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Czechoslovak Mathematical Journal , 43 (118) 1993, P raha 

CARDINAL ARITHMETIC OF GENERAL RELATIONAL SYSTEMS 

JOSEF SLAPAL, Brno 

(Received June 24, 1991) 

Dedicated to Professor M. Novotny on the occasion of his 70th birthday. 

General relations, i.e. the relations whose domains are arbitrary sets, have been 

investigated in [7]. To complete this investigation, in the present paper we introduce 

and study three cardinal operations of addition, multiplication and exponentiation 

for general relational systems that generalize the three Birkhoff's cardinal operations 

for ordered sets discussed in [1] and [2]. The results attained also generalize those of 

[3], [4] and [5] where the three operations have been studied for sets with reflexive 

binary relations, for 7i-ary relational systems and for general relational systems with 

the same domains, respectively. 

1. P R E L I M I N A R I E S 

Let F, I be non-empty sets. Then a set of mappings R C F7 is called a relation 

on F and the ordered pair F = (F, R) is said to be a relational system. The set F 

is called the carrier of F and the set I the domain of F. The relation R of F (i.e. 

on F) will be sometimes denoted by !%(F). Let F and G be relational systems with 

domains / and J, respectively. Then F and G are said to be of the same type if 

there exists a bijection of I onto J. 

Besides the usual conventions, such as the associativity of the cartesian product, 

we accept the following one: A nonempty set I and the set {(x, x) \ x E 1} called the 

identity mapping (briefly the identity) of I are considered as the same domains of 

relational systems. More precisely, if F and G are relational systems with domains 

I and {(.r,J') | x £ 1}, respectively, and with the same carrier, and if the following 

condition holds: y E <#(G) <=> there exists / £ &(F) with g(x,x) = f(x) for all 

x G I, then F and G are identified. 
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1.1. D e f i n i t i o n . Let F = (F, R) and G -= (G\.S') be two relational systems 

with the same domain / . We say that F is a subsystem of G and write F C G iff 

F C G and R = S D F1. 

1.2. D e f i n i t i o n . Let F = (F, R) with domain / and G = (G\S) with domain 

J be two relational systems of the same type. Let a : I — J be a Injection and 

let ip: F —• G be a mapping. If the implication / £ R => <p o f o o _ 1 £ S holds, 

then ip is called a homomorphism of F into G with regard to c\. By H o m a ( F , G ) 

we denote the set of all homomorphisins of F into G with regard to o. A Injective 

hoinomorphism p of F onto G with regard to o such that p~{ is a homomorphism 

of G onto F with regard to o - 1 is called an isomorphism of F onto G with regard 

to ex. We write F ~ G and say that F and G are isomorphic with regard to o if 

there exists an isomorphism of F onto G with regard to cv. If F ~ i f holds for some 
a 

subsystem i f C G, then we write F -< G. If / = J and a is the identity of /, then 

Hom(F\ G) will be written briefly instead of Hom a (F , G) , F - G instead of F ~ G 

and F -< G instead of F -< G. 

1.3. E x a m p l e . Consider the teaching process (regarding a certain time table) in 

a school. Let F, G, / , J be the sets of teachers, subjects, classes and class-rooms, 

respectively, and let card I = card J, For x £ / or x £ J vve denote by F(x) the set 

of all teachers that teach the class x or that teach in the class-room x, respectively. 

Next, for / G F we denote by G(t) the set of all subjects that are taught by the teacher 

/. Let a : I —- J be a Injection such that the implication / G F(x) => / G F(o(.r)) is 

valid for each class x G I. (This is fulfilled, for example, if each class x G / always 

occupies the same single class-room c\(x)). Let R C F7 be the relation defined by 

f e R <=> f(x) G F(x') for each x e I and let ,S* C GJ be the relation defined by 

g G 5 <-> for each g £ J there exists / G F(y) such that g(y) G G(/) is valid. Let 

(p: F —> G be an arbitrary mapping with p(t) G G(t) for every / G F. Then ^ is a 

homomorphism of (F, R) into (G, S) with regard to c\. 

1.4. R e m a r k , a) The homomorphism of relational systems with the same domain 

I with regard to the identity of I coincides with the hoinomorphism defined in [5]. 

In particular, if 7 = {1, 2 , . . . , 7i}, then we get the well-known hoinoniorphism of 

sets with 7i-ary relations. By the antihomomorphism of sets with 7i-ary relations 

we usually understand the homomorphism with regard to the permutation o of 

I -= {1, 2 , . . ., 7i} defined by cx(x) = n — x + 1 for each x £ / . 

b) The identity of the carrier of a relational system F is clearly an isomorphism 

of F onto itself with regard to the identity of the domain of F. Further, if p is a 

homomorphism of a relational system F into another one, G, with regard to o and 

I/J is a homomorphism of G into a relational system H with regard to /J, then il'op is 

evidently a homomorphism of F into H with regard to /Jo a. For relational systems 
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Fand G of the same type, by a morphisin from F into G let us understand any 

homomorphism of F into G with regard to some bijection of the domain of F onto 

the domain of G. Consequently, the class of all relational systems of the same type 

together with these morphisms forms a category. The presented results attained on 

the level of the theory of sets are more detailed than those which can be attained on 

the level of the theory of categories (see [6]). 

c) From F -< G and G -< F it does not follow that F ~ G (not even if cv is the 

identity—see [2]). 

Similarly to the papers [3], [4] and [5], the present one is intended as a generaliza-

tion of Birkhoff's arithmetic of ordered sets ([1], [2]). We shall define and study three 

cardinal operations of addition, multiplication and exponentiation for relational sys-

tems of the same type. For relational systems with the same domain these operations 

coincide with those investigated in [5] and if, moreover, this domain is finite, then we 

obtain the direct operations introduced in [4]. For ordered sets we get the cardinal 

operations discussed in [1] and [2]. 

2. C A R D I N A L ADDITION 

2 .1 . Def ini t ion . Let F = (F,R) with domain I and G = (G,S) with domain 

J be two relational systems of the same type. Let rv : / —• J be a bijection and let 

F n G = 0. The cardinal sum F -f G of F and G with regard to c\ is the relational 

system H = (II,T) with domain ex where // = FUG and T is defined as follows: 

It E H'\ h E T <=> there exists f E R such that h(x,y) = f(x) for all (x,y) E a or 

there exists // E S such that h(x, y) = </(y) for all (x,y) E ex. 

If / = J and o is the identity of /, then we write briefly F + G instead of F + G. 

Let, JP = (F, R) and G = (F,S) be two relational systems wim the same domain 

and the same carrier. Put F <J G iff R C S. Clearly, ^ is a.i uiuer on the set of all 

relational systems with the same given domain and with the same given carrier. 

2.2. P r o p o s i t i o n . Let F = (F, R) with domain I and G = (G,S) with domain 

J he two relational systems of the same type. Let rv: I —- J he a bijection and let 

F fl G = 0. Let H = (ITT) = F + G Then H is the least element (with respect 

to <JJ in the set of all relational systems L with the same domain ex and the same 

carrier H for which the following two conditions are true: 

(1) 77ie identity of F is a homomorphism of F into L with regard to the bijection 

ti: I — c\ defined by ;j(x) = (x,c\(x)) for all x E I. 

(2) 7/je identity oi'G is a homomorphism of G into L with regard to the bijection 

-) : J — a defined by -)(y) = (c\~l(y),y) for all y E J. 
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P r o o f . By \d- denote the identity of F and by idc; the identity of (/. Clearly. 

id/v £ \lon\lj(F,H) and idc; £ H o m 7 ( G , i i ) . Let L = (IIJ?) he a relational system 

with domain a fulfilling both the conditions (1) and (2). Let h £ T he a mapping. 

Then (i) there exists / £ Ft such that h(x,y) = f(x) for all (x,y) £ a or (ii) there 

exists g £ ,S such that h(x,y) = g(y) for all (x,y) £ o. Let the condition (i) be true. 

Then i d F o / o / J " 1 = / o / i " 1 £ U. Since f(x) = /.(*,../) = h(*,o(.i.)) = h(<i(x)) for 

any J' £ / , we have / = h o fj. Therefore / o / i - 1 = h o /j o / j - 1 = h. Thus // £ T. 

Similarly we can show that h £ U if the condition (ii) is true. Hence T C F. i.e. 

H <^ L. This proves the statement. • 

2.3 . L e m m a . Lef Fi = (F\,R\) with domain I an Gi = (Gi,.S'i) ujf/j domain 

J be relational systems of the same type. Let F2 = (F2,R2) with domain I and 

G<2 = (G2,S2) with domain J be relational systems (of the same type) as well. Let 

o : / —-J l>e a injection. Then 

(1) if F\ n F2 = G\ C\G2 = 0, t/je/j / £ H o m a ( F i , G i ) and g £ Horn,. (F2. G->) 

imply fUg £ Hom a (F i + F2,G\ +G2); 

(2) if F\ C\G\ = F2nG2 = 0, f/jen / £ Hom(F i ,F 2 ) an(/ g £ H o m ( G i , G 2 ) mi/.>/Y 

/ U ( / £ Hom(Fi + G i , F 2 + G 2 ) . 

P r o o f . (1) Let Fi n F<> = Gi UG2 = 0 and let / £ Hoin 0 (F i . G , ) . g £ 

H o m a ( F 2 , G 2 ) . Put h = fUg. Let p £ .^(Fi + F 2 ) = R\UR<>. Suppose /> £ /iV Then 

f opo(\~x £ ,Vi and since fopoc\~l — bopoa-1, we have gopoc\~l £ .S'i. Similarly, 

supposing p £ If.2 we get hopoa~l £ 5 2 . Hence p £ /tj U/12 => / j o p o a " 1 £ S\ U S2. 

Therefore // £ Hom a (F i + F2, Gi + G<>). 

(2) Let FiDGi = F2nG2 = 0 and l e t / £ HonifF!, F2), g £ Hom(Gi , G 2 ) . Again, 

put h = / U g . Let p £ :^(Fi +G\). Then (i) there exists q{ £ R\ such that />(.r, y) = 

qi(x) for all (J',y) £ o or (ii) there exists q2 £ .S'i such that p(x,y) = ai>(//) for all 

(x,y) £ o . Let the condition (i) be true. Then / o q\ £ R<>. Put q(xey) — f(q\(x)) 
a 

for all (x, y) £ o. We have j\ o p — q and q £ :^(F2 + G 2 ) . Similarly, if the condition 

(ii) is true, then g o q2 £ So and putting q(x,y) — g(q-i{y)) f° r a-- (x,y) £ a we get 

hop- q and q £ :#(F2 + G 2 ) . Consequently, h £ Hom(Fi + G i , F 2 + G 2 ) . The 

proof is complete. D 

By virtue of the lemma we obtain 

2.4. T h e o r e m . Let F\ = (F\,R\) with domain I and G\ = (G\,S\) with 

domain J be relational systems of the same type. Let F2 = (F2, R2) with domain I 

and G2 = (G2,S2) wit/j domain J be relational systems (of the same type) as well. 

Let o : / —* J be a bijection. Then 

(1) ifF\C\F<> = G i f lG 2 = 0, ^ e n Fi - Gi an</F2 - G 2 imply F\+F2 ~ G i + G 2 ; 
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(2) // F f i G , = hvOG-j = l/l. r/jO/i F ; - F , a / ] J G ; - G . / / n / W v F i + G , - F-. + G,. 

2 . 5 . R e m a r k IV tin a s s u m p t i o n * of T h e o r e m 2.4. arc fulfilled, then it can be 

easily seen tha t t he impl i ca t ion F ; C Fv a,i<l G{ C G> => F ] + G i C F L + G^ is 

t r u e wheneve r F j fi GL> = 0. Consequen t ly , in T h e o r e m 2.4 the s y m b o l s ~ and ~ 

can be replaced by the s y m b o l s -< and + , respect ively. 

( ' learly. \\v h a w 

2 .G . T h e o r e m . Let F = (L\R) with domain F G = (G.S) with domain J 

and H = [IFF) with domain l\ he relational systems of the same type. Let n : 

/ — J a/j(/ + . J — /\" he hijections and let F O G = G fi / / = F O 11 = 0. Lrf ~, : 

n — l\" a/i(/ c / — J he the hijections defined hy -)(./',//) = /J(//) for all (.!'.//) C o 

mid c(.r) = ( o ( . r ) . ,V(o(,r))) /or a// -r £ / . Finally, let 0 : (\ — o _ 1 he the Injection 

defined hy ()(,i\ //) = (//. .r) /or a// (.r, //) £ o . 77/(7/ 

( i : ( F + G) + tf = F + (G + ff). 

F + G ~ G + F 

2 . 7 . R e m a r k . By v i r t u e of ( l ) of t he p rev ious t heo rem we can wr i te b o t h t he 

s u m (F+G) + H and F + (G + H) by the s a m e symbo l F + G + H More genera l ly . 

let // he a pos i t ive in teger and { F , | /' = 0, 1 //} a family of r e l a t iona l s y s t e m s of 

\\\c same t y p e and wi th pa i rwise disjoint car r ie rs . Let n ; be a Injection of t he d o m a i n 

of F , _ i o n t o t he d o m a i n of F2 for every /' £ { 1 , . . . . / / } . T h e n we can define the s u m 

F{) -\- F] + . . . + F„ as any one o b t a i n e d by inse r t ing p a r e n t h e s e s and rep lac ing t h e 

Inject ions o i n r . by t h e c o r r e s p o n d i n g ones . 

3 . ( C A R D I N A L M U L T I P L I C A T I O N 

3 . 1 . D e f i n i t i o n . Let F = ( F , R) wi th d o m a i n / and G = ( G , 5 ) wi th d o m a i n J 

be two r e l a t i ona l s y s t e m s of t he s a m e t y p e . Let (\ : J —-J be a Inject ion. T h e cardinal 

product F • G of F and G with regard to a is t he re la t iona l s y s t e m H — (H/V) w i th 

d o m a i n o whe re / / = F x G a n d T C H" is defined as follows: // £ / F f // £ 71 <=> 

t he r e exist, f £ /i and g £ .S* such t h a t //(J ' ,//) = ( / ( * ) . </01)) for all (J:,//) £ a . 

If / — J a n d o is t h e iden t i ty of / , t hen we write1 briefly F • G ins tead of F • G . 

3 . 2 . P r o p o s i t i o n . Lef F = ( F, It) vv/J/i domain I and G = (G.S) with domain 

J he two relational systems of the same type. Let rv: 1 —-> J he a hijection and let 
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H = (H,T) = F - G. Then H is the greatest element (with respect to <Z.) in the 

set of all relational systems L with the same domain o and the same carrier II for 

which the following two conditions are true: 

(1) The projection of H onto F is a homomorphism of L onto F with regard to 

the Injection ft: (\ —* / defined by j3(x, y) = x for all (x, y) £ a. 

(2) The projection of H onto G is a homomorphism of L onto G with regard to 

the Injection 7: a —* J defined by ^(x, y) = y for all (x, y) G o . 

P r o o f . By pi*/.* we denote the projection of / / onto F and by prc ; the project ion 

of / / onto G. Clearly, p r r G l l o m ^ U , F ) and pr6. G Hoin7(i_f, G ) . Let L = (H.U) 

be a relational system with domain cv fulfilling both the conditions (1) and (2). Let 

h G U he a mapping. Then putting / = pr^ oh o /J"1 and g = prc7 oh o ~}~
x we get 

f e l t and g G S. We have p r F (/-(*-_/)) = /(/?(*._/)) = f(x) and prG. (h(x,y)) = 

<j{l(J',y)) = <l(y) for
 a

" (*,y) € «. Thus h(j-,i/) = (f(x),g(y)) for all (x.y) G o. 

This yields h G T. Hence U C T, i.e. L ^ H. The proof is complete. • 

3 .3 . L e m m a . Let F, = (F , , R\) with domain I and G\ = (G\,S\) with domain 

J be relational systems of the same type. Let F_ = (Fv./tS) with domain / and 

G_ = ((V_,,S'_) with domain J be relational systems (of the same type) as well. Let 

(\ : I --* J be a Injection. Then 

(1) iff G I l o m a ( F , , G , ) and g G HOII I . , (F_ , G_), then f*y G HoiiiM(F, -F,.G\ • 

G 2 ) ; 

(2) iffe l I om(F , ,F_ ) andge I Iom(G, . G_). then f*g G Hoin(F, ° G , . FL>'- G_). 

Here, f * y means the direct product of the mappings f and g. i.e. J * g(x\. ./•_) = 

( / ( - r i ) , / / ( - r . ) ) . 

P r o o f . I_f-t / G llom,A F , , G , ) and // G Hom 0(F_, GL>) and put /; = f * y. 

Let p G . ^ (FVF_) . Then there exist «/, G Ii\ and y_ G K-j such that />(.r) = 

('/lU')- '/:_•( •*•')) fur <»H -" £ '• Further, / o 7, o n - 1 G .V, and 1 / o i / v o a " 1 G > j . 

I'ut </(//) - (/(Vi (^~ l (//))) ^ / / (V-(r .- l( / /)))) for all // G J. Then 7 G - * ( G , • 

G_) ami for any y G J we have /1 (/>(r» ~' (//))) = /* ('/1 («~ *(//))-7i-(o~ ! (//))) = 

(/( r / i ( a ~ ' ( / / ) ) ) ' . r / ( r / - ( a~ 1 (//)))) — (l(y)- Thus h o p o o - 1 = 7 and hence h C J I O H " ! G 

. • ( G i • G_). Consequently. // G IIom(F, • F_. G | • G_). 

(2) Let / G IIoin(F, . F_).// G ! I U I I I ( G , . G _ ) and put h = /* / / . Let p G . • ( F . ' - G . ). 

T h e n there exist r/, G iVi and 7, G .
s
'i such that p(x.y) = (71 (.'')• 7-_(//j) for all 

(./-.//) G o . Further, / o r / , G /i'_ and // o 7, G S i . Put 7(.r . / /) = ( / ( y , (./•)). //(f/_r(//))) 

for all (x.y) G o . Then y G V ( F _ • G_) and for every (./•.//) G o we have h(p(x.y)) = 

h(<l\(x).<i->(!J)) -- /(tfiU)..'/('/•_'(//))) = '/(•'••//)•
 l m i s

 '' ° / ' = 7 «'»"- li'Miee // o /. G 

- ^ ( F L / - G_) . Therefore // G II«»m(F, '• G , . F L / - G_). The statement is proved . • 
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As a consequence of the lemma we get 

3.4 . T h e o r e m . Let F\ with domain I and G\ with domain J he relational 

systems of the same type. Let also F2 with domain I and G2 with domain J he 

relational systems (of the same type). Let cv: / —• J he a hijection. Then 

(1) ifF{ ~ CM and F2 ~ G2, then Fx • F2 - G{ • G2; 

(2) ifFi ~ F2 and G{ ~ G2, then F{" G{ ~ F2
 a G2. 

3.5. R e m a r k . The reader can easily verify that if the assumptions of Theorem 

3.4 are fulfilled, then the implication F{ C F2 and G{ C G2 => F^ Gx C F2 "• G2 

is true. (Consequently, in Theorem 3.4 we can replace the symbols ~ and ~ by the 

symbols -< and -<, respectively. 

The following two statements are evident: 

3.6. T h e o r e m . Let F with domain I and G = (G, S) with domain J he relational 

systems of the same type. Let G he a singleton and S ^ 0. Let a: I -^ J he 

a hijection and let (3: a —*• / he the hijection defined hy (3(x,y) = x whenever 

(x, y) G c>. Then 

F°G&F. 

3.7. T h e o r e m . Let F = (F, IV) with domain I,G = (G, S) with domain J and 

H — (H,T) with domain K he relational systems of the same type. Let a : I —* J 

and j3: J —* K he Injections. Let 7 : cv —+ Iv and S: I —> (3 he the Injections defined 

by y(x,y) = [3(y) for all (x,y) G cv and 8(x) = (a(x), fl(a(x))) for all x G / . Let 0: 

a —» cv-1 he the hijection defined hy 9(x, y) = (g, x) for all (x, y) G cv. Then 

(1) (F
a
 G)

1
 H = F

b
(G

P
H), 

(2) FaG^Ga~l F 

3.8. R e m a r k . By virtue of (1) of the previous theorem, an analogue of Re-

mark 2.7 is valid for cardinal multiplication of relational systems (of course, now the 

assumption of pairwise disjoin carriers of the systems _Ft- (i — 0, 1, . . ., n) can be 

omit ted) . 

3.9. T h e o r e m . Let the assumptions of Theorem 3.7 he fulfdled. Moreover, let 

A: (3 o a —• [3 and / / : a —> (3 o cv he the hijections defined hy \(x, z) = (c\(x), z) for 

all (x, z) G l3o a and [i(x, y) = (x, j3(y)) for all (x, y) G cv. Further, let g: 7 —• cv and 
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rr: /) —• // he the Injection* ddiiud hy o[r.y. : ) — (r. ; . / / . :) for nil (•/".//. :)«-::• ../.'/ 

rr(r . //. r ) = (./•, //. ./•. z) tor nil [r. //, z) G c. /7ir/i 

(i) if rnc; = o. r/icn ( F + G ) - / / ^ <F '•" H) + (G'- H ) ; 

(2) iTGO // = 0 . thru F • ( G + H ) ~ ( F '• G) + (F ' •" H ) . 

P r o o f . (1) We shall prove that, the identity of (I1 U (/) x // is an isomorphism 

of ( F T G ) - H onto (F J ° " H ) + ( G '• H ) with regard to o. To this end. Ft ft G 

. ^ ( ( F - f - G ) ^ H ) he a mapping. Then there exist / G .'/(F + G) and // G / ' such that 

h(j\y.z)= (f(j\y).<j(z)) for all (.ir, /y. c) G 7. Next. (i) tin-re exists f\ G /t such thai 

f(r,y) = f\(r) for all (./',//) G n or (ii) there exists / j G .S' such that /(./'.//) = /_'(//) 

for all (./',//) G o . Let the condition (i) be fulfilled. Then for any (r,z.y,z) G A we 

have h(o-'(x.z.y.z)) = h(x.y.:) = (f{x.y).g(:)) = (fi(x),g(:)). Put lh{x.:) = 

(f\(x),</(:)) Tor all (x,:) G i ( o , . . Thou »/, G .4>(.F " ° " ff) and / j ( e - 1 ( x . r, i / . ;)) = 

r / 1 ( . r J r ) f o r a l l ( j - 1 r l i / , c ) G A . Therefore ftoo"1 £ yJ((F • H) + (G-H)). Similarly, 

if the condition (ii) is fulfilled, then putting <[->(y,~) — (A>(//). </(-)) f° r a n>' (.'/• ~) £ J 

we get r/2 G - ^ ( G • H ) and ft (D -1(./\ z, //, c)) = <i->(y,z) for all (r,z,y, z) G A. Again, 

ft 0 D - 1 £.'S((F J O a H ) - r - ( G ^ H ) ) . Conversely, having ft G ( ( F U G ) x / / ) ' with 
1 / tfor\ A .•J 

h o Q~X G -^((F • H ) -f ( G • H ) ) , reversing the considerations we can easily show 

that ft G . ' ^ ( (F + G)1- H ) . The assertion (1) is proved. As for (2), the proof is 

similar. • 

4. C A R D I N A L KXPONKNTIATION 

4 . 1 . D e f i n i t i o n . Let F = (F, It) with domain / and G = (G,S) with domain 

J he relational systems of the same type. Let <\ : I — J he a Injection. The cardinal 
fx 

power F A G of F and G with mjard to <\ is the relational system H = ( / / / / ' ) with 

domain a where // = l lo in a - i (G, F ) and T C IT1 is defined as follows: ft G / / " . 

ft eT&'h G .ft for all/ G G. 

Here, for any / G G and ft G /Pk, '/1 is the mapping 'ft: / — F defined by 
lh(r) = h(j:,<\(r))(f) whenever r G /• (We should write1 more precisely 'ft,, instead 

of 'f t . Since it will be always char which Injection <\ is considered, we will omit the 

index a.) 

If / = J and n is the identity of /, then we write FG instead of FAG. 

4.2. T h e o r e m . Let F\ = (Fi , / t i ) with domain I <u\dG\ = ( G i , 5 i ) with domain 

J be relational systems of the same type. Let also F-> = (F2, Rn) with domain I and 
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G-j = ( ( / 2 , S-z) with <U)innin J he relational systems (orthe same type). Let o : / — J 

he a hijection. Then 

(1) iTF, - G i and F 2 - G 2 . f/iei. F?J ~ G f 2 ; 

(2) i / 'F | - F 2 am/ Gi - G 2 , f/ie/i F i A Gi - F 2 A G 2 . 

P r o o f . (1) Lot J\ : I\ —• C/i be an isomorphism of F\ onto Gj with regard 

to o and lot / 2 : F2 — (72 be an isomorphism of F 2 onto G 2 with regard to o . For 

any / G Hom(F 2 , F i ) put p(J) = J\ o J o J.J1. We shall prove that p is a Injection 

of H o m ( F 2 , F i ) onto Hom(G 2 , G i ) . Clearly, y? is injective. Let / G H o n i ( F 2 l F i ) 

ami let g G >'2 bo a mapping. Then JJ{ o g o <\ G 1?2. Hence / o JJ o g o c\ G 

R\ and thus / i o / o J.J1 o g o a o o _ 1 = p(J) o g G 5i . We have proved the 

implication / G H o m ( F 2 , F i ) => <p(J) G Hom(G 2 , G i ) . Similarly we can prove that 

/ G H o m ( G 2 , G i ) => / f 1 o / o / 2 = ^ ( / j G H o m ( F 2 , F 1 ) . Therefore y? is a 

bijection of H o m ( F 2 , F i ) onto Hom(G 2 , G\). Let A G &(Ff2). Then 'A. G fti for 

every / G F 2 . Thus, for any / G F 2 we have / i o 'A or*""1 G S i . Let u G 6'2 be an 

element. Then ^ o / i o t t - ' ) ( y ) = <p{h(*-x(y)))(u) = J\ (h(a'l(y)) (jjl(y))) = 

J\ ( / a l ( u , / ( « " l ( ! / ) ) ) l l o , a s f o r e v e r y 2/ £ ^- T l l u s u ( ^ o A o o " 1 ) G S'i. Consequently, 

^ o A o r v - 1 G tf(G^2). Therefore <p is a homoniorphism of Ff'2 onto G ^ 2 with regard 

to o . Now, reversing the considerations we can show that A G &(Ff2) whenever 

A G ( H o m ( F 2 , F i ) ) and p o A o o ~ l G &(GX
 2 ) . Therefore p is an isomorphism of 

F , 2 onto G ^ 2 with regard to o . The proof of (1) is complete. The assertion (2) can 

be proved similarly. • 

4 . 3 . R e m a r k . It can be easily shown that if the assumptions of Theorem 4.2 

are fulfilled, then the implication Fi C F 2 and Gi = G 2 => F\ A G{ C F 2 A G 2 is 

true. Consequently, in Theorem 4.2 the assertions (1) and (2) can be replaced by 

the following ones: 

(1) If F , < G{ and F 2 - G 2 , then If2 < G?2. 

(2) If Fi -< F 2 and Gi ~ G 2 , then F i A G, -( F 2 A G 2 . 

The following result is evident. 

4.4 T h e o r e m . Let F with domain I and G = ( 6 \ S) with domain J he relational 

systems of the same type. Let G he a singleton and S ^ 0. Let o : 1 —> J />e a 

hijection. Let /J: o —-> 1 a/j</ 7 : o " 1 —-> J he the hijections defined hy /J(x,y) = x 

and *)(//, j-) = y lor all (x, y) G o . T/je/j 

(1) F A G < £ F , 

« _ 1 

(2) G A F - G . 
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4 .5 . T h e o r e m . Let F = (F, Ft) with domain /, G = (G,S) with domain J 

and H = (II,T) with domain A he relational systems of the same type. Let a: 

I —-J and j3: J —- A' he Injections. Let 7 : 0 — A a/i</ t>: f3 o a —* 3 he the 

Injections defined hy *)(x,y) — /3(y) for all (x,y) G a and S(x,z) = (a(x),z) for all 

(x, z) G /3orv. Finally, let X : 7 —• S he the Injection defined hy X(x, y, z) = (_*, z, y. z) 

for all (x, y, z) G 7 . 77jen 

ft 7 A Poa b fi 

(F • G) A i f - (F A H) • (GAH). 

P r o o f . Let p r F : F x G —-> F and prc; : F x G —• G be the projections. 

For any /i G Hom7_i(i_", F • G) put hF = p r F ob and bG = p r c / o b . (..early, 

| ) rF G H o m ^ F • G, F ) and prG G H o m ^ F • G, G) where _»: a —• / and <r: a —- J 

are the bijections defined by g(x,y) = _? and a(x,y) = g whenever (-i*,t/) G o. Since 

0 0 7 " ! = ( /3oa) _ 1 a n d c r o 7 _ 1 = /. _ 1 , by 1.4.b) we have h F G Hom ( /?oa }-i (H, F) and 

lie, E Wornfj-1 (H,G). Further, let In G Hom ( / j o f t )-i (H, F) and h2 E HoiiLj-. ( i f , G) 

and put //(/) = (Ai(/) , / i2( /)) for all / G / / . Let f e T. Then h(f(-,(x, y))) = 

( / M ( / ( 7 ( ^ , y ) ) ) , ^ 2 ( / ( 7 ( ^ , ; 7 ) ) ) ) - ( A i ( / ( . ( Q W ) ) ) , / h ( / ( / i ( y ) ) ) ) for all (x y) G 

a. Since h\ o f o /3 o a G /i" and ho o f o /_ G .S'i we have h o / o 7 G ^ ( F • G ) . 
<_ 

Therefore b G Hom 7 _i(_f , F • G) and clearly h\ = hF, b2 = he. Now, let y?: 

H o m 7 _ i ( i f , F '• G) —* Hom(/30ftj-i ( if , F ) x Hom^-i (if , G) be the mapping defined 

by <p(h) = (hF,ha) whenever h G H o m 7 _ i ( i f , F • G) . We have proved that y. is 

surjective. But 9? is clearly injective and hence it is a bijection. Let y G yJ((F • 

G) A i f ) . Then x<j G ^ ( F * G) for all / G / / . Thus, there exist p G R and 

7 € 5' such that t(j(x,y) = (p(x), q(y)) for all (x,u) G a. For any (x,z,y, z) G <S 

we have y.(g(X~ l(x, z, y, z))) = <p(g(x,y,z)) = ((</(_., g, _ ) )_ , (y(x, y, z))G). Put 

K * ' * ) - ( g ( J ' ' a ( ^ ) ^ ) ) F for every (_, z) G / i oa and _(_/, z) = (y(a _ 1 (? / ) , _<, z) ) G for 

every (_/,_•) G [3. Then y? (//(A"1 (_, z, y, z))) = (r(_, z), s(y, z)) for all (x,z,y,z) G <*> 

and r G ( Hoin ( / ? 0 f t )-i (H, F))^°c\ s G ( Hom^-i (if , G ) ) ^ . Now we have 

'_(_) = r(x,P(a(x)))(t) = (g ( , - , a (J : ) , / , ( a ( ^ ) ) ) ) F ( / ) 

= p r F (g(x, a(x),fJ(o(x)))(t)) = p r F (<</(_•, « (_) ) ) 

= p r F (p(x-),r/(a(j:))) = pi*) 

for any l G / / and J- G / . Hence tr = p for all i G L/. Similarly, 

'*(_• = *(_.(!/))(<) = (9{a-l(v),v,P ( _ ) ) G ( 0 

= prG (_(«-1(i/),3/,/-(y))(<)) = P r c (*«/(«"'(»).!/)) 

= pre 0'( f t_1(y).). __0 = </(A0 
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for any / G / / and y G J. Thus *s = q for all / G II. Therefore *r G R and *s G S 
/3oa /? 

for all t E II. Consequently, r G . # ( F A H) and s G &(G A i f ) . This results in 

^ o g o A - 1 G tf((F A JFf) - ( G A i f ) ) and we have proved that ip is a hoinomorphism 
-> 0oa 6 {3 

of ( F • G)AH onto ( F A I f ) • ( G A i f ) with regard to A. Reversing the argument we 

can easily show that ^ o ^ o A " 1 G . ^ ( ( F A i f )*(GAH)) implies g G ^ ( ( F ° G ) A H ) 

whenever g G ( Hom 7 - i ( i f , F • G)) . Therefore y? is an isomorphism with regard to 

A and the proof is complete. • 

4.6 . T h e o r e m . Let F = (F, R) with domain / , G = (G,S) with domain J and 

H = (II, T) with domain I\ be relational systems of the same type. Let G (1 II = 0 

and Id (\: I —• J a/j(/ /J: J —-• /\ Z>e bijections. Let 7 : / —* /? a/id <$: rv —- /?oo be tAe 

Injections defined by j(x) = (c\(x), f3(c*(x))) for all x G / and 5(i*,y) = (,r,/i/(u)) /or 

a// (jr. u) G cv. Finally, let A: 7 —* 6 be the Injection defined by X(x, y, z) = (x, y, .r, r ) 

for all (x,y,z) G 7. Then 

1 0 \ ck h liocx 
F A ( G + i f ) ~ ( F A G) • ( F A f i ) . 

P . . . 
P r o o f . For any h G HoiiLy-i(G + i f , F ) let ho* denote the restriction h\G 

and A// the restriction h\ll, i.e. let AC; = A o idc; and A// = A o id//. Clearly, 

£ /3 

idC; G Hom,,(G, G + i f ) and id// G Hom<-(if, G + H ) where D: J — # and cr: 

/\' — ;j are the bijections defined by g(y) = (y,rf(y)) for all y G J and cr(^) = 

( .^- ' (z) ,: : ) for all z G A'. Since 7 - 1 o g = n " 1 and 7 " 1 o <r = ( / i o o ) " 1 , by 1.4.h) 

wo have A<; G H o m u - i ( G , F ) and A// G l lom u - . o a ) - i ( i f , F ) . Further, let h{ G 

Hum,.-. ( G . F ) . Av G Hoiii ( ;,0f t )-i ( i f . F ) and put. A = A, UA2 . Let / G ^ ( G - f - H ) . 

Thou (i) there exists /; G .S' such that f(y,z) = p(y) for all (t/, ~) G /:>, or (ii) 

there twists q G T such that f(y,z) = q(z) for all (1/, z) G ,tf. Let the condition 

(i) be fulfilled. Then / I ( / ( - , ( J C ) ) ) = A (/(rt(-r). tf(n(*)))) = A2 (</(/ ' («(*)))) for 

any j - G / . Hence A o / o 7 = A] o ;>o a G /x. Similarly, if the condition (ii) 

is fulfilled, thou we obtain h(f(~,(x))) = h (f((\(x), fJ((\(x)))) = Av (q[i1(<\(x)))) 
:1 

for all ./• G /, i.e. A o / o -) = h-2 o q o .3 o o G A'- Therefore A G H o m ^ - i ( G + 
/J 

H.F) and clearly Ai = Ai; and AL> = A(;. Now, let. <p: l l o n i r . ( G + H. F ) —• 

l lo i i i , r i (G . F ) x Hom ( ^ 0 o ) _i ( i f , F ) bo the mapping defined by y»(A) = (Ac;, A//) 

whenever A G Honu- i ( G - f H,F). We have shown that ^ is surjective. Since ^ is 

obviously iujective, it. is a bijection. Let g G ^ ( F A ( G - f i f ) ) . Then '</ G ft for every 

/ G O'U ll. For any (./;, ;y, x, z) G o we have <1?(g(\~l (x, y,x,z))) = *p(g(x. y. z)) = 

i:V> 



( ( . ' / ( • ' • . ' / • - / ) , ; • ( / / ( J ' - / / • -= ) ) / / ) • - ' " t r(J'-//) - (//(• ' '•//• • ' ( . ' / ) ) ) , , • h " ' (-v^ry (./'.//) G o ami 

>(•/'.-) = (//(•'••'»(J-).0)// l'»r every (.r.:) G - ^ O M . Then ^(//( A~! (r.//../-.; i) ) = 

(/•(./•.//).>(./•.;)) and /• G ( Hom, l- i (G. F ) ) " . > G ( Huiii,.^,, , - . ( H . F) ) ' " " 1 . \V. haw-

'/-(.r) = r(.r.o(.r))(/) = (//(•/•.o(.r).^(o(.r)))) (.(/| = i/(j-.o(-i-).^(n(J-)))(/» = f:/f./'l 

for rvcry / G G and J :G / . Similarly, 

'.s(.r) = .s'(.r.^(o(j.-)))(0 = (itU. o(.r). .*(n(J-)))) „ (/) 

= //(j-.c»(.r),.7(o(r)))(/) = ;//(.r) 

for ('vrry / 6 / / and .r G / . Thus l
r = ' / / G R for evry / G G and '*> = '// G /»' 

/ l .i'o/» 

for every / G / / • This yields r G i ( F A G) and > G .*f(F A H ) . Consequently. 

^o/yoA"1 G . ^ ( ( F A G ) ' - ( F A H ) ) . Therefore^ is a homomorphisi.i of F A ( G - ^ H ) 

onto ( F A G ) ( F A H ) with regard to A. Hy the reverse considerations we can sh>.w 

that ^ o r / o A - 1 G ^ ( ( F A G V ( F A H)) implies // G - ^ ( F A ( G + H ) ) whenever 

(J G ( l loi i i^- i (G + H . F ) ) . Therefore ^ is an isoiiiurpliism and the statement is 

proved. • 

*> 1 ft /> 

However, the law F A (G ' - H ) - ( F A G) A H docs not hold m general for 

relational systems F, G, H of the same type and for the corresponding Injections 

o, .y, 7, o. Now we are aiming at giving some sufficient conditions for the validity u\' 

this law. 

Let F = (F, /t) he a relational system with domain / . The system F is called 

(1) discrete iff R = {/ G F7 | 3/ G F: / (J ' ) = / for all r G / } . 

(2) rtfit rive ifT the discrete relational system G with domain / and with carrier 

F satisfies G $ F, 

(H) complete iff I?. = F
7. 

4.7 . T h e o r e m . Let F = (F, ft) ivif/i domain I, G = (G,S) with domain J and 

H — (II,T) with domain K he relational systems of the same type. Let o : / — J 

and j3: J —•*• /\ he Injections. Let 7 : / — /i and o: o —-> /\ />e the Injections defined 

hy 7(jr) = ( O ( J : ) , / J ( O ( J . - ) ) ) /or a// J: G / and O(J:. */) = rj(i/) for a// (j:, «/) G o . /.ef G 

a/i(/ H />o reflexive. Then 

F A ( G - H ) -< ( F A G ) A H . 

P r o o f . First, note that 7 = 6 is valid. Let / G Hom(G* H , F ) and r G / / . Hy 

fv : (7 —- F we denote the mapping defined hy fv(u) = f(u,v) whenever u G G. Let 
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g G 5 . Putt ing g*(y, z) = (g(y), v) for all (y, z) G /? we get g* G ^ ( G • i f ) since i f 

is reflexive. Hence / o g* o 7 G It. However, / (g* (7(2))) = / (#* {a(x)i P{a(x)))) = 

/ (g (a(x*)) , v) = /-,(</(a(x))) for any x G I. Therefore fog*oy = fvogoa which 

yields fv o g o a G #• Consequently, /w G H o m a - i ( G , F). Let it G G, h G T 

and put /7(ty, z) = (u, b(z)) for all (y,z) G /?. Then h G ^ ( G • i f ) because G is 

reflexive. Thus / o h o 7 G ft. Let / ' : H —> H o m a - i ( G , F ) be the mapping defined 

by / » = /„ for every v G IF Then w ( / ' o li o 6)( x ) = / ' (h(S(x,a(x)))) (u) = 

/ ' (h((](a(x)))) (u) = A W ( a ( r ) ) ) ( u ) = / ( u , / i ( i 8 ( a ( x ) ) ) ) = / (h(a(x), f3(a(x)))) = 

/ ( / I ( 7 ( J C ) ) ) for all it G G and x G I. So u ( / ' o /i o 6) = / o h o 7 for all u G G 

and this implies u(f o hod) e R for all t / G G . Hence / ' o li o 6 G ^ ( F A G) and 

/ ' G Hom6-\(H,F A G). Now we can define a mapping <p: H o m 7 - i ( G • H, F) —> 

Hom*- i ( . f f ,F A G) by y?(/) = / ' for every / G H o r r ^ - ^ G ^ i f , F ) It is easy 

to see that <p is an injection. Let p G Sf(F A (G P i f ) ) . Then ^u^p G R for 
a <5 

all (u,v) G G x H. We are to show that p p G «^( (F A G) A i f ) , i.e. v(tp o 
a 

p) G ^ ( F A G) for every v G / / , but this is equivalent to u(^(v? o p)) G 1t for all 

(u ,v ) £ G x H. For any x G I and (u,i;) G Gf x H we have u ("(<£> o p))(.r) = v(y?o 

p)(x ,a(x-) ) (u ) = y? (p ( X , a ( X ) , / ? ( a (z ) ) ) ) ( t ; ) (u ) = (p(x, a(x), p(a(x))))' (v)(u) = 

(p(x,a(x),P(a(x))))y (u) = p(x , * ( * ) , f3(a(x)))(u, v) = («.">p(x). So u(v(<pop)) = 
(U 'WV for all (u,v) e G x H and hence " ( ^ p p ) ) G 1t for all (tz.v) e G x H. 

a 6 

Thus <£> o p G &((F A G) A H). Reversing the previous considerations we can 
a S 7 8 

easily show that <p o p e &((F A G) A H) implies p G ^ ( F A ( G • i f ) ) whenever 

pE (HoriLy-i ((GP H) A F ) ) 7 . Thus y? is an isomorphism of F A ( G ^ i f ) onto the 

subsystem of ( F A G) A i f , whose carrier is <£>( H o m 7 - i ( G • H, F ) ) , with regard to 

the identity id : 7 -> (5. Therefore F A ( G ? H) -< (F A G) A H and the proof is 

complete. • 

4.8. T h e o r e m . Let the assumptions of Theorem 4.7 be fulfilled. If, moreover, F 

is reflexive and both G and H are discrete, then 

F A ( G ^ i f ) ~ ( F A G ) A i f . 

P r o o f . If F is reflexive and both G and i f are discrete, then clearly G • i f 

is discrete and F A G is reflexive. Therefore H o m r i ( G - i f , F ) = FGxH and 

H o m 6 - i ( f f , F A G) = (FG)H. The mapping <p defined in the proof of Theorem 4.7 

is obviously a bijection of FGxH onto (FG)H. This fact implies the statement. • 
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Let F = (F, R) be a relational system with domain / . Let J, A' be sets equipotent 

with / and let a: I —* J, 0: I —* A' be Injections. The system F is called diagonal 

with regard to the -pair (a,0) iff the following holds: 

Let {fj | j e J} be a family where fj e R for all j e J. Let {gk \ k e K} be the 

family of elements of F1 defined by gk(i) — fa(i)(/3~l(k)) for every i E I and k E A\ 

If <7fc £ IZ for all k E A', then putt ing h(i) = fa(i)(i) whenever i E / we get ft E R. 

It can be easily seen that F is diagonal with regard to (a, (5) iff it is diagonal with 

regard to (/3, a). 

If / = J = K and both a and /3 are identities, then the diagonality of F with 

regard to (a, (3) coincides with the diagonality of F introduced in [5]. If, moreover, / 

is finite, then F is diagonal with regard to (a, 0) iff R satisfies the diagonal property 

defined in [4]. In particular, if card / = 2, i.e. if R is a binary relation on F, then F 

is diagonal with regard to (a,/3) iff R is transitive. 

4 .9 . T h e o r e m . Let the assumptions of Theorem 4.7 be fulfilled. If, moreover, F 

is diagonal with regard to (a, /3 o a), then 

F A (G ? i f ) - (F A G) A H. 

a 

P r o o f . Let g E Uom$-i(H, FAG) and put f(u, v) = g(v)(u) for any u E G 

and v e H. Let h E £#(G • H). Then there exist hi E S and h2 E T such that 

h(y,z) = (hi(y),h2(z)) for all (y,z) E /?. As g o h2 o 6 e St(F A G), we have 
u(</ o h2 o 6) e R for every u E G. Thus, putting fj = hl^\g o b2 o 6) whenever 

j E J we get / j E B!. Next, as </(t>) E H o m a - i ( G , F) for all t; E / / , we have 

g(h2(k)) E H o m a - i ( G , F1) for all k E A'. Therefore, putting gk = g(h2(k)) o h[ o a 

we get gk e R whenever k E A\ Further, 

fa(i)((P o a)~
l(k)) = Ma(*))(ff 0 ,l2 o 5 ) ( ( / ? o a)~\k)) 

= « / ( / i 2 ( 6 ( ( / ? o a ) - 1 ( ^ ) , ( c v o ( / ? o a ) - 1 ) ( f c ) ) ) ) ( h 1 ( « ( 0 ) ) 

= J / ( ^ ( ( / ? o a o ( / ? o a ) - 1 ) ( t ) ) ) ( / i 1 ( a ( f ) ) ) 

= / ( A ! ( a ( 0 ) , M * ) ) 

and 

9k(i) = ff(A2(*))(A1(a(i))) = /(/M(«(0)> l*2(^)) 

for all i E / and k E A\ Hence gjt(i) = fa^)((j3oa)~l(k)) for every i E / and k E A\ 

Since F is diagonal with regard to (a,/3 o a) and since 

/*(o(0 = /(l'i(«(0)I/'2(/?(a(0)))=/(M«(0^(«(0)))=/(MT(0)) 
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holds for every i £ I, we have / o h o 7 £ It. Consequently, / £ Hom 7 - i ( G • i f , .F). 

Now, if ip is the mapping defined in th proof of Theorem 4.7, then g = ^(Z) a n ^ 

therefore <p is a surjection. This yields the statement. • 

Let us conclude with the following evident assertion: 

4 .10 . P r o p o s i t i o n . Let F with domain I, G with domain J and H with domain 

K be relational systems of the same type. Let a, /3, 7, 6 be the bijections defined in 

the same way as in Theorem 4.7. If F is complete, then 

FA(GP-H) ~(FAG)AH. 
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