (right panels). Error bars indicate SEM (** P , 0.01; n ¼ 6 mice
for each group). The number of CMs (mean+ SD) evaluated for each heart is shown on the graph.
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first 3 days of 6-OH-DOPA treatment, the mice underwent a modest
and transient BW reduction (�10% at Day 3), which is completely
recovered from the eighth day after treatment onwards (Supplemen-
tary material online, Figure S3A). To determine whether metabolic
changes could be responsible for denervation atrophy, mice under-
went caloric restriction (4 g of normal chow food/day)32,33 for 3
(group II) or 7 days (group I), followed by free food access causing
a 10–15% reduction in BW. Consistent with previous reports, we
observed a significant reduction in cardiac weight (HW/BW, 8-day
diet: 0.0041+ 0.0002 vs. control: 0.0045+0.0002) during the diet.

However, at difference with the denervated mice, the heart size
returned identical to controls after normal diet was re-established
(HW/BW, 30-day diet: 0.0046+ 0.0003 vs. C: 0.0045+0.0002)
(Supplementary material online, Figure S3B–D).

Taken together, these results suggest that atrophic remodelling
upon cardiac denervation does not depend on haemodynamic unload-
ing or metabolic deprivation, but suggests that sympathetic innerv-
ation attends to an independent mechanism that provides
constitutive trophic signal to cardiomyocytes, and therefore regulating
their physiologic size.

Figure 2 Denervated hearts do not show histological alterations. (A) Haematoxilin–eosin of heart cryosections from vehicle-treated and
30-day-denervated mice. Bar: 1 mm. RV, right ventricle; IVS, interventricular septum; LV, left ventricle. (B) Confocal immunofluorescence analysis
of ventricular cryosections from vehicle-treated control and 30-day-denervated mice co-stained with antibodies to sarcomeric actinin (green
signal) and collagen I (red signal), showing no signs of myocardial interstitial fibrosis upon 6-OH-DOPA treatment. Bar: 50 mm. (C) Immunofluores-
cence analysis of ventricular cryosections from vehicle-treated control and 30-day-denervated mice stained with an antibody specific for sarcomeric
actinin, showing no sarcomeric disorganization in denervated hearts. Bar: 10 mm. (D and E) Immunofluorescence analysis of ventricular cryosections
from vehicle-treated and 30-day-denervated mice stained with antibodies specific for b-myosin heavy chain (b-MHC) (D) and skeletal actin (E). Bars:
(D) 1 mm; (E) 100 mm. (F ) Western blot analysis on total ventricular extracts from control and 30-day-denervated hearts. MW, molecular weight.
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3.2 Atrophic remodelling in denervated
hearts is mediated by FOXO (Forkhead box
protein O)-dependent up-regulation
of the ubiquitin ligases atrogin-1/MAFbx
and MuRF1
Based on the evidence that the cardiomyocyte size is regulated by the
relative rates of protein synthesis and degradation, we sought to de-
termine whether the removal of sympathetic input to the heart influ-
enced the regulation of proteostasis. We, therefore, assessed the
expression level of the main genes controlling the UPS, namely the
ubiquitin ligases MuRF-1 and atrogin-1/MAFbx, and the autophagy-
related genes LC3, Beclin, p62, Bnip3, and cathepsin L. Atrogin1/
MAFbx and MuRF1 were induced at the transcript level 24 h after
6-OH-DOPA treatment and progressively decreased 8 and 30 days
upon heart denervation (Figure 3A). Based on the evidence that in
skeletal muscle activation of the autophagy programme follows UPS
activation,34 we sought to determine whether autophagy was acti-
vated in denervated hearts. No significant changes in the autophagy-
related genes were detected at Days 8 and 30 (Figure 3B).
However, in 30-day-denervated hearts, there was a significant in-
crease in the protein level of the low molecular weight LC3II band
(Figure 3C), a marker of autophagosome activation, and decreased
protein levels of p62, the best-known mammalian autophagy-specific
substrate, both molecular events associated to activation of the
autophagy–lysosome system. In addition, Beclin1 and Bnip3 appeared
significantly down-regulated in both 8- and 30-day-denervated hearts
(Figure 3C), which also supports activation of autophagy. These data
indicate that denervation increased UPS-dependent proteolysis,
which was subsequently accompanied by activation of the autop-
hagy–lysosome system. As the transcriptional regulation of
atrogin-1/MAFbx and MuRF1 is modulated by the FOXO family of
transcription factors and inhibitor of nuclear factor kappa-B kinase
subunit b (IkKb)/nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-kB) pathways,35,36 we assessed whether these path-
ways were activated following denervation. In denervated hearts,
there was a progressive decrease in the phosphorylation level of
FOXO1 which started already 24 h after denervation and persisted
for the time of the analysis (Figure 4A). Moreover, the protein level
of the phosphorylated isoform of IkKb was decreased 24 h after
6-OH-DOPA treatment, but returned to levels comparable with con-
trols at Days 8 and 30 (Figure 4B). These results suggest that ablation
of sympathetic efferents to the heart leads to up-regulation of the ubi-
quitin ligases atrogin-1/MAFbx and MuRF-1 through a FOXO-
dependent pathway. We next investigated signalling dependent on
the serine–threonine kinase Akt, which is a known regulator of
FOXO transcription factors, as well as being central to the modula-
tion of protein synthesis. Western blot analyses demonstrated a de-
crease in phospho-Akt in denervated hearts which started already
24 h after denervation (Figure 4C) and persisted at 8 and 30 days
(Figure 4D). In addition, denervated hearts showed a significant reduc-
tion in the phosphorylated isoform of the ribosomal protein S6, as
well as the p-S6/S6 ratio, when compared with vehicle-treated con-
trols (Figure 4C and D). These data suggest that upon ablation of
cardiac SNs, a decrease in the activated form of Akt leads to rapid
up-regulation of the muscle-specific ubiquitin ligases Atrogin-1/
MAFbx and MuRF-1, through activation of FOXO transcription
factors, initiating cardiac atrophic remodelling.

3.3 MURF1 knock-out mice are protected
from denervation-induced cardiac atrophy
The ubiquitin ligase MuRF1 has previously been shown to control deg-
radation of sarcomeric proteins.9 To address the role of MuRF1 in
denervation-induced cardiac atrophy, we denervated MuRF1 KO
mice (MuRF12/2, in the C57BL6 background), which have been pre-
viously demonstrated to have normal cardiac structure and function.9

MuRF12/2 mice examined 30 days after 6-OH-DOPA treatment
were compared with MuRF1 littermate controls (MuRF1+/+) as
well as to vehicle-treated MuRF12/2. Denervation, which in
MuRF1+/+ controls induced cardiac atrophy to a degree comparable
with that of CD1 mice (HW/BW, denervated: 0.0041+0.0001 vs.
vehicle-treated controls: 0.0048+ 0.0004) (Figure 5A–C) did not
cause atrophic remodelling in MuRF12/2 hearts, as demonstrated
by unchanged HW/BW and cardiomyocyte cross-sectional area
(HW/BW, denervated: 0.0053+0.0002 vs. vehicle-treated controls:
0.0052+ 0.0002) (Figure 5A–C). These results indicate that genetic
ablation of MuRF1 protects the heart from denervation atrophy, sup-
porting the conclusion that MuRF1 is a central regulator in such re-
modelling process.

3.4 Noradrenaline modulates MuRF1
expression through b2-AR signalling both
in vivo and in cultured cardiomyocytes
At least two different neurotransmitters released by cardiac SNs,
namely noradrenaline (NE) and Neuropeptide Y (NPY), have been
shown to have a role in regulating cardiomyocyte trophism
in vitro.37,38 To identify the sympathetic neurotransmitter involved in
the regulation of MuRF1 expression, we evaluated changes in the ex-
pression level of this ubiquitin ligase in neonatal cardiomyocytes
treated with beta-adrenergic stimuli. We assessed MuRF1 levels in
cells treated with a non-selective adrenergic agonist, NE, and upon
treatment with the beta2 selective agonist clenbuterol (CL), or with
NPY. Serum starvation caused a significant increase in cardiomyocyte
MuRF1 expression, which was prevented both by NE and CL treat-
ment, whereas NPY treatment did not have effects (Figure 6A).
Based on these results and the effects of CL in skeletal muscle,39

we hypothesized that stimulation of b2-AR would prevent cardiac
atrophic remodelling following denervation. Denervated mice were
administered CL, delivered at constant concentration by subcutane-
ous osmotic minipumps, and such treatment prevented both the
decrease in HW/BW (denervated: 0.00380+ 0.00007, denervated +
CL: 0.00420+ 0.00012, CL: 0.0046+0.00012 vs. control: 0.00450+
0.00004) and the reduction in the cardiomyocyte cross-sectional area
(Figure 6B and C ). These results support that b2-AR signalling has a
role in the determination of the physiological myocardial mass. To
further validate the notion that b2-AR signalling has a major role in
the determination of the physiological myocardial mass, we examined
the heart size in b2-AR KO mice. As expected, b2-AR KO mice had
decreased HW/BW and cardiomyocyte cross-sectional area, at base-
line when compared with littermate controls (HW/BW, b2-AR KO:
0.0030+ 0.0001 vs. control: 0.0038+ 0.0001; CM cross-sectional
area, b2-AR KO: 252.20+ 25.01 mm2 vs. control: 306.94+
26.29 mm2) (Figure 6D). Akin to denervated hearts, b2-AR KO mice
did not show impairment of cardiac contractility (FS: b2-AR KO:
45+ 1% vs. control: 48+ 2%), or significant changes in tail-cuff BP
(b2-AR KO: 109+6 mmHg vs. control: 109+ 1 mmHg) and heart
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rate (HR: b2-AR KO: 523+30 b.p.m. vs. control: 502+4 b.p.m.)
(Figure 6E–G). Altogether, these results suggest that constitutive
b2-AR signalling regulates the cardiac mass by controlling UPS activity
through repression of MuRF1 expression.

4. Discussion
The heart has the ability to adjust its performance to the perfusional
demand of peripheral tissues, through both acute control of contract-
ility and reversible changes in the cardiac mass.17,40 Although it is well-
accepted that the autonomic nervous system tunes contractile func-
tion on a beat-to-beat basis,41 it is not clear whether the regulation
of the physiological cardiomyocyte size relies on continuous trophic
input from the cardiac neurons.

Mechanical, metabolic, and neuro/hormonal signals have all been
implicated in the modulation of cardiomyocyte growth in exercise-
or disease-induced cardiac hypertrophy.42 Conversely, termination
of these signals upon relief of the pro-hypertrophic stimulus (e.g.
mechanical unloading or removal of aortic banding) has been shown
to induce ‘reverse’ remodelling.43,44 Such plasticity in the cardiomyo-
cyte size requires mechanisms that control the relative rates of
protein synthesis and degradation, the latter depending mainly on pro-
teasome activity and autophagy.45,46 Here, we show that ablation of
sympathetic efferents to the heart offsets the proteolytic machinery
by up-regulating the muscle-specific ubiquitin ligases MuRF1 and
atrogin-1/MAFbx, with subsequent activation of the autophagy–lyso-
some system, and reduces Akt-S6K signalling, suggesting reduced
protein synthesis. The combined effect of such processes is the

Figure 3 Denervation-induced cardiac atrophy is mediated by activation of the ubiquitine proteasome and the autophagy–lysosome systems.
(A) Atrogin-1/MAFbx and MURF1 gene expression detected by RT–qPCR in total ventricular extracts from vehicle-treated control, 1-, 8-, and
30-day-denervated mice. Error bars indicate SEM (**P ,0.01; NS, no significant; n ¼ 6 mice for each group). (B) Autophagy-related gene expression
was detected by RT–qPCR in total ventricular extracts from vehicle-treated, 8- and 30-day-denervated mice. Error bars indicate SEM (**P , 0.01; NS,
not significant; n ¼ 6 mice for each group). (C) Western blot analysis on total ventricular extracts from vehicle-treated control, 8- and
30-day-denervated hearts. MW, molecular weight. The densitometric analysis is reported. Error bars indicate SEM (*0.01 , P , 0.05, **P , 0.01;
NS, not significant; n ¼ 6 mice for each group).
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induction of atrophic remodelling in cardiomyocytes, which become
smaller than in normally innervated hearts, in the context of a struc-
turally and functionally normal myocardium. Induction of the atro-
genes depends on the reduction of constitutive adrenergic input to
the b2-AR, with subsequent decrease in PI3K/Akt signalling that
allows activation of the FOXO family of transcription factors and of
their target genes MuRF1 and atrogin1/MAFbx. Therefore, our data
indicate that the physiological cardiomyocyte size relies on constitu-
tive activation of b2-AR signalling by neuronally released NE that
negatively regulates the proteolytic machinery. Consistently, chronic

administration of the b2-AR agonist CL prevented atrophic remodel-
ling in denervated hearts, and mice lacking b2-ARs had smaller hearts
in the absence of significant impairment in cardiac function. Further-
more, denervation atrophy did not develop in MuRF1 KO mice, indi-
cating that among the main cardiac ubiquitin ligases, MuRF1 is
dominant in determining the cardiomyocyte mass, a view consistent
with the observation that MuRF1 targets include constituents of the
sarcomere, which is responsible for nearly half of cardiac cell
volume.4 These results are in line with a recent report showing that
acute b2-AR stimulation down-regulates MuRF1 and atrogin-1/MAFbx

Figure 4 UPS activation in denervated hearts is mediated by FOXO-dependent pathway. (A–D) Western blot analysis of total ventricular extracts
from vehicle-treated, 1-, 8-, and 30-day-denervated hearts. MW, molecular weight. The densitometric analysis is reported. Error bars indicate SEM
(*0.01 , P , 0.05, **P , 0.01; NS, no significant; n ¼ 6 mice for each group).
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genes,26 and with those described in skeletal muscle, which undergoes
atrophy upon sympathetic denervation, a process mediated by MuRF1
induction and antagonized by b2-AR stimulation.39

Although the mechanisms leading to cardiac hypertrophy have ex-
tensively been studied, using a variety of pharmacological, surgical, and
genetic approaches, the mediators of cardiac atrophy are much less
clarified. Atrophic remodelling of the heart has mainly been investi-
gated in response to changes in metabolic and mechanical signals,
for instance in models of caloric restriction and haemodynamic
unloading [heterotopic heart transplantation (hht)], respectively.32,47

These conditions mediate cardiac atrophy through up-regulation of
ubiquitin ligases. In the case of caloric restriction atrophy, the
AMPK pathway activates atrogenes responding to changes in the
metabolic intake. In unloading atrophy, the ubiquitin ligases are acti-
vated by extreme haemodynamic unloading, with a nearly complete

loss of contractility48 and a degree of atrophic remodelling incompat-
ible with cardiac function. The results of this study add to the picture
the autonomic neuro-endocrine axis of cardiac size regulation,
whereby the trophic effect of b2-AR-dependent signalling finely
tunes cardiomyocyte protein balance within a more limited range.
In fact, denervated hearts developed a much smaller atrophic remod-
elling even in long-term observation (HW/BW decrease, denervated:
15% vs. hht: 45%), in the absence of significant changes in cardiac
function.

Further investigation will be needed to determine whether in the
normal heart persistent activation of b2-AR signalling is obtained by
an increase in the resting NE levels in the myocardium, or by repeated
transient bursts of NE discharge. In the second model, receptor
stimulation is obtained with repeated sympathetic discharge during
locomotor activity, postural changes, or environmental stimulation.

Figure 5 MuRF1 knock-out (MurF12/2) mice do not develop denervation-induced cardiac atrophy. (A) Evaluation of the heart weight/body
weight (HW/BW) ratio in vehicle-treated control and 30-day-denervated MuRF1+/+ mice and vehicle-treated and 30-day-denervated
MuRF12/2 mice. Error bars indicate SEM (*0.01,P , 0.05; n ¼ 7 mice for each group). (B) Hearts from vehicle-treated and denervated
MuRF12/2 mice. (C) Immunofluorescence analysis of ventricular cryosections from vehicle-treated and 30-day-denervated MuRF1+/+ mice and
vehicle-treated and 30-day-denervated MuRF12/2 mice stained with an antibody against dystrophin (left panel). Bar: 50 mm. Morphometric evalu-
ation of the cardiomyocyte cross-sectional area is shown in the right panel. RV, right ventricle; LV, left ventricle. Error bars indicate SEM
(*0.01 , P , 0.05, **P , 0.01; n ¼ 6 mice for each group). The number of LV CMs (mean+ SD) evaluated for each heart is reported at the
bottom of the graph.
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Consistent with this model, we observed circadian variation in MuRF1
gene transcription with the lowest level detected during the dark
period29,49 (and Dyar, in preparation), when bursts of sympathetic ac-
tivity are more frequent.50

Interestingly, b2-ARs are capable of independently control different
signalling pathways through both Gs or b-arrestin-dependent path-
ways.51 The reduction in Akt and ERK (Supplementary material
online, Figure S4) pathways occurring in the denervated hearts in
the absence of impaired contractile function suggests the intriguing

hypothesis that the continuously active mechanism of transcriptional
regulation of b2-AR on the atrogenes might be mediated by
b-arrestin 2.52 –55

5. Conclusions
Our results demonstrate that the sympathetic nervous system consti-
tutively regulates the physiological cardiomyocyte size, through
b2-AR-dependent modulation of protein degradation by the UPS.

Figure 6 b2-adrenoceptor (b2-AR) stimulation modulates cardiomyocyte trophism. (A) RT–qPCR analysis in extracts from rat neonatal cultured
cardiomyocytes. Error bars indicate SEM (***P , 0.001; **P , 0.01; NS, no significant; n ¼ 6, for each group). NE, norepinephrine; CL, clenbuterol;
NPY, Neuropeptide Y. (B) Evaluation of heart weight/body weight (HW/BW) in vehicle-treated control, denervated, denervated + CL- and
CL-treated mice. Error bars indicate SEM (*P , 0.05; n ¼ 6, for each group). (C) Immunofluorescence analysis of ventricular cryosections from
30-day-denervated and 30-day-denervated + CL-treated mice stained with an antibody against dystrophin (left panel). Bar: 30 mm. Morphometric
evaluation of the cardiomyocyte cross-sectional area of vehicle-treated control, denervated, denervated + CL- and CL-treated mice (right panel).
Error bars indicate SEM (*0.01 , P , 0.05; NS, not significant; n ¼ 5 mice for each group). The number of LV CMs (mean+ SD) evaluated for
each heart is reported. (D) Morphometric evaluation of the cardiomyocyte cross-sectional area b2-adrenoceptor (b2-AR) KO mice and relative lit-
termate controls. Error bars indicate SEM (*P , 0.05; number of animals ¼ 4, for each group). (e.g.) Evaluation of fractional shortening (E), blood
pressure (F ), and heart rate (G) in vehicle-treated control and b2-AR KO mice. Error bars indicate SEM (*P , 0.05; NS, not significant; number
of animals ¼ 6 for each group).
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This mechanism underlines the importance of regulated proteolysis in
cardiac cell physiology, and expands our current knowledge on
cardiac cell and tissue homoeostasis. Furthermore, the identification
of a previously unrecognized function of the cardiac sympathetic in-
nervation is of great clinical relevance given that prolonged activation
of b-ARs is associated to hypertrophy and failure, and b-AR modula-
tion is central in the treatment of these conditions.

Supplementary material
Supplementary material is available at Cardiovascular Research online.
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