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General relations, 1.e. the relations whose domains are arbitrary sets, have been
investigated in [7]. To complete this investigation, in the present paper we introduce
and study three cardinal operations of addition, multiplication and exponentiation
for general relational systems that generalize the three Birkhoff’s cardinal operations
for ordered sets discussed in {1] and [2]. The results attained also generalize those of
[3], [4] and [5] where the three operations have been studied for sets with reflexive
binary relations, for n-ary relational systems and for general relational systems with

the same domains, respectively.

1. PRELIMINARIES

Let I, I be non-empty sets. Then a set of inappings R C F! is called a relation
on I and the ordered pair F = (F, R) is said to be a relational system. The set F
is called the carrier of F and the set [ the domain of F. The relation R of F (i.e.
on F) will be sometimes denoted by #Z(F). Let F and G be relational systems with
domains [ and J, respectively. Then F and G are said to be of the same type if
there exists a bijection of I onto J.

Besides the usual conventions, such as the assoctativity of the cartesian product,
we accept the following one: A nonemnpty set I and the set {(z,z) | z € I} called the
identity mapping (briefly the identity) of I are considered as the same domains of
relational systems. More precisely, if F and G are relational systems with domains
Iand {(x,x) | & € I}, respectively, and with the same carrier, and if the following
condition holds: ¢y € #(G) <« there exists f € Z(F) with g(z,z) = f(z) for all
r € 1, then F and G are identified.



1.1. Definition. Let F = (F,R) and G = ((/,5) be two relational systems
with the same domain 1. We say that F is a subsystcm of G and write F C G iff
FCGand R=5nF!

1.2. Definition. Let F = (F, ) with domain [ and G = (7. 5) with domain
J be two relational systeins of the same type. Let a: 1 — J be a bijection and
let p: FF — (' be a mapping. If the implication f € R = ¢o foa~! € 5 holds.
then ¢ is called a homomorphism of F inlo G with regard to o. By Hom, (F.G)
we denote the set of all homomorphisis of F into G with regard to . A bijective

homororphisti ¢ of F onto G with regard to o such that ¢!

s a homomorphism
of G onto F with regard to o is called an isomorphism of F onto G with rcgard
to . We write F' < G and say that F and G are isomorphic with regard to o if
there exists an isomorphism of F onto G with regard to «v. If F < H holds for some
subsystem H C G, then we write F 26 11 =7 and a is the ideutity of [, then
Honi(F, G) will be written briefly instead of Homg (F', G), F ~ G instead of F S G

and F < G instead of F i G.

1.3. Example. Consider the teaching process (regarding a certain time table) in
a school. Let F, (7, I, J be the sets of teachers, subjects, classes and class-roons,
respectively, and let card [ = cardJ. For z € [ or £ € J we denote by F(z) the set
of all teachers that teach the class z or that teach in the class-room r, respectively.
Next, for t € F we denote by G/(t) the set of all subjects that are taught by the teacher
t. Let a: I — J be a bijection such that the implication t € F(x) = t € F(a(x)) is
valid for each class x € . (This is fulfilled, for example, if each class x € I always
occupies the same single class-room «(x)). Let R C F' be the relation defined by
f € R & f(x) € F(z) for each 2 € I and let S C (7 be the relation defined by
g € 5 & for each y € J there exists t € I'(y) such that g(y) € G(1) is valid. Let
w: F — (G be an arbitrary mapping with ¢(t) € (/(t) for every t € F. Then ¢ 1s a

homomorphisin of (F, K) into ((,.5) with regard to .

1.4. Remark. a) The homomorphism of relational systems with the same domain
I with regard to the identity of I coincides with the homomorphisin defined in [5].
In particular, if I = {1,2,...,n}, then we get the well-known homomorphism of
sets with n-ary relations. By the antihomomorphism of sets with n-ary relations
we usually understand the homomorphisin with regard to the permutation o of
I ={1,2,...,n} defined by a(z) =n — 2 + 1 for each z € I.

b} The identity of the carrier of a relational system F' is clearly an isomorphism
of F onto itself with regard to the identity of the domain of F. Further, if p is a
homonorphism of a relational system F into another one, G, with regard to a and
1 1s a homomorphism of G into a relational systemn H with regard to 3, then o is

evidently a homomorphism of F into H with regard to 3o «. For relational systeins
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Fand G of the same type, by a morphism from F into G let us understand any
homomorphism of F into G with regard to some bijection of the domain of F' onto
the domain of G. Consequently, the class of all relational systems of the same type
together with these morphisms forins a category. The presented results attained on
the level of the theory of sets are more detailed than those which can be attained on

the level of the theory of categories (see [6]).

-1
¢) From F 2 G and G "< F it does not follow that F £ G (not even if « is the
identity —see [2]).

Sinilarly to the papers [3], [1] and [5], the present one is intended as a generaliza-
tion of Birkhofl's arithmetic of ordered sets ([1], [2]). We shall define and study three
cardinal operations of addition, multiplication and exponentiation for relational sys-
temns of the same type. For relational systems with the same domain these operations
coincide with those investigated in [3] and if, moreover, this domain is finite, then we
obtain the direct operations introduced in [4]. For ordered sets we get the cardinal

operations discussed in [1] and [2].

2. CARDINAL ADDITION

2.1. Detinition. Let F = (F, R) with domain [ and G = ((,5) with domain
J be two relational systems of the same type. Let o: I — J be a bijection and let
PG =0 The cardinal sum F -T— G of F and G with regard to « is the relational
systetn H = (I, T) with domain o« where H = FU G and T is defined as follows:
he H* heT < there exists f € R such that hi(x,y) = f(x) for all (x,y) € a or
there exists ¢ € 5 such that h(r,y) = ¢g(y) for all (x:,y) € a.

If 1 = .J and o is the identity of I, then we write briefly F' + G instead of F —?— G.

Let F = (I R)yand G = (F,95) be two relational systems with the same domain
and the same carrier. Put F < G ilf R C S, Clearly, < 1s au urder on the set of all

relational systems with the same given domain and with the same given carrier.

2.2. Proposition. Let F = (F, R) with domain I and G = (G, S) with domain
J be two relational systems of the same type. Let o2 | — J bhe a bijection and let
FnG =0, Let H = (1. 7TY=F L; G. Then H s the least element (with respect
to <) in the set of all relational systems L with the same domain o and the same
carrier 11 for which the following two conditions are true:

(1) The identity of F'is a homomorphism of F into L with regard to the bijection
i1 — o defined by 3(a) = (r,a(e)) forall e € 1.

(2) The identity of (7 is a homomorphism of G into L with regard to the bijection
7 — a defined by 4{(y) = (o« Yy).y) for all y € J.
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Proof. By idpg denote the identity of I7 and by id; the identity of (7. Clearly,
idp € Homy(F, H) and idg € Hom, (G, H). Let L = (1{.7) be a relational system
with domain o fultilling both the conditions {1) aud (2). Let h € T" be a mapping.
Then (1) there exists f € R such that h(x,y) = f(r) for all (x,y) € o or (ii) there
exists g € S such that h{x, y) = g(y) for all (x,y) € a. Let the condition (1) be true.
Then idpofop™! = fop=! € l/. Since f(o) = h(r,y) = h{z,a(2)) = h{3(2)) for
any r € [, we have f = ho 3. Therefore fod ' =hopop™t =h. Thus h e 7.
Sinularly we can show that it € [71f the condition (1) 1s true. Hence T7C 7. 1o,
H < L. This proves the statement. G

2.3. Lemma. Let Fy = (I}, Ry) with domain I an G| = ((+}.5)) with domain
J be relational systems of the same tvpe. Let Fy = (I, Ra) with domain [ and
Gy = ((/,5) with domain J be relational systems (of the same type) as well. Let
a:l — J be a bijection. Then

(W iIfFiNFy =G NGy =0, then f € Hom (Fy.G)) and g € Hom, (F,. G»)
mmply fUg € Hom, (F) + F,, G| + G4);

(DI NGy = FynGy =8, then f € Hom(Fy, Fy) and ¢ € Hom(G |, G) imply
fUg € llom(F) 1+ G, Fo F Go).

Proof. (1) Let N Fy = GyNnGy =0 and let f € Hom, (F,.G,). g €
Homg (Fy, Go). Put h = fUg. Let p € Z(F)+F2) = R{URy. Suppose p € 1Y), Then

fopoa~! €5 and since fopoa~! =hopoa~!

, we have gopoa™! € 5. Sumnilarly,
supposing p € Ry we get hopoa™! € Sq. Hence p € R1URs = hopon™' € S;US..
Therefore h € Hom (F; + Fy, G| + G4).

(2) Let F\NGy = FynGy = Band let f € Hom(Fy, Fy), ¢ € Hom(G), Gv). Again.
put h = fUyg. Let p € 2(F) —T—Gl }. Then (i) there exists ¢p € ) such that p(ar.y) =
qi(x) for all {(x,y) € « or (1) there exists ¢ € S| such that p(x, y) = ¢2(y) for all
(z,y) € a. Let the condition (i) be true. Then foq; € Ra. Put q(x,y) = f(qi(a))
for all (x,y) € a. We have hop = q and ¢ € #(F, ;‘- G»). Sunilarly, if the condition
(ii) is true, then go gz € Sy and putting q(&, y) = g(q2(y)) for all (&, y) € a we get
hop=qand q € #(Fs —(il— G4). Couscquently, h € Hom(F, i G, F, —?— G»). 'The
proof is complete. d

By virtue of the lemma we obtain

2.4. Theorem. Let Fy = (I}, Ry) with domain I and Gy = ((G).5)) with
domain J be relational systems of the same type. Lot Fy = (Fo, Ra) with domain [
and Gy = (G4, S») with domain J be relational systems (of the same type) ax well.
Let «: [ — J he a bijection. Then

() if YO Fy = GiNGo = 0, then Fy < Gy and Fy X Gy imply Fi+Fy ~ G+ G+
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(0 fnG, = FonGlo =0 then Fro~ Fy and Gy~ G ninply F}‘;‘Gl ~ F;.iG-_y,

2.5, Remeak. I the assumptions of Theoreny 2000 are fulfilled, thien 1t can be

casily =ecn that the implication Fy © Fy aod Gy 2 Go = Fy + Gy C Fu+ Go s
R . B . PN . t
true whenever Fo GGy = B0 Consequently, o Fheorenn 2.0 the svinbols ~ and ~

o '
can be replaced by the symbols < and < respectively.

Clearly. we hiave

2.6. Theorem. Lot F o= (I R) with domain 1. G = ((.S) with domain ./
and H = ([ 7y with domaim N be relationad systems of the same tyvpe. Lot oo
[ — J and 3. ] — K be bijections and let 100G =GO = POl =B ety
o — N oand & | — 3 bhe ithe bijections defined by (e y) = 3(y) for all (v y) € o
and a(r) = (o). Hale)) forall v € 10 Finadlv, let 020 — o1 be the hijection
dedined by 0 y) = (y.0) tor all (e, y) € o Then

" Y A 3
(1 (FY1G)+H=F+ (Gt H).
(2) Ficlac'y F.

2.7. Remark. By virtue of (1) of the previous theorenr we can write both the

3] il 5 R t fed
sum (F+ GY+ H and F+(G+ H) by the same symbol F+ G+ H . More generally,
let 1 he apositive integer and {F, | 1= 0.1 ..., n} a fanmily of relational systems of

the same type and with pairwise disjoint carriers. Let a; he acbijection of the domain

of Fr_y onta the domain of Fy for every 1€ {1,.... n}. Then we can define the sum
ry LA g . . . .

F,+ Fy + ...+ F, as any one obtained by inserting parentheses and replacing the

bijections ay, ... ny, by the corresponding ones.

3. CARDINAL MULTIPLICATION

3.1. Definition. Let F = (f7 R) with domain [ and G = (¢, S) with domain J
be two relational systems of the samne type. Let a: [ — J be a byection. The cardinal
product FYG of F and G with regard lo o is the relational systein H = (H.7T") with
domain o where 1 = 7 x G and T'C ™ is defined as follows: h € II*. he T &
there exist f € R and g € S such that h(a, y) = (f(2), g(y)) for all (x,y) € «.

If [ =J and a is the identity of 1. then we write briefly F - G instead of F© G.

3.2. Proposition. Let F = (I, R) with domain I and G = ((;. S) with doniain

J be two relational systems of the same tyvpe. Let «o: | — ] be a bijection and lot
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H = (H,T)=F°G. Then H is the greatest element (with respect to <) in the
set of all relational systems L with the same domain o and the same carrier H for
which the following two conditions are true:

(1} The projection of H onto F is a homomorphism of L onto F with regard to
the bijection 3: o« — [ defined by p(x,y) = x for all (x,y) € «.

(2) The projection of H onto GG is a homomorphism of L onto G with reeard to

the bijection y: a — J defined by y(2,y) = y for all (x,y) € a.

Proof. By pr; we denote the projection of II onto I and by pr; the projection
of H outo (i. Clearly, prp € Hony(H, F) and pr; € Hom, (H,G). Let L= (H.l")
be a relational system with domain « fulfilling both the conditions (1) and (2). Let
I € U be a mapping. Then putting f = prpoho 3~! and g = prgohoq~! we get
f € Rand g €S. We have prp (h(z,y)) = f(B8(x,y)) = f(&) and pr; (h(.x y) =
g(v(x,y)) = g(y) for all (x,y) € a. Thus h(r,y) = (f(z),g(y)) for all (r.y) € a.
This yields h € T. Hence I/ C T, 1.e. L < H. The proof is complete. a

3.3. Lemma. Let Fy = (I'y, Ry) with domain I and (/) = ((7y,S)) with domain
J be relational systems of the same type. Let Fy = (Fy, Re) with domain | and
Gy = ((/y, 8y) with domain .J be relational systems (of the same type) as well. Let
a: I —.J be a bijection. Then

(1) if f € Hom,(F,.G,) and ¢ € Hom, (Fy, G»), then f+ g € Hom (F, - F.. G, -
Ga);

(2) it f € Hon(Fy, Fy) and g € Hom(G, G). then [+g € Hom(F) S Gy, Fa" G).
Here, f x g means the direct product of the mappings f and g, Le. fxglaoy.r) =

(fri)ales)).

Proof. Let f € Hom (F;.Gy) aud ¢ € Hom, (Fo, G2) and put I = [ x 4.

Let p € #(F)-Fy). Theu there exist ¢ € Ry and g3 € Ry such that ple) =
1

(q1(2). gu(x)) for all 2 € I. Further, foyoa™t € 5 and goguo ™! € S,
Put () = (Sl (e ) g(g2(a=())) for all y € J. Then ¢ € 2(G,
G.) and for any y € J we have h{(p(a=(»))) = h{g (o7 W) . ¢2(a""(W))) =
(Sl (a=Hw)) . glg2(a=2wm)))) = ¢(u). Thushopoa™! = g and henee hepon=t €
HA(G) - Go). Consequently, it € Hom(Fy - Fy. G, - G4).

(2) Let f € Hom(Fy. Fu). g € Hom(G.Gy) and put h = fag. Let p e .2(F,"Gh).
Then there exist ¢ € Iy and qo € Sy such that pleoy) = (qy(e).ga(u)) for all
(e y) € a. Purther, fogqy € Ry and goys € So0 Put g y) = (S g (). u{qatun))
for all (. y) € . Then g € 2(F." Ga) and for every (. ) & oo we bave h(p(e. )

T

g (e)oqotyd) = fln(e) glqu(n)) = qlean. Thas hop = g and henee o p
2(Fy " Gy). Therefore h € Nom(Fy ¥ Gy, Fy " Ga). The statement is proved. 0
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As a consequence of the lemina we get

3.4. Theorvem. Let F; with domain I and G; with domain J be relational
systems of the same type. Let also Fa with domain [ and G with domain J be
relational systems (of the same type). Let «: [ — J be a bijection. Then

(1) if F X G| and Fy X Gy, then Fy - Fy X Gy - Gy;

(2) if Fy ~ Fy and G, ~ Gy, then F\ " G, ~ F, © G4.

3.5. Remark. The reader can casily verify that if the assumptions of Theorein
3.4 are fulfilled, then the ninplication Fy C F», and G, C G» = F Y G, C F, C Gy
is true.  Consequently, in Theorem 3.4 we can replace the symbols ~ and ~ by the

a .
symbols < and <, respectively.

The following two statements are evident:

3.6. Theorem. Let F with domain [ and G = (G, S) with domain J be relational
systems of the same type. Let (G be a singleton and S # @. Let a: [ — J be
a bijection and let 3: o« — [ be the bijection defined by p(x,y) = r whenever
(«,y) € a. Then

«@ i

F.G~F.

3.7. Theorem. Let F' = (F, R) with domain I, G = (G, S) with domain J and
H = (H,T) with domain K be relational systems of the same type. Let «: [ — J
and p:J — K be byections. Let v: a« — K and §: 1 — 3 be the bijections deflined
by y(x,y) = B(y) for all (z,y) € « and 6(2) = (a(z), Bla(x))) for allz € I. Let 0:
a — a~1 be the bijection defined by 0(x,y) = (y.z) for all (x,y) € o. Then

(1) (F ) H=r'G"H),

(2) F'clc F

3.8. Remark. By virtue of (1) of the previous theorem, an analogue of Re-
mark 2.7 is valid for cardinal multiplication of relational systems (of course, now the
assumnption of pairwise disjoin carriers of the systems F; (i = 0, 1, .., n) can be
omnitted).

3.9. Theorem. Let the assumptions of Theorem 3.7 be fulfilled. Moreover, let
AirfBoa — f and p: o — o« be the bijections defined by Mz, z) = ((1(1:),:) for
all (z,2) € Bowa and p(x,y) = (x, Bly)) for all (z,y) € . Further, let o: v — o and
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o — p he the bijections defined by oty 2) = (eozoyo2) forall (g 2y ¢~ andd
olr .y z)y=(r.y.o.2) forall (roy.z2) €8 Then
() irFnG=0then (F+G) HL(F " H) 3 (G H);

Foa

f 3 - n ¢
() iFGAH =0 then FL(GFH)Z (7" G) % (F " H).
Proot. (1) Weshall prove that the identity of (FUG) x I is an isomorphism
" Jou A ;
of (F + G)? H onto (F 8 H)+ (G -iH) with regard to o. To this end. Iet I €
%’((F-’{‘- G')7 H) be a mapping. Then there exist [ € .%’(F;—G) and g € T such that
(e y.2) = (S ). g(2) forall (2, y.2) € 5. Next, (i) there exists fi € R such tha
Sle y) = [i(r) for all (o, y) € a or (1) there exists fu € 5 such that f(e.y) = folu)
for all (r.y) € a. Let the condition (i) be fulfilled. Then for any («.2.y.2) € A we
have h(u-‘(u:.y.:)) = h(r.y.2) = (Sl p)0(:) = (file) (). Put gi(a.s) =
(f1(e), g(2)) for all (&,2) € Bea. Then ¢ € 2(F son H) and h(o™'(x. 2)) =
j Q A R
(e, z) for all (2,2, y,2) € X, Therefore hop™! € .%((F‘ S H)+(G/fH)). Snnllarly.
if the condition (ii) is fulfilled, then putting ¢=(y,z) = (f2(y), 9(z)) for any (y.2) € 3
we get ¢qn € :‘%’(G:?H) and (o= (e, 2,4,2)) = qu(y. 2) for all (2, z,y.2) € X, Again,
@ A 7
hoo ! e #((F"- 7 H)+ (GL- H)). Conversely, having h € ((F U () x [1)1 with
A i

hoo ' e :ff((F '- "H)% (G X H)), reversing the considerations we can casily show
that h € 2((F + G) ! H). The assertion (1) is proved. As for (2), the proof is
stmilar. g

4. CCARDINAL EXPONENTIATION

4.1. Definition. Let F = (F, R) with domain [ and G = (7. 5) with domaiu
J be relational systems of the same type. Let a: I — J be a bijection. The cardinal
power F(AlG of F and G with rogard to oois the relational systemi H = (H.T) with
domain o where I = Hom, (G, F) and T C I is defined as follows: h € 11,
helToheRforallt e (.

Here, for any [ € ¢ and h € H™, 'h is the mapping Yh: I — F delined by
thie) = h(x, a(2)){1) whenever & € 1. (We should write more precisely 'h,, instead
of th. Since it will be always clear which bijection o is considered. we will amit the
index «.)

If I = .J and «a is the identity of 7, then we write FS ustead of F A G.

4.2. Theorem. Let Fy = (Fy, R)) with domain I and Gy = ((7..5y) with domain
J be relational systems of the same type. Let also Fy = (Fy, R9) with domain [ and
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G = (G, Sy) with domain J be relational systems (of the same type). Let o2 [ — ]
he o I»ijwlinu Then

(1) if F; £ Gy and Fs ~ G4, then FF ~G|G2:

(2) il Fl ~ Fg and G| ~ G'_g. then F1 A Gl ~ _F'_» A G-_g.

Proof. (1) Let fi: Fy — () be an isomorphisi of Fy onto Gy with regard
to o and let fo: Fy — (Yo be an lsomorplusm of Fy onto G» with regard to «. For
any f € Hom(Fy, Fy) put o(f) = fio fo f2 We shall prove that ¢ is a bijection
of Hom(Fs. Fy) onto Hom(G4, Gy). Clearly, ¢ is injective. Let f € Hom(Fs, Fy)
and let ¢ € Sy be a mapping. Then f_,_l ogow € Rs. Hence fo _fg"1 ogon €
) and thus fio fo f_,_l ogoaoa~! = p(fJoyg € 5 . We have proved the
implication f € Hom(Fy, F|) = o(f) € Hom(G+, Gy). Similarly we can prove that
f € Hom(G4, Gy) = fl_' ofofa = ¢ Y (f) € Hom(Fy, Fy). Therefore ¢ is a
bijection of Houi(Fs, Fy) onto Hom(Ga, Gy). Let h € W(FIF"). Then *h € R, for
every ¢ € Fa. Thus, for any t € Fy we have fiothoa™! € S;. Let u € iy be an
element. Then *(p o hoa™)(y) = p(h{a~(y)))(u) = fi(h(e=Y(y)) (51 (w)) =
i (-,z_l(“)f((l_l(y))) holds for every y € J. Thus *(pohoa~!) € §;. Consequently,
pohoa~l € GIG") Therefore ¢ is a homomorphisin of Fl onto G 2 with regard
to a. Now, reversing the considerations we can show that h € J(Fle) whenever
h € (Hom(F., Fl))l and pohoa~! g .‘?(G?z). Therefore ¢ is an isomorphism of
FlF2 onto GF” with regard to a. The proof of (1} is complete. The assertion (2) can
be proved sunilarly. g

4.3. Remark. It can be easily shown that if the assumptlons of Theormn 4.2

are fulfilled, then the tmplication Fy C Fy and Gy = G, = F} A G, C F,y A G is
true.  Consequently, in Theoreni 4.2 the assertions (1) and (2) can be replaced by
the following ones:

(1) If Fy X G, and Fy £ Ga, then FF? X GS+.

(2)If F, < Fy and G| ~ Ga, then FL A G, < Fy A Go.

The following result is evident.

4.4 Theorem. Let F with domain I and G = (G, S) with domain .J bhe relational
systems of the same type. Let (¢ be a singleton and S # 0. Let a: I — J be a
hijection. Let B — I and y: a~! — J be the bijections defined by p(x,y) = &
and y(y, r) = y lor all (x,y) € a. Then

(1) FAGLF,
(2) GAFLlaG.
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4.5. Theorem. Let F = (F, R) with domain I, G = ((,5) with domain J
and H = (I1,1) with domain N be relational svstems of the same type. Let o
I — J and g: ] — K be hijections. Let v: o — K and é: Joa — 4 he the
bijections defined by v(x,y) = B(y) for all (r,y) € a and é(x,z) = (a(x).2) for all
(2,2) € Bowv. Finally, let A: v — & be the bijection defined by M, y,z) = (.=, y. 2)
for all (x,y,z) €~. Then

Boa i

(FG)AHA(F A H)Y (GAH).

Proof. Let prp: F x( — F and prg: I x (¢ — ( be the projections.
For any h € Hom,,_1(H,F(o' G) put hp = prpoh and hg = prgoh. Clearly.
pre € Hom,(F ° G, F) and prg € Homy(F ‘aG, G) where p: o — T and o: a — J
are the bijections defined by g(z,y) = z and o(x,y) = y whenever (x,y) € a. Since
0oyl = (Boa) N and coy™! = 471 by 1.4.h) we have hp € Hom (oa)-1 (H , F)and
hg € Homy—i (H, G). Further, let iy € Homygoq)-1 (H, F)and hy € Homy- (H. G)
and put h(t) = (hi(t), ha(t)) for all t € . Let f & T. Then h(f(4(x.y))) =
(7 e ) ), (PG ))) = (s (F(Bale)) i F(5@))) for all () €
«. Since iy o fopow € Rand hao fo B € S| we have ho foy € Z(F Y G).
Therefore h € Hom,_(H, F B G) and clearly iy = hp, he = hg. Now, let
[10111.,~1(H,F’3' G) — Homygen)-1 (H, F) x Homg-1 (H, G) be the mapping defined
by ¢(h) = (hp, hy) whenever h € Homy_((H, F B G). We have proved that ¢ is
surjective. But ¢ 1s clearly injective and hence it is a bijection. Let ¢ € 2 ((F B
G) A H). Then ‘g € A(F ¢ G) for all t € 1. Thus, there exist p € R and
q € S such that ‘g(x,y) = (p(z),q(y)) for all (x,y) € a. For any (&,z.y.2) € 4
we have P\ e ) = elolen2) = (900 .2) o (92,3, 9)) ). Pur
r(x,2) = (g(r, a(x),2)) , forevery (&, 2) € fowand s(y,z) = (g(a™"(¥), v.2)) for
cvery (J,~) € 3. Then ﬂ(g(/\‘l(;zc,z,y,:))) = (r(x,2),s(y, 2)) for all (x,z,y,2) €
and r € (Homyoq)-1 (H, F))ﬂoa € (Homgy- (H, G))ﬂ. Now we have

r(a) = r(e, Bla(e)) () = (g(e,alx), Bal2)))) p (
= pry ( ( (x), Aol )) ): Pre (tﬂ(l “( )))
= prp (p(e) g(ale))) =

=

H

for any t € I aud x € I. Hence 'r = p for all { € H. Similarly,

l I

s(y) = s(v. B0 = (g(a™ (), y. Bly )))(,-(f)
= pry (9(a” (y) v, Bly) )(')) ra (‘9(a™'(¥),y))

pre; (p(a™(v), a(v)) = als

fl
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for any t € I{ and y € J. Thus 's = ¢ for all £ € /I. Therefore ' € R and 's € S
for all t € II. Consequently, r € #(F BXY H) and s € (G g H). This results in
pogod~le .‘?((FﬂAnH)é(GgH)) and we have proved that ¢ is a homormorphism
of (F'-.G)AH onto (FLZQH)?(GKH) with regard to A. Reversing the argument we
can easily show that pogoA~! € ﬂ((FﬁK'H)?(GgH)) implies g € .‘?((F?G)AH)

whenever g € (Hom,-:(H, F¢ G))W. Therefore ¢ is an 1somorphism with regard to
A and the proof is complete. O

4.6. Theorem. Let F = (F, R) with domain I, G = (G, S) with domain J and
H = (1, T') with domain K be relational systems of the same type. Let GNH = ()
andlet a: I — J and 8: J — K be bijections. Lety: [ — f and é: o — Boa be the
bijections defined by ¥(x) = (a(z), B(a(z))) for allz € I and §(z,y) = (x, 3(y)) for
all (x,y) € o. Finally, let A: v — 6 be the bijection defined by A(z,y,z) = (z,y.x, =)
for all (x,y,z) € 4. Then

vy Jel A a 5 Boa
FA(G+H)~(FAG) (F A H).

8 Lo
Proof. For any h € Hom,-1(G + H,F) let h¢ denote the restriction h[(}
and hy the restriction hll[, ic. let hg = hoidg and hy = hoidy. Clearly,
4 B
g € Hom,(G. G+ H) and idy € Hom,(H,G + H) where g: J — 3 and o:
K — 3 are the bijections defined by o(y) = (y,3(y)) for all y € J and o(z) =
(37 %z).z) forallz € K. Sincey 'og=a"land 77 oo = (Boa)”!, by 1.4.h)
we have he; € Hom, - (G, F) and hy € Honysen)-1(H, F). Further, let hy €
8

Hom, -1 (G. F), hy € Homy g0, (H, F) and put h = h U hs. Let f € .‘%(G—[{— H).
Then (1) there exists p € S such that f(y,:) = p(y) for all (y,z) € 3, or (i)
there exists ¢ € T such that f(y,z) = ¢(z) for all (y,2) € 3. Let the condition
(i} be fulliled. Then h(f(5(2))) = h (f{a(x). 3(a(x)))) = ha(¢(B(a(x)))) for
any » € /. Henee ho foy = hyopoa € R Similarly, if the condition (i1)
is fulfilled. then we obtain h(f(3(x))) = h (f(o(2). B(a(x)))) = ha (¢(3(a(x))))
2]

forall ¥ € I, ic. hofoq = hyoqodon € R Therefore h € Hom,-1(G +

3

H_ F) and clearly hy = hg and hy = hg.o Now, let 2! Homﬁ_x(G—‘% H.F) —
Hom,, -1 (G, F) x How z50)-1(H, F) be the mapping defined by o(h) = (hg, hy)

]
f r . . . . .
whenever it € Hom, - (G + H, F). We Lave shown that ¢ is surjective. Since & is

b i3
obviously injective, it is a bijection. Let ¢ € #(FA(G+H)). Then'g € R for every
t € (GU . For any (&,y,2,2) € 6 we have o(g(A~ 1 (r,y,2,2))) = o(g(a.y.2)) =
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((gla.y.23),, (gtron. 3))”;‘- Put (e g) = (e g $y))),, for every (rogd < ocand
~2) =y (: alr). \)” for every (r.2) € o a Then s(y(N o yor o)) =
(r(r ) str.2)) and r € (Hon, -1 (G.F))". s (“UII!, semy—t (H. F))'”" Wi have
() = rleoa(e)) () = (g(eoale). {(“('))) = y{r. “( Do 3{a() it = Tyt
for everv t € (7 and & € [, Sunilarly,

—_ rTl

L) = s H0(2)) (1) = (glrn(e). FHa())), ()
:_:/(.1‘.(1(.1')...‘f(n(r)))(l):"_r/(.l')

for every t € [l and r € [. Thustr = 'y € Riorevery 1 € G and '~ = "¢ & I}
for every ¢ € . This vields r € . 2(F A G) and s € 2(F 'IZ.‘ H). Consequently.
goged! € %((FAG)-(F X'H)). Therefore 2 is a homomorplism ()I‘FA(_G;H)
onto (FAG) (F 1Z;H) with u[,,(u(l to A By the reverse constderations we can show
that pogo ™! € ./((FA G) (F 1103“ H)) implies g € I(FA (C+ H)) whenever
g € (Hom,— (G -;— H.F))w. Therefore 2 15 an isomorphism and the statement s

proved. 0

However, the law F A (G g H) ~ (F A G) A H does not hold i general for
relational systems F, G, H of the same type and for the corresponding bijections
a, J, 4. 8. Now we are aiming at giving sowe sufficient conditions for the validity of
this law.

Let F = (F. R) be a relational systemn with domain 1. The system F s called

(1) discrete WMR={f e FI | e F:flr)=t forallrel).

(2) reflerive ff the discrete relational system G with domain [ and with carrier
F satisfies G < F,

(3) complete it R = 1.

4.7. Theorem. Let F = (F, R) with domain I, G = (G, 5) with domain J and
H = (I, T) with domain K be relational systems of the same type. Let a: [ — ]
and g: J — K be bijections. Let 5: I — § and 8. « — K be the hijections defined
by v(x) = (a(z), 3(a(2))) for all £ € | and §(z.y) = B(y) for all (&, y) € a. Let G
and H be reflexive. Then

; a 8
FAWG H)<(FAG)AH.

. - . . o
Proof. First, note that 5 = ¢ is valid. Let f € Hom(G - H,F)aud r € H. By
Ju: GG — F we denote the mapping defined by f, (1) = f(u,v) whenever u € (7. Let
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g € S. Putting ¢*(y,2) = (g9(y),v) for all (y,z) € B we get g* € .Q(Gﬁ H) since H
is reflexive. Hence f o g* oy € R. However, f(g" (v(z))) = f (9" (a(z), B(a(z)))) =
flg(a(z)),v) = fu (g(a(:c))) for any z € I. Therefore fog* oy = f, 0 g o a which
yields f, o g o« € R. Consequently, f, € Hom,-:(G,F). Let u € G, h € T

and put h(y,z) = (u,h(2)) for all (y,z) € B. Then h € %’(G’ﬂ H) because G is
reflexive. Thus fohovy € R. Let f': H — Hom,-1(G, F) be the mapping defined
by f'(v) = f, for every v € H. Then *(f' o ho é)(z) = f' (h(6(z,a(2)))) (v) =

£ ((B(a(2)))) () = fugpa@m (@) = f (w,h(8(a(2)))) = f (h(a(z), B(a(2)))) =
S(h(7(2))) for allu € Gand z € I. So*(f'ohof) = fohoyforallu € G

and this implies “(f’ ohoé)€ Rforallu € G. Hence f'ohof € .](F g G) and
f' € Homg-. (H, FA G). Now we can define a mapping ¢: Hom _1(G H,F)—

Homy-(H, F Z G) by o(f) = f' for every f € Hom_x(G - H,F). It is easy
to see that ¢ is an injection. Let p € Z(F A (GﬁH)) Then (“¥)p € R for
all (v,v) € (/ x H. We are to show that p op € Z((F g G) A H), ie *(po

p) € Z(F Z G) for every v € H, but this is equivalent to “(”(<p op)) € R for all
(u,v) € (¢ x H. For any = € I and (u,v) € G x H we have “("(so op))(z

o)) = 5 (o oo HalEN) 0N = (oloateh Bl (o
(p(z,a(x), (a(z )))) (u) = plz, a(2), Bla(x))) (u,v) = ”)P(l") So “("(SOOP ) =
¥)p for all (u,v) € G x H and hence “(*(p o p)) € R for all (u,v) € G x H.

Thus p o p € Z((F ﬁ G) A H) Reversing the previous considerations we can
easily show that pop € %((F ﬁ G) A H) implies p € Z(F A (G ! H)) whenever

€ (Hom, - ((Gﬁ H) A F))". Thus ¢ is an isomorphism of F A (G’/3 H) onto the
subsystem of (F & G) g H, whose carrier is o [10[[17—1(G;'5 H,F)), with regard to
the identity id : ¥ — 6. Therefore F A (GﬁH) < (F Z(i. G) ZX H and the proof is

complete. a

4.8. Theorem. Let the assumptions of Theorem 4.7 be fulfilled. If, moreover, F
is reflexive and both G and H are discrete, then

@ b
FAG H)~(FAG)AH.

Proof. If F is reflexive and both G and H are discrete, then clearly GL? H
is discrete and F A G is reflexive. Therefore Hom,- (G 7 H,F) = F¢*H and

(e
Homs—(H, F A G) = (F)H . The mapping ¢ defined in the proof of Theorem 4.7
is obviously a bijection of F“*H onto (F¥)H . This fact implies the statement. [
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Let F = (F, R) be arelational system with domain . Let J, K be sets equipotent
with I and let «: [ — J, 3: I — K be bijections. The system F is called diagonal
with regard to the pair («, B) iff the following holds:

Let {f; | j € J} be a family where f; € R for all j € J. Let {gx | k € K} be the
family of elements of F/ defined by g, (i) = fo,(i)(,@_l(lc)) foreveryi € Iand k € .
If g1 € R for all k € K, then putting h(i) = fa@i)(i) whenever i € I we get h € R.

It can be easily seen that F' is diagonal with regard to (a, 8) iff it is diagonal with
regard to (3, «).

If ] = J = K and both « and 2 are identities, then the diagonality of F' with
regard to («, 3) coincides with the diagonality of F' introduced in {5]. If, moreover, [
is finite, then F' is diagonal with regard to («, §) iff R satisfies the diagonal property
defined in [4]. In particular, if card I = 2, i.e. if R is a binary relation on F, then F
is diagonal with regard to (a, 3) iff R is transitive.

4.9. Theorem. Let the assumptions of Theorem 4.7 be fulfilled. If, moreover, F
is diagonal with regard to («, o «), then

« 8
FAG H)~(FAG)AH.

Proof. Let g € Homs-:(H,F Z G) and put f(u,v) = g(v)(u) for any v € G
and v € H. Let h € .@(Gﬁ H). Then there exist hy € S and hy € T such that
h(y,z) = (h1(y), ha(2)) for all (y,z) € B. As gohyoé € Z(F g G), we have
“(gohyob) € R for every u € G. Thus, putting f; = }()(g o hy o §) whenever
j € J weget f; € R. Next, as ¢g(v) € Hom,-:(G, F) for all v € H, we have
_(](hg(k)) € Hom,-:(G, F) for all k € K. Therefore, putting g = g(hg(k')) ohioa
we get ¢gr € R whenever k£ € K. Further,

oy (B o)™ (k) = M1 (g o hy 0 8)((Boa)™!(k))

=g (h2(6((B o )7 (k), (a0 (Boa) ") (k) (hi(ali)))
=g (ha((Boao(Boa) ') (k) (hi(a(i)))

= f (i (a(i)), ha(k))

and
gx(1) = g(h2(k)) (1 (a(d))) = f(hi(a(i i)}, ha(k))

foralli € I and k € K. Hence gi(i) = fau)((Boa) ' (k)) forevery i € [ and k € K.
Since F is diagonal with regard to (e, o «) and since

Fato) = £ (2 (@), b2 (8(a(@)))) = £ (o), B(o()))) = F(h(3(0))
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holds for every i € I, we have fohovy € R. Consequently, f € HOHLY—I(GA? H,F).
Now, if ¢ is the mapping defined in th proof of Theorem 4.7, then g = ¢(f) and
therefore ¢ 1s a surjection. This yields the statement. a

Let us conclude with the following evident assertion:

4.10. Proposition. Let F with domain I, G with domain J and H with domain
K be relational systems of the same type. Let «, 3, v, & be the bijections defined in
the same way as in Theorem 4.7. If F' is complete, then

« §
FAG H ~(FAG)AH.
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