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Perception has been described as a process of unconscious inference,  
generating a best guess about the structure of the scene given the 
available sensory measurements and an internal model of the world1,2. 
When sensory information is degraded, reliance on an internal model 
becomes advantageous. When reaching for the light switch in a dim 
room, for example, the knowledge that it is likely to be near the door 
is usually beneficial.

The Bayesian framework provides a quantitative formulation of 
the inference problem and has been used to explain aspects of human 
perception3–5, cognition6 and visuo-motor control7,8. A Bayesian 
 observer’s internal model of an environmental attribute is represented 
using a prior probability distribution. To achieve optimal inference, 
the observer’s prior should be matched to the actual distribution of the 
attribute in the environment, which we refer to as the environmental 
distribution. Here we provide direct evidence that this requirement 
is satisfied for the perceptual task of estimating the orientation of 
local image structure.

To test the correspondence between the environmental distribution 
and observer’s prior, one must know or estimate these two distribu-
tions. Many previous studies have exposed observers to stimuli drawn 
from a known distribution7,8 and compared their behavior to that of 
an optimal observer with full knowledge of that distribution. Such an 
approach is limited by the ability of humans to internalize the distri-
bution in the time frame of the experiment and leaves open the ques-
tion of what prior knowledge humans use under natural conditions. 
Alternatively, one can attempt to derive an environmental distribution 
from known properties of the environment and the image-formation 
process. For example, sunlight comes from above, and humans appear 
to make use of this information9. However, a precise description of 
the illumination in an arbitrary scene is extraordinarily complex, 
and development of a direct expression for the illumination distri-
bution is therefore likely to be intractable. As another alternative, 

one can attempt to estimate the quantity of interest directly from a 
large collection of photographic images, generating a distribution by 
binning values into histograms4,10 or fitting a parametric form9,11,12. 
This process can also be difficult; measurement of the distribution of 
retinal image motion, for example, requires a head-mounted video 
camera and eye-tracker and an accurate algorithm for estimating 
motion from video footage. Local image orientation, on the other 
hand, is relatively easy to estimate, and we used a histogram of such 
estimates to approximate the environmental distribution.

Determination of an observer’s internal prior distribution can also 
be difficult. One can assume a particular parametric form and use it to 
fit perceptual bias data9,11, but this is only useful if the observer’s prior 
can be well approximated by the chosen form. We used a recently 
developed methodology for estimating a nonparametric prior from 
measurements of perceptual bias and variability13 and found that 
the recovered observer’s prior and measured environmental distribu-
tion are well matched, thus providing direct evidence that humans 
behave according to the rules of Bayesian inference in estimating 
the orientation of local image structure. In particular, we measured 
the distribution of local orientations in a collection of photographic 
images and found it to be strongly non-uniform, exhibiting a prepon-
derance of cardinal orientations. We also measured human observers’ 
bias and variability when comparing oriented stimuli under different 
uncertainty conditions and found strong biases toward the cardinal 
axes when stimuli were more uncertain. The prior that best explains 
the observed pattern of bias and variability is well matched to the 
environmental distribution. Finally, the most distinctive and well 
understood property of neurons in primary visual cortex is their 
selectivity for local orientation, and we demonstrated how a popula-
tion of such neurons with inhomogeneities matching those previ-
ously reported can give rise to both the observed perceptual biases  
and discriminability.
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Cardinal rules: visual orientation perception reflects 
knowledge of environmental statistics
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Humans are good at performing visual tasks, but experimental measurements have revealed substantial biases in the perception 

of basic visual attributes. An appealing hypothesis is that these biases arise through a process of statistical inference, in which 

information from noisy measurements is fused with a probabilistic model of the environment. However, such inference is optimal 

only if the observer’s internal model matches the environment. We found this to be the case. We measured performance in 

an orientation-estimation task and found that orientation judgments were more accurate at cardinal (horizontal and vertical) 

orientations. Judgments made under conditions of uncertainty were strongly biased toward cardinal orientations. We estimated 

observers’ internal models for orientation and found that they matched the local orientation distribution measured in photographs. 

In addition, we determined how a neural population could embed probabilistic information responsible for such biases.
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RESULTS

We assumed that the observer’s sensory measurements, internal prior 
model and estimates are related to each other through an encoder-
decoder observer model13 (Fig. 1). Given a contour or edge with true 
orientation θ in the retinal image, the observer makes an internal meas-
urement, m(θ), which is corrupted by sensory noise. Repeated presenta-
tions of the same stimulus result in slightly different measurements, and 
this collection of measurements can be described with a conditional 
probability function, p(m|θ). An estimator (decoder) is a function, typi-
cally nonlinear, that maps the noisy measurement to an estimate of the 
true orientation, ˆ( ( ))q qm . A Bayesian observer uses a particular estima-
tor, optimized to minimize expected error for the given measurement 
noise and prior model (Fig. 2 and Online Methods).

The Bayesian encoder-decoder model provides a framework for 
understanding two fundamental types of perceptual error: bias and 
variability13. Perceptual variability arises from the sensory (encoder) 
noise, which is propagated through the estimator, and limits the preci-
sion with which the observer can discriminate stimuli. Perceptual bias 
is the average mismatch between the perceived and true orientations 
and primarily arises because a Bayesian estimator prefers interpreta-
tions that have higher prior probability from amongst those consistent 
with the measurement. The origin of these two types of error makes 
it clear that one cannot predict one from the other. In particular, the 

direction and magnitude of bias are determined by the slope of the 
prior, which need not have any relationship to the variability.

Psychophysical measurements of bias and variability

We conducted an experiment to estimate observers’ prior knowledge 
about orientation. We asked observers to compare the average orien-
tations of two arrays of oriented Gabor patches (Gaussian-windowed 
sinusoidal gratings). We assumed that observers make local orienta-
tion estimates for each patch and then averaged these to obtain an 
overall estimate of orientation for each array14. The low-noise stimuli  
(L; Fig. 3a) had identical orientations, whereas the high-noise 
stimuli (H; Fig. 3a) were variable in orientation (individual Gabor 
orientations were drawn from a distribution with an s.d. of about  
22 deg; see Online Methods). Observers viewed the two stimuli 
simultaneously, symmetrically displaced to the right and left of fixa-
tion, and were asked to indicate whether the mean orientation of the 
right stimulus was clockwise or counter-clockwise relative to that of 
the left stimulus. Comparisons were made between three stimulus 
 combinations: low noise versus low noise, high noise versus high 
noise, and high noise versus low noise.

The discrimination thresholds are of interest because they can 
be related to the s.d. of the internal measurement distributions 
(see Online Methods). The two same-noise conditions (low noise 
versus low noise and high noise versus high noise; Fig. 3b and 
Supplementary Fig. 1a) provide an estimate of measurement noise 
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Encoder Decoder Figure 1 Observer model for local two-dimensional orientation estimation. 

Each local edge has a true image orientation, θ. In the encoding stage, the 

observer obtains a visual measurement, m(θ), corrupted by sensory noise. 

In the decoding stage, a function (the estimator, black curve) is applied to 

the measurement to produce the estimated orientation ˆ( ( ))q qm . Because 

of the sensory noise, the estimated orientation will exhibit variability 

across repeated presentation of the same stimulus, and may also exhibit a 

systematic bias relative to the true orientation.

Figure 2 Derivation of the estimator ˆ( ( ))q qm .  

In all three grayscale panels, the horizontal 

axis is stimulus orientation (θ), the vertical 

axis is the measured orientation (m(θ)) and 

the intensity corresponds to probability. Upper 

left, the mean observer’s prior, raised to the 

power of 2.25 and re-normalized for visibility, 

is independent of the measurements (that is, 

all horizontal slices are identical). Upper right, 

the conditional distribution, p(m|θ). Vertical 

slices indicate measurement distributions, 

p(m|θ1) and p(m|θ2), for two particular stimuli 

θ1 and θ2. The widths of the measurement 

distributions are the average of those for the low- 

and high-noise conditions for the mean observer 

(multiplied by a factor of 10 for visibility). 

Horizontal slices, p(m1|θ) and p(m2|θ), describe 

the likelihood of the stimulus orientation, θ, for 

the particular measurements, m1 and m2. Note 

that the likelihoods are not symmetric, as the 

measurement distribution width depends on 

the stimulus orientation. Bottom, the posterior 

distribution is computed using Bayes’ rule, 

as the normalized product of the prior and 

likelihood (top two panels). Horizontal slices 

correspond to posterior distributions p(θ|m1) and 

p(θ|m2), which describe the probability of a stimulus orientation given two particular measurements. Red dots indicate maximum a posteriori estimates 

(the modes of the posterior) for these two likelihoods, ˆ( )q m1  and ˆ( )q m2 . Circular mean estimates yield similar results (see Supplementary Fig. 2). The red 

curve shows the estimator ˆ( )q m  computed for all measurements. An unbiased estimator would correspond to a straight line along the diagonal.
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for each class of stimuli. For the low-noise stimuli, all subjects exhib-
ited better discrimination at the cardinals, a well-studied behavior 
known as the oblique effect15. As there was no noise in the stimuli, 
these inhomogeneities must arise from non-uniformity in the ampli-
tude of the internal noise at different orientations. This effect was 
diminished with the high-noise stimuli, for which the inhomogeneous 
internal noise is presumably dominated by external stimulus noise. 
As expected, discrimination thresholds were significantly higher 
for the high-noise stimuli than the low-noise stimuli for all subjects 
(98% of all just noticeable differences (JNDs) across orientations and 
subjects, sign test P ≈ 0). The cross-noise variability data (Fig. 3c 
and Supplementary Fig. 1b) show a moderate oblique effect whose 
strength lies between that of the low noise versus low noise and high 
noise versus high noise conditions (98% of high noise versus low noise 
JNDs are larger than low noise versus low noise JNDs, sign test P ≈ 0; 
73% of high noise versus low noise JNDs are smaller than high noise 
versus high noise JNDs, sign test P < 0.0005).

A non-uniform prior will cause a bias in estimation. Biases are 
not observable when comparing same-noise stimuli, as both stimuli 
presumably have the same bias. Cross-noise comparisons can be used 
to estimate relative bias13 (that is, the difference between the low- and 
high-noise biases) by computing the difference between the mean 
orientation of the two stimuli when they are perceived to be equal. 
This represents the counter-clockwise rotation that must be applied 
to the high-noise stimulus to perceptually match the orientation of 
the low-noise stimulus (Fig. 3d and Supplementary Fig. 1c). All 
subjects showed a systematic bimodal relative bias, indicating that a 
high-noise stimulus was perceived to be oriented closer to the nearest 
cardinal orientation (that is, vertical or horizontal) than the low-noise 
 stimulus of the same orientation. The relative bias was 0 at the cardinal 
and oblique orientations, and as large as 12 deg in between. These 
 relative biases suggest that perceived orientations are attracted toward  

the cardinal directions and repelled from the obliques, and that these 
effects are stronger for the high-noise stimuli (Fig. 4).

Estimation of observers’ likelihood and prior

If our human observers are performing Bayesian inference, what is 
the form of the prior probability distribution that they are using? We 
assume that our observers select the most probable stimulus accord-
ing to the posterior density p(θ|m) (known as the maximum a pos-
teriori estimate). We noted that the circular mean of the posterior 
produced similar estimates, as the posterior distributions are only 
slightly asymmetric (Supplementary Fig. 2). According to Bayes’ rule, 
the posterior is the product of the prior p(θ) and the likelihood func-
tion p(m|θ), normalized so that it integrates to 1. We assume that the 
decoder is based on the correct likelihood function, which is simply 
the measurement noise distribution, interpreted not as a probability 
distribution over measurements but as a function of the stimulus for 
a particular measurement. That is, we assume the observer knows 
and takes into account the uncertainty of each type of stimulus16 (see 
Online Methods).

Figure 3 Stimuli and experimental results. (a) Stimuli are arrays of 

oriented Gabor functions (contrast increased for illustrative purposes). 

Left, a low-noise stimulus (L). Right, a high-noise stimulus (H) with mean 

orientation slightly more clockwise. Observers indicated whether the right 

stimulus was oriented counter-clockwise or clockwise relative to the left 

stimulus. (b) Variability for the same-noise conditions for representative 

subject S1 (left) and the mean subject (right), expressed as the 

orientation discrimination threshold (that is, JND). Mean subject values 

are computed by pooling raw choice data from all five subjects. Error bars 

indicate 95% confidence intervals. Dark gray and light gray curves are 

fitted rectified sinusoids, used to estimate the widths of the underlying 

measurement distributions. Pale gray regions indicate ± 1 s.d. of 1,000 

bootstrapped fits. (c) Cross-noise (high noise versus low noise) variability 

data (circles). The horizontal axis is the orientation of the high-noise 

stimulus. (d) Relative bias, expressed as the angle by which the  

high-noise stimulus must be rotated counter-clockwise so as to be 

perceived as having the same mean orientation as the low-noise stimulus.
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Figure 4 Example cross-noise comparison. The vertical axis is the 

measured orientation, m(θ), and the horizontal axis is estimated stimulus 

orientation, ˆ( ( ))q qm . Measurements corresponding to low-noise stimuli, 

mL(θL) (dark gray), or high-noise stimuli, mH(θH) (light gray), enter on 

the left. Each measurement is transformed by the appropriate nonlinear 

estimator (solid curves) into an estimate (bottom). The estimators 

correspond to those of the mean observer exaggerated for illustration 

as in Figure 2. The high-noise estimator exhibits larger biases than the 

low-noise estimator. The sensory noise of the measurements propagates 

through the estimator, resulting in estimator distributions (note these 

should not be confused with the posteriors). Comparison of these 

distributions produces a single point on the psychometric function.
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The observer model (Fig. 1) provides a link between the likelihood 
and prior and the two experimentally accessible aspects of percep-
tual behavior: bias and variability. Perceptual variability is caused by 
variability in the estimates, ˆ( ( ))q qm , which arises from variability in 
the measurements, m(θ). Relative bias corresponds to the difference 
in orientation between two stimuli of different uncertainty, θL−θH, 
whose estimates are (on average) equal, ˆ ( ( )) ˆ ( ( ))q q q qH H H L L Lm m= .  
Note that the two estimator functions, q̂H

 and q̂L
, are dependent on 

noise level. These relationships allow us to estimate the likelihood 
width and prior (as functions of orientation) from the experimentally 
measured bias and variability13 (see Online Methods). Specifically, we 
obtained the likelihood functions directly from the same-noise vari-
ability data (Fig. 3b and Supplementary Fig. 1a). We represented the 
prior as a smooth curve and determined its shape for each observer by 
maximizing the likelihood of the raw cross-noise data. The recovered 
priors of all observers were bimodal, with peaks at the two cardinal 
orientations (Fig. 5 and Supplementary Fig. 3).

Environmental orientation distribution

It has been suggested that the prevalence of vertical and horizontal ori-
entations in the environment is the underlying cause of the anisotropy 
of orientation discriminability (that is, the oblique effect)17. Orientation 
content in images is often studied by averaging the Fourier amplitude 
spectrum over all spatial scales18,19. For the purposes of our study, we 
defined the environmental distribution as the probability distribution 
over local orientation in an ensemble of visual images17, measured at a 
spatial scale roughly matched to peak human sensitivity (approximately 
the same as the scale of our experimental stimuli).

We obtained our measurements from a large database of photo-
graphs of scenes of natural content. We estimated the local image 
gradients by convolution with a pair of rotation-invariant filters20, 
identified strongly oriented regions, computed their dominant 
orientations (Fig. 6a) and formed histograms of these values. The 
resulting estimated environmental distribution indicates a predomi-
nance of cardinal orientations (Fig. 6b). This is consistent with the 
orientation priors that we recovered from our human subjects (Fig. 5  
and Supplementary Fig. 3), and therefore explains the cardinal 
biases in their perception. We chose the spatial scale that corres-
ponds most closely to our 4 cycles per deg experimental stimuli and 
human peak spatial frequency sensitivity of 2–5 cycles per deg21. We 
found that this choice did not have a strong effect on the results: the 
dominance of cardinal orientations was similar across spatial scales  
(Supplementary Fig. 4).

Observers′ priors versus the environmental distribution

We compared the estimated human observers’ priors and environ-
mental distribution, both directly (as probability distributions) and 

in terms of their predicted perceptual effects (bias and variability in 
cross-noise comparisons). The observers’ prior probability distribu-
tions and the environmental distribution all had local maxima at the 
cardinals and minima at the obliques, and the heights of the peaks and 
troughs were quite similar (Fig. 7a). We computed perceptual predic-
tions of the trial-by-trial behavior of the Bayesian encoder-decoder 
model by comparing simulated responses to each pair of stimuli 
shown to our observers. We found that the relative variability (Fig. 7b 
and Supplementary Fig. 1b) and bias (Fig. 7c and Supplementary 

Fig. 1c) are similar for a model that uses either the environmental 
distribution or the human observer’s prior, and both closely resemble 
the human behavior.

To assess the strength of this result, we also considered the null 
hypothesis that observers use a uniform prior (equivalent to assum-
ing that observers perform maximum-likelihood estimation).  
A Bayesian-observer model with a uniform prior does not produce the 
distinct bimodal relative bias (Fig. 7c and Supplementary Fig. 1b). 
Instead, this model either produces no bias (for example, mean subject 
and subjects S1, S3, S4 and S5) or a small relative bias away from the 
cardinal orientations (for example, subject S2). This repulsive rela-
tive bias is a result of the asymmetrical shape of the likelihoods near  
the cardinals, which pushes the low-noise estimates toward the 
 cardinals more than the high-noise estimates. Furthermore, the 
uniform-prior observer predicts little or no oblique effect for the 
cross-noise condition, unlike the human observers (Fig. 7b and 
Supplementary Fig. 1c). This indicates that the human observers’ 
biases cannot arise purely from inhomogeneities in sensory noise but 
require a non-uniform prior.

We also compared the ability of Bayesian encoder-decoder  
models with different priors to explain the raw experimental data. 
We computed the log likelihoods of the two non-uniform prior 
models and linearly rescaled them so that a value of 0 corresponds 
to the uniform-prior model (degrees of freedom = 0) and a value 
of 1 corresponds to the raw psychometric fits (degrees of freedom 
= 24; Fig. 7d). In general, a Bayesian observer with the recovered 
observer’s prior (degrees of freedom = 6) performed quite well, 
often on a par with the raw psychometric fits to the data. For the 
mean observer, a Bayesian observer using the environmental dis-
tribution (degrees of freedom = 0) as a prior predicted the data 
even better than using the observer’s recovered prior and better  
than the psychometric fits. It is important to note that these  
models are not nested; the recovered observer’s prior is constrained 
to a family of smooth shapes (see Online Methods) and cannot fully 
capture the peakedness of the environmental distribution. These 
results provide strong support of the hypothesis that human obser-
vers use prior knowledge of the non-uniform orientation statistics 
of the environment.
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Figure 5 Recovered priors for subject S1 and mean subject. The control 

points of the piecewise cubic spline (see Online Methods) are indicated 

by black dots. The gray error region shows ± 1 s.d. of 1,000 bootstrapped 

estimated priors.

Figure 6 Natural image statistics. (a) Example natural scene from 

Figure 1, with strongly oriented locations marked in red. (b) Orientation 

distribution for natural images (gray curve).
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DISCUSSION

We found that humans exploit inhomogeneities in the orientation 
statistics of the environment and use them when making judgments 
about visual orientation. Although previous work has largely focused 
on variability in orientation estimation (that is, the oblique effect), 
our results emphasize the importance of bias, which is essential for 
studying the prior used by the observer13. Our findings directly dem-
onstrate a systematic perceptual bias toward the cardinals, which had 
been hypothesized in previous work22. We used the measured bias 
and variability to estimate observers’ internal prior distributions and 
found that these were well matched to estimates of the environmental 
distribution, exhibiting significant peaks at the cardinal orientations. 
In addition, when used as prior probabilities in a Bayesian-observer 
model, both distributions accurately predicted our human observers’ 
perceptual biases.

Intuitively, one might have expected that a large bias would be 
a direct consequence of large variability, but our results indicate 
that this is not the case. Our observers’ orientation discriminability 
was worst at oblique angles and best at the cardinals (Fig. 3b), but 
their biases were approximately 0 at both the obliques and cardinals 
and largest in between (Fig. 3d). These results are consistent with 
a Bayesian observer that is aware of the environmental prior: the 
bias is approximately equal to the product of the variability and the 
slope of the (log) prior13. It is small at the cardinals because the vari-
ability is small (and the prior slope reverses sign), and it is small at 
the oblique orientations because the prior slope is small (and again, 
reverses sign). The well-known ‘tilt aftereffect’, in which adaptation 
to an oriented stimulus causes a subsequent reduction in variability 
and increase in bias, provides another example in which bias and 
variability do not covary23.

Our observer model (Fig. 1) can be extended in a number of ways. 
For example, the decoding stage is deterministic, but could be made 
stochastic (that is, incorporating additional noise). In the context of 
simulating our experimental task, this additional variability would 
act as a sort of ‘decision noise’, as has been used in may previous 
models of perceptual decision making24. This would, of course, entail 
an additional parameter that would need to be constrained by data. 
Our model (as well as our experiment) is also currently limited to 
estimation of retinal orientation. However, perception is presumably 
intended to facilitate one’s interactions with a three-dimensional 
world of objects and surfaces. A full Bayesian model of orientation 

perception should incorporate priors on the three-dimensional ori-
entation of contours, observer orientation and perspective image 
formation, and would perhaps aim to recover aspects of the three-
dimensional scene25. From this perspective, one can think of our 
model as effectively capturing a two-dimensional marginal of a full 
three-dimensional orientation prior.

A critical advantage of the Bayesian modeling framework is that 
the fundamental ingredients (likelihood, prior) have distinct mean-
ings that extend beyond fitting the data in our experiments. As such, 
the model makes testable predictions. Our perceptual measurements 
were obtained under a specific set of viewing conditions, including 
stimulus size, eccentricity, duration, contrast and spatial frequency, 
which jointly determine the measurement noise. If we were to repeat 
these measurements having altered one of the viewing conditions that 
does not covary with orientation in the environment (for example, con-
trast), we would expect subject responses to be consistent with the same 
orientation prior26. For changes in viewing conditions that do covary 
with orientation in the environment (for example, spatial frequency; 
Supplementary Fig. 4), we expect that a multi-dimensional prior (for 
example, ref. 10) would be required to explain perceptual biases.

The timescale over which priors are developed is an important 
open question in Bayesian modeling of perception. In some cases, 
priors appear to adapt over relatively short timescales7,8. In contrast, 
our observers seemed to use priors that are matched to the statis-
tics of natural scenes, as opposed to human-made or blended scenes 
(Supplementary Fig. 4), perhaps suggesting that they are adapted 
over very long timescales. Nevertheless, the variation in the recovered 
priors of our observers might reflect differences in their previous 
perceptual experience.

The question of whether orientation priors are innate or learned 
may also be related to the development of the oblique effect.  

Figure 7 Comparison of human observers’ priors and environmental 

distribution for subject S1 (left) and the mean subject (right). (a) Human 

observers’ priors (black curves, from Fig. 5) and environmental distribution 

from natural images (medium gray curve, from Fig. 6b). (b) Cross-noise 

variability data (circles, from Fig. 3c) with predictions of the two Bayesian-

observer models using each of the three priors shown in a and the uniform 

prior. The uniform prior predicts little or no effect of stimulus orientation  

on discrimination (light gray curves). In contrast, both the environmental 

prior (medium gray curves) and the recovered human observers’ priors 

(black curves) predict better discrimination at the cardinals, as seen in the  

human observers. (c) Relative bias data (circles, from Fig. 3d) with the 

predictions of Bayesian-observer models using three priors shown in a.  

The uniform prior predicts no bias or a small bias in the opposite direction 

(for example, Subject S2 in Supplementary Fig. 1c). In contrast, both  

non-uniform priors predict the bimodal bias exhibited by human observers. 

(d) Normalized log likelihood of the data for Bayesian-observer models 

using two different priors: environmental distribution and the recovered 

observer’s prior. Error bars denote the 5th and 95th percentiles from 1,000 

bootstrap estimates. Values greater than 1 indicate performance better 

than that of the raw psychometric fits, whereas values less than 0 indicate 

performance worse than that obtained with a uniform prior.
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In support of the innate hypothesis is evidence of the oblique effect in 
12-month-old human infants27, and a large variation in the strength 
of the oblique effect amongst observers raised in similar human-
made environments28. In support of the hypothesis that the prior is 
learned in our lifetimes is evidence that the strength of the oblique 
effect continues to grow from childhood through adulthood29, and 
that early visual deprivation affects neural orientation sensitivity in  
kittens30 and humans31. Both of these hypotheses could explain the 
slight individual differences that we observed in the strength of the 
oblique effect and shape of the prior. Lastly, the oblique effect has been 
shown to be consistent with retinal, rather than gravitational, coor-
dinates32, whereas our environmental prior is most naturally associ-
ated with gravitational coordinates (assuming all photographs in the 
database were taken with the camera held approximately level). The 
simplest interpretation is that the prior emerges from retinal stimu-
lation, but because humans tend to keep their heads vertical, retinal 
coordinates are generally matched to gravitational coordinates.

Finally, we consider the physiological instantiation of our 
encoder-decoder observer model (Fig. 1). The encoding stage of 
the model is most naturally associated with orientation-selective 
neurons in primary visual cortex (area V1). Non-uniformities in 
orientation discriminability (the oblique effect) have been posited 
to arise because of non-uniformities in the representation of ori-
entation in the V1 population. Specifically, a variety of measure-
ments (single-unit recording33,34, optical imaging35 and functional 
magnetic resonance imaging36) have shown that cardinal orien-
tations are represented by a disproportionately large fraction of  
V1 neurons, and that those neurons also tend to have narrower 
tuning curves33. Additional non-uniformities have been reported 
in V1 and elsewhere (for example, variations in gain, baseline firing 
rate or correlations in responses), and these may also contribute to 
non-uniformities in perceptual discriminability.

Now consider the Bayesian decoding stage. For a uniform population 
of encoder neurons with Poisson spiking statistics, the log-likelihood 
may be expressed as the sum of the log tuning curves, weighted by the 
spike counts37,38 (for a non-uniform population, this needs to be cor-
rected by subtracting the sum of the tuning curves). A decoder popula-
tion could compute the log-posterior at each orientation by computing 
this weighted sum and adding the log prior. The desired estimate would 
be the orientation associated with the decoder neuron having maxi-
mum response (that is, winner take all). Although this is an explicit 
computation of the Bayesian estimator, and would therefore generate 
the same perceptual biases seen in our subjects, several aspects of this 
implementation seem implausible39. In particular, the decoder utilizes 
an entire population of cells to ‘recode’ the information in the encoder 
population; the decoder must have complete knowledge of the encoder 
tuning curves as well as the prior, and the estimate is obtained with a 
winner-take-all mechanism that is highly sensitive to noise.

As an alternative, we wondered whether the optimal mapping from 
an encoder population to an estimate might be approximated by a 
simpler, more plausible computation (also see ref. 40). We simulated 
an encoder population whose spiking responses were generated as 
samples from independent Poisson distributions, with mean rates  
(in response to an oriented stimulus) determined by a set of orientation 
tuning curves with non-uniformities approximating those found in 
V1 (refs. 33–35,41) (Fig. 8). We used a standard population vector 
decoder42, which computes the sum of directional vectors associated 
with the preferred orientation of each encoder cell, weighted by the 
response of that cell. This decoder is robust to noise (compared with 
winner take all), does not require any knowledge of the prior and 
requires only the preferred orientation of each cell in the encoding 
population (as opposed to the entire set of tuning curves). We used 
the full neural encoder-decoder model to simulate per-trial decisions 
on the same stimuli shown to our human subjects. From these, we 
computed discriminability for the same-noise conditions and bias 
for the cross-noise conditions. Notably, we found that this generic 
decoder, when combined with the non-uniform encoding population 
(Fig. 8a), produced bias and discriminability curves (Fig. 8d,g) that 
were quite similar to those of our human subjects (Fig. 7b,d). The 
narrower tuning near the cardinals leads to a substantial decrease 
in discrimination thresholds; eliminating the non-uniform tuning 
widths (Fig. 8b) greatly reduces the oblique effect for the low-noise 
stimuli (Fig. 8e). The proportionally larger number of cells around 
the cardinals leads to a disproportionate influence on the weighted 
sum decoder, inducing biases toward the cardinals; eliminating the 
non-uniform orientation preferences (Fig. 8c) substantially reduces 
the amplitude of the bias (Fig. 8i). Finally, eliminating both non-
uniformities (that is, an equal-spaced population of neurons with 
identical tuning, as is commonly assumed in the population coding 
literature37,43,44) produces constant bias and discriminability curves, 
as expected (data not shown).

The fact that this observer model is able to approximate the bias 
behavior of the optimal Bayesian decoder implies that the non-
 uniformities of the encoder implicitly capture the properties of the prior 
in such a way that they can be properly used by a population-vector 
decoder40. Recent theoretical work posits that the non-uniformities  

Figure 8 Simulations of neural models with non-uniform encoder and 

population vector decoder. (a) Tuning curves of an encoder population 

with non-uniform orientation preferences and non-uniform tuning widths 

based on neurophysiology (only a subset of neurons shown). Neurons 

preferring 45 deg and 90 deg stimuli are highlighted in black. (b) Tuning  

curves of a population with non-uniform preferences and uniform 

widths. (c) Tuning curves of a population with uniform preferences and 

non-uniform widths. (d–f) Variability for the same-noise conditions for 

the populations in a–c: low noise versus low noise (dark gray) and high 

noise versus high noise (light gray). (g–i) Relative bias for the cross-noise 

condition (high noise versus low noise) for the populations in a–c. The fully 

non-uniform population (a) produces variability and bias curves similar to 

those exhibited by humans (Fig. 3b,d and Supplementary Fig. 1a,c).
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of neural populations reflect a strategy by which the brain allocates 
its resources (neurons and spikes) so as to optimally encode stimuli 
drawn from an environmental distribution45. Our findings suggest 
that encoder non-uniformities may also serve the role of enabling a 
decoder to perform Bayesian inference without explicit knowledge of 
the prior39. If so, this solution could provide a universal mechanism 
by which sensory systems adapt themselves to environmental statis-
tics, allowing for optimal representation and extraction of sensory 
attributes under limitations of neural resources.

METHODS

Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Psychophysical experiments. Five subjects participated in this study. Subjects 
S2 and S3 were A.R.G. and M.S.L., respectively. Subjects S1, S4 and S5 were naive 
to the aims of the experiment and were compensated for their time at $10 per h. 
All subjects had normal or corrected vision. Subjects stabilized their heads on 
a chin/forehead rest and viewed the stimuli binocularly at a distance of 57 cm 
in a dark room.

Each stimulus consisted of an array of Gabor patches positioned on a randomly 
jittered grid. Each Gabor was composed of a high-contrast 4 cycles per deg sinu-
soidal grating windowed by a circular Gaussian whose full width at half height 
was 0.41 deg. The Gabor patches were on a gray background and the monitor 
was gamma linearized. The entire stimulus array subtended 10 deg and contained 
roughly 37 Gabor patches. Two new random stimuli were generated for each trial 
and displayed simultaneously 2.5 deg to the left and right of the fixation point. 
Stimuli were visible for 0.75 s (0.5 s for subject S2). For each stimulus, Gabor ori-
entations were either identical (low noise) or drawn from a Gaussian distribution 
(high noise) with an s.d. individually predetermined for each subject (see below). 
The three comparison conditions were randomly interleaved: low noise versus 
low noise, high noise versus high noise, and high noise versus low noise.

A central fixation point was presented between trials and we did not control 
for eye movements. Randomly interleaved staircases (two up/one down and 
two down/one up) adjusted the mean orientation of the comparison stimulus, 
whereas the mean orientation of the standard stimulus remained fixed. On each 
trial, the standard was randomly positioned on the left or right, with the com-
parison on the other side. Subjects completed at least 7,200 trials divided into  
36 conditions (12 orientations of the standard for the three stimulus combina-
tions) over at least six sessions. Subject S3 participated in an earlier version that 
was blocked by orientation. Before each session, subjects completed a few prac-
tice trials in the high noise versus high noise condition with auditory feedback. 
These trials were not included in analysis, and there was no feedback during 
the main experiment.

For each condition, we fit a cumulative Gaussian psychometric function to the 
data using a maximum-likelihood criterion, resulting in an estimate of the mean 
(relative bias) and s.d., σP (JND). Because we used a two-interval task46, the s.d. 
of the underlying likelihood is s s= P / 2.

In an initial experiment, we determined a level of orientation variability for the 
high noise condition such that each subject’s high noise versus high noise JNDs 
were roughly threefold larger than their low noise versus low noise JNDs. Subjects 
first ran the low noise versus low noise condition with the standard oriented 
at 105 deg. We then fit a cumulative Gaussian and calculated its s.d., σL. Next, 
we fixed the two stimuli at 105 deg and 105 + 3σL deg and used two randomly 
interleaved two down/one up staircases to adjust the amount of orientation noise 
(applied to both stimuli). We fit a reflected cumulative Gaussian to these data 
(which ranged from 100% to 50% correct) and estimated the noise level that 
yielded 76% correct performance. This noise level was used for the high-noise 
condition in the main experiment (24.3, 21.8, 26.7, 19.2 and 20.0 deg for the five 
subjects, respectively).

We also ran a control experiment to ensure that the relative bias was not 
induced by the rectangular frame of the monitor. Subject S2 viewed monocu-
larly through a 16.8-degree circular aperture, 20 cm from the eyes, with a black 
hood that obscured everything except the stimuli. The stimuli were presented 
centrally in two temporal intervals of 0.4 s each, with a 0.25-s mask after each, 
consisting of non-oriented 4 cycles per deg noise. The relative bias was identical 
to the main experiment, ruling out the concern of an artifact.

Estimation of the likelihood functions. Figure 2 shows the formulation of the 
likelihood functions. The measurement distribution p(m|θ1) describes the prob-
ability of a sensory measurement given a particular stimulus value and is shown 
as a two-dimensional grayscale image. We assume that sensory noise is drawn 
from a von Mises distribution (described below) whose variance can be related to 
the same-noise variability data. The measurement distributions are vertical slices 
through this two-dimensional function, whereas the likelihoods are horizontal 
slices. Note that the likelihood function, p(m1|θ), is typically not normalized as 
a probability distribution. Although the measurement distributions are assumed 
to be symmetric, their width depends on orientation, and the resulting likelihood 
functions are generally asymmetric (see Fig. 2)47. Supplementary Figure 5 shows 
the corresponding likelihoods for the mean subject.

To estimate the measurement noise, we fit functions to the same-noise JND 
data (Fig. 3b and Supplementary Fig. 1a). We used rectified two-cycle sinu-
soids peaking at the obliques for the low noise versus low noise JNDs (JL(θ) = 
αL|sin(2θ)| + βL) and high noise versus high noise JNDs (JH(θ) = αH|sin(2θ)| + βH).  
We used least-squares minimization to estimate the parameters αL, βL, αH and 
βH for each subject, and computed confidence intervals for these estimates 
using the s.d. of estimates obtained on 1,000 bootstrap samples of the data. The 
prior will have a similar effect on the two stimuli in the same-noise conditions, 
leading to a negligible same-noise bias, as seen in our data. Our model of the 
 measurement distribution is a von Mises function that peaks every 180 deg, 
P(m|θ) ∝ eκcos(2(θ−m)), where κ is a concentration parameter, whose value was 
chosen so as to produce JND values matching the fitted j(θ).

Converting sensory measurements to Bayesian estimates. Figure 2 shows 
how the Bayesian framework can be used to describe the decoding process. The 
estimator’s shape depends on both the measurement noise and prior; the bias 
is approximately the product of the likelihood width and the slope of the log 
of the prior13. The Bayesian decision-making process that produces simulated 
psychometric data is depicted in Figure 4. The observer makes measurements 
mL(θL) and mH(θH), which are transformed by noise-appropriate estimators 
into values q̂L and q̂H. Repeated measurements fluctuate due to sensory noise, 
resulting in a measurement distribution. This distribution is propagated through 
the estimator, resulting in a distribution of estimates. These distributions are 
then compared using signal detection theory46, resulting in a single point on a  
psychometric function.

Estimation of the observers’ priors. The human observers’ priors (Fig. 5 and 
Supplementary Fig. 3) were estimated by fitting the behavior of a Bayesian 
observer to the human data in the cross-noise condition. To avoid any precon-
ceptions of what the prior ought to look like, we used a globally nonparametric 
model. Our only constraints were that it integrate to 1, that it be periodic with 
period 180 deg, and that the log prior be smooth and continuous. A previous 
study13 used a globally nonparametric model, in which the log prior was approxi-
mated as linear over the central span of the likelihood. This assumption could 
be wrong in our case, because the likelihoods are quite broad in a few cases (for 
example, up to 30 deg s.d.). Instead, we used cubic splines to smoothly interpolate 
between values of log(P(θi)) at neighboring control points θi and θi+1

log( ( )) ( ) ( ) ( )P a b c di i i i i i iq q q q q q q= − + − + − +3 2

with the constraint that the neighboring splines’ first and second derivatives 
matched at the common boundary θi. The parameters of the model were the 
values of log(P(θi)) at six control points θi = {30, 60, 90, 120, 150, 180 deg}. 
Changing the number of control points resulted in similar recovered priors.

Given a candidate prior P(θ) for each stimulus pair used in the experiment, 
we simulated 1,000 trials by drawing measurement samples from the appropriate 
measurement distributions. Each measurement leads to a likelihood function 
(the corresponding row of the precomputed matrix; Fig. 2 and Supplementary 

Fig. 5), which is multiplied by the prior and maximized to obtain the estimate. 
The 1,000 pairs of estimates were then compared to obtain the binary model 
response (counter-clockwise or clockwise), and the average of this set of binary 
decisions yielded a single point on the Bayesian observer model–generated  
psychometric function (Fig. 4).

We estimated the best-fitting parameters of the log prior {log(P(θi))} for each 
human subject by maximizing the probability of their observed data, given the 
above model-generated psychometric functions. We performed bootstrapping by 
randomly sampling, with replacement, the raw cross-noise response data 1,000 
times (this is separate from the 1,000 measurement samples described above).  
If the subject performed n trials for a particular pair of orientations, then n responses 
were sampled from the corresponding data. The variation of the estimated priors 
across bootstrap replications is shown as the gray regions in Figure 5.

Estimating the environmental distribution. The distribution of orientations was 
computed from a publicly available image database (Olmos, A. & Kingdom, F.A.A., 
McGill Calibrated Color Image Database, http://tabby.vision.mcgill.ca/, 2004) con-
taining 653 2,560 × 1,920 TIF photographs of natural scenes, with a pixel size of 
0.0028 deg. We gamma-linearized the images using camera parameters provided 
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with the database, and converted to XYZ color space. Each image was normalized 
by its mean luminance and only luminance information (Y channel) was used. We 
decomposed each image into six spatial resolutions using a Gaussian pyramid48. 
At each scale, we used five-tap, rotation-invariant derivative filters20 to compute 
gradients (x and y derivative pairs) centered on each pixel. We combined these 
into an orientation tensor49, the local covariance matrix of the gradient vectors 
computed by averaging their outer products over square regions of 5 × 5 pixels. We 
calculated the tensor’s eigenvector decomposition (that is, principal component 
analysis), and from that computed three quantities for each pixel: the energy (the 
sum of eigenvalues), the orientedness (the eigenvalue difference divided by the 
sum) and the dominant orientation (the angle of the leading eigenvector). Tensors 
centered on the two pixels closest to the borders were discarded. We created a 
histogram of dominant orientations for tensors that exceeded two thresholds; their 
orientedness was greater than 0.8 and their energy exceeded the 68th percentile 
of all the energy of the corresponding scale. We verified that our histograms were 
only weakly dependent on these two threshold values. Subthreshold tensors were 
typically located in patches of sky, or in internal regions of nontextured objects. 
The histogram for each scale was converted to a probability density by dividing 
by the total number of supra-threshold tensors, thus providing an estimate of 
the probability distribution over orientation. We selected the scale whose deriva-
tive filters best matched the peak spatial frequency sensitivity of humans21 (2–5 
cycles per deg) and the spatial frequency of the stimulus (4 cycles per deg). We 
also estimated the orientation distributions of scenes of primarily human-made 
content and blended scenes (for example, an image of a tree and a house). These 
distributions also exhibit a preponderance of cardinal orientations, but the heights 
of the peaks differ (Supplementary Fig. 4).

Simulated neural model. We created simulated populations of 60 orientation-
tuned V1 neurons for each Gabor. We randomly sampled 8 of the 37 Gabors from 

the stimulus, consistent with human perceptual pooling14. The neural responses 
were characterized by independent Poisson noise, with expected number of spikes 
bounded between 1 and 12. The populations had either uniform or non-uniform 
tuning-curve widths and either uniform or non-uniform preferred orientations, 
resulting in four different models. We used von Mises tuning curves, which have 
been shown to provide good fits to empirical tuning curves50. For the models 
with uniform tuning-curve widths, the s.d. of the tuning curves was 17 deg, 
which is typical of V1 orientation–tuned neurons34,41. Non-uniform tuning 
widths were chosen according to a von Mises function (plus a constant) cen-
tered at the obliques with a concentration parameter of 42 deg. This produced 
s.d. consistent with neurophysiology in both average tuning width (17 deg) and 
ratio of oblique to cardinal tuning widths (approximately 3:2)34,41. Non-uniform 
preferred orientations were drawn from a von Mises distribution modified to 
peak at 0 and 90 deg with a s.d. of 35 deg, producing a ratio of the density of 
oblique to cardinal neurons consistent with neurophysiology (approximately 
9:5)33,34. Simulations were run for the same conditions as shown to the human 
subjects: 12 orientations for each of three stimulus combinations. On every trial, 
we computed population vector estimates42 for the orientations of both stimuli, 
and a decision was made as to whether the comparison was counter-clockwise 
or clockwise of the standard.
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