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Abstract. This paper addresses the inference problems in data ware-
houses and decision support systems such as on-line analytical processing
(OLAP) systems. Even though OLAP systems restrict user accesses to
predefined aggregations, inappropriate disclosure of sensitive attribute
values may still occur. Based on a definition of non-compromiseability
to mean that any member of a set of variables satisfying a given set
of their aggregations can have more than one value, we derive sufficient
conditions for non-compromiseability in sum-only data cubes. Under this
definition, (1) the non-compromiseability of multi-dimensional aggrega-
tions can be reduced to that of one dimensional aggregations, (2) full or
dense core cuboids are non-compromiseable, and (3) there is a tight lower
bound for the cardinality of a core cuboid to remain non-compromiseable.
Based on these results, taken together with a three-tier model for con-
trolling inferences, we provide a divide-and-conquer algorithm that uni-
formly divides data sets into chunks and builds a data cube on each such
chunk. The union of these data cubes are then used to provide users with
inference-free OLAP queries.

1 Introduction

Decision support systems such as On-line Analytical Processing (OLAP) are
becoming increasingly important in industry. These systems are designed to
answer queries involving large amounts of data and their statistical averages
in near real time. It is well known that access control alone is insufficient in
eliminating all forms of disclosures, as information not released directly may be
inferred indirectly from answers to legitimate queries. This is known as inference
problem. An OLAP query typically consists of multiple aggregations, and hence
vulnerable to unwanted inferences. Providing inference-free answers to sum-only
data cube style OLAP queries while not adversely impacting performance or
restricting availability in an OLAP system is the subject matter of this paper.

The inference problem has been investigated since 70’s and many inference
control methods have been proposed for statistical databases. However, most of
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these methods become computationally infeasible if directly applied to OLAP
systems. OLAP applications demand short response times although queries usu-
ally aggregate large amounts of data [20]. Because most existing inference control
algorithms have run times proportional to the size of queries or aggregated data
sets, their impact upon performance renders them impractical for OLAP sys-
tems.

While arbitrary queries are common in statistical databases, OLAP queries
usually comprise of well-structured operations such as group-by, cross-tab and
sub-totals. These operations can conveniently be integrated with various data
cube operations, such as slicing-dicing, roll up and drill down [19]. We will show
that the limited formats and predictable structures of OLAP queries as well
as the multi-dimensional hierarchical data model of OLAP datasets can be ex-
ploited to simplify inference control.

Table 1 shows a small two-dimensional data set consisting of monthly em-
ployee salaries. Individual salaries should be hidden from users, and hence have
been replaced with the symbol ?. The symbol N/a denotes null value for inappli-
cable combinations of months and employees that are known to users.1 Assume
subtotals are allowed to be released to users through OLAP queries. Inference
problem occurs if any of the values represented by symbol ? can be derived from
the subtotals. No value in the first two quarters can be inferred, because infinitely
many different values may satisfy each ? symbol with the subtotals satisfied. For
the third quarter, Mary’s salary in September can be inferred from the subto-
tals of September salaries because she is the only employee with a valid salary
for September. For the fourth quarter, by subtracting Bob’s and Jim’s fourth
quarter salaries ($4300 and $3000 respectively) from the subtotals in October
and November ($7100 and $4100 respectively) Alice’s salary for October can be
computed to be $3900.

Based on a definition of non-compromiseability to mean that any member of
a set of variables satisfying a given set of their aggregations can have more than
one value 2, we derive sufficient conditions for non-compromiseability in sum-only
data cubes: (1) the non-compromiseability of multi-dimensional aggregations can
be reduced to that of one dimensional aggregations, (2) full or dense core cuboids
are non-compromiseable, and (3) there is a tight lower bound on the cardinality
of a core cuboid for it to remain non-compromiseable. Based on these results,
and a three-tier model for controlling inferences, we provide a divide-and-conquer
algorithm that uniformly divides data sets into chunks and builds a data cube
on each such chunk. The union of these data cubes are then used to provide
users with inference-free OLAP queries.

The rest of the paper is organized as follows. Section 2 reviews existing
inference control methods proposed in statistical databases and OLAP systems.
Section 3 formalizes sum-only data cube and proves sufficient conditions for its
1 In general, data values are known through various kinds of external knowledge
(knowledge obtained through channels other than queries.)

2 In the settings of this paper, each variable can have either one value or infinitely
many values.
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non-compromiseability. On the basis of a three-tier model these conditions are
integrated into an inference control algorithm in Section 4. Section 5 concludes
the paper.

2 Related Work

Inference control has been extensively studied in statistical databases as surveyed
in [14, 1, 15]. Inference control methods proposed in statistical databases are
usually classified into two main categories; restriction based techniques and per-
turbation based techniques. Restriction based techniques [18] include restricting
the size of a query set (i.e., the entities that satisfy a single query), overlap con-
trol [16] in query sets, auditing all queries in order to determine when inferences
are possible [11, 8, 22, 24], suppressing sensitive data in released tables contain-
ing statistical data [12], partitioning data into mutually exclusive sets [9, 10], and
restricting each query to range over at most one partition. Perturbation based
technique includes adding noise to source data [29], outputs [5, 25], database
structure [27], or size of query sets (by sampling data to answer queries) [13].
Some variations of the inference problem have been studied lately, such as the
inferences caused by arithmetic constraints [7, 6], inferring approximate values
instead of exact values [24] and inferring intervals enclosing exact values [23].

The inference control methods proposed for statistical databases generally
sacrifice efficiency for the control of inferences caused by arbitrary queries, which

Table 1. An example data cube

Quarter Month Alice Bob Jim Mary Sub Total

1 January ? ? ? ? 5500
February ? ? ? ? 5500
March ? ? ? ? 5500

Sub Total 3000 3000 4500 6000

2 April ? ? ? ? 6100
May ? N/a ? ? 6100
June ? ? ? ? 4100

Sub Total 4500 3300 4500 4000

3 July ? ? ? ? 6100
August ? ? ? ? 6100

September N/a N/a N/a ? 2000

Sub Total 3500 2200 2500 6000

4 October ? ? ? N/a 7100
November N/a ? ? N/a 4100
December ? N/a N/a ? 4100

* Bonus ? N/a N/a ? 6000

Sub Total 7000 4300 3000 7000
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is essential for general purpose databases. However, this sacrifice is not desirable
for OLAP systems, because in OLAP systems near real time response takes pri-
ority over the generality of answerable queries. Hence most of these methods are
computationally infeasible in OLAP systems. As an example, Audit Expert [11]
models inference problem with a linear system Ax = b and detects the occurrence
of inference by transforming the m by n matrix A (corresponding to m queries
on n attribute values) to its reduced row echelon form. The transformation has
a well-known complexity of O(m2n), which is prohibitive in the context of data
warehouses and OLAP systems since m and n can be as large as a million.

Our work shares similar motivation with that of [16], i.e., to efficiently control
inference with the cardinality of data and queries, which can be easily obtained,
stored and maintained. Dobkin et al. gave sufficient conditions for the non-
compromiseability of arbitrary sum only queries [16]. The conditions are based
on the smallest number of queries that suffices to compromise the individual
data. Our work addresses multi-dimensional data cube queries. The fact that
data cube queries are a special case of arbitrary queries implies better results.

To the best of our knowledge, inference control for OLAP systems and data
warehouses are limited to [3, 2, 17, 26]. They all attempt to perturb sensi-
tive values while preserving the data distribution model, such that classification
(or association rules) results obtained before and after the perturbation do not
change. These approaches are application-specific, that is, the sole purpose of
data analysis is limited to classification (or association rule mining). We do not
have this restriction. Moreover, we do not use perturbation in this paper.

3 Cardinality-Based Non-compromiseability Criteria for
Data Cubes

This section defines our model for sum-only data cubes and formalizes com-
promiseability. We then derive cardinality-based sufficient conditions for non-
compromiseability based on the model and definitions.

3.1 Problem Formulation

In our model, a k-dimensional data cube consists of one core cuboid and several
aggregation cuboids. In addition, we use an aggregation matrix to abstract the
relationship between them. Each dimension is modeled as a closed integer inter-
val. The Cartesian product of the k dimensions is referred to as full core cuboid.
Each integer vector in the full core cuboid is a tuple. A core cuboid is a subset
of the full core cuboid, which contains at least one tuple for every value chosen
from every dimension. This condition allows us to uniquely identify the size of
each dimension for a given core cuboid. Definition 1 formalizes these concepts.

Definition 1 (Core Cuboids and Slices).
Given a set of k integers Di satisfying Di > 1 for all 1 ≤ i ≤ k. A

k-dimensional core cuboid is any subset S of Πk
i=1[1, Di] satisfying the prop-

erty that for any xi ∈ [1, Di] there exist (k − 1) integers xj ∈ [1, Dj] for all
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1 ≤ j ≤ k and j �= i, such that (x1, . . . xi−1, xi, xi+1, . . . xk) ∈ S. Cc denotes
a core cuboid. Each vector t ∈ Cc is referred to as a tuple. Further, the ith ele-
ment of vector t ∈ Cc, denoted by t[i], is referred to as the ith dimension of t.
We say that Πk

i=1[1, Di] is the full core cuboid denoted by Cf . We say a tuple t
is missing from the core cuboid Cc if t ∈ Cf \ Cc. The subset of Cc defined by
{t |t ∈ Cc, t[i] = j} for each j ∈ [1, Di] is said to be the jth slice of Cc on the ith

dimension, denoted by Pi(Cc, j). If Pi(Cc, j) = {t |t ∈ Cf , t[i] = j, j ∈ [1, Di]},
we say that Pi(Cc, j) is a full slice.

For example, the fourth quarter salaries in the sample data cube of Table 1 is
depicted in Table 2. It has two dimensions: month (dimension 1) and employee
name (dimension 2). Both dimensions have four different values that are mapped
to the integer interval [1, 4]. Therefore, the full core cuboid Cf is [1, 4] × [1, 4].
The core cuboid Cc contains nine tuples and seven missing tuples are shown as
N/a.

To define aggregations of a data cube, we follow [19] to augment each dimen-
sion with a special value ALL, for which we use the symbol *. Each aggregation
vector is similar to a tuple except that it is formed with the augmented dimen-
sions. An aggregation vector selects a set of tuples in core cuboids with its *
values, which form its aggregation set. All aggregation vectors having * value in
the same dimensions form an aggregation cuboid. The concepts of aggregation
vector, aggregation cuboid and aggregation set are formalized in Definition 2.

Definition 2 (j-* Aggregation Vectors, Cuboids and Data Cubes).
A j-* aggregation vector t is a k dimensional vector satisfying t ∈

Πk
i=1([1, Di] ∪ {∗}) and | {i : t[i] = ∗ for 1 ≤ i ≤ k} |= j. If t[i] = ∗,

then we say that the ith element is a *-elements, and others are called non
*-elements. A j-* aggregation cuboid is a set of aggregation vectors C such that
for any t, t′ ∈ C, {i : t[i] = ∗} = {i : t′[i] = ∗} and | {i : t[i] = ∗} |= j. The
aggregation set of an j-* aggregation vector t is defined as {t′ : t′ ∈ Cc such
that t′[i] = t[i], ∀i t[i] �= ∗}. We use the notation Qset(t) for the aggregation set
of t. The aggregation set of a set of aggregation vectors S is defined as the union
of Qset(t) for all t ∈ S. We use notation Qset(S) for the aggregation set of S.
A data cube is defined as a pair < Cc, Sall >, where Cc is a core cuboid, and Sall

is the set of all j-* aggregation cuboids, for all 1 ≤ j ≤ k.

For example, subtotals of the fourth quarter data in the data cube of Table 1
is depicted in Table 2. Each subtotal is represented as an aggregation vector
with * value. For example, (1, ∗) represents the subtotal in October. The aggre-
gation set of (1, ∗) is {(1,1), (1,2), (1,3)}. The set of four aggregation vectors
{(1, ∗), (2, ∗), (3, ∗), (4, ∗)} form an aggregation cuboid because all of them have
* value in the second dimension.

To abstract the relationship between a core cuboid and its aggregation
cuboids in a given data cube, we define a binary matrix referred to as aggre-
gation matrix. Each element of an aggregation matrix is associated with a tuple
and an aggregation vector. An element 1 means the tuple is contained in the ag-
gregation set of the aggregation vector, 0 otherwise. We assign the tuples in Cf
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Table 2. Illustration of data cube

1 (Al) 2 (Bob) 3 (Jim) 4 (Ma) 5 (SubT)

1 (Oct) (1,1) (1,2) (1,3) N/a (1,*)
2 (Nov) N/a (2,2) (2,3) N/a (2,*)
3 (Dec) (3,1) N/a N/a (3,4) (3,*)
4 (Bonus) (4,1) N/a N/a (4,4) (4,*)

5 (SubT) (*,1) (*,2) (*,3) (*,4) (*,*)

and any C in dictionary order, the aggregation cuboids in Sall in ascending
order on the number of *-elements and descending order on the index of the
*-element. This assignment enables us to refer to the ith tuple in Cf as Cf [i]
(similarly for Cc, Sall or their subsets). We use M [i, j] for the (i, j)th element of
matrix M . Aggregation matrix is formalized in Definition 3.

Definition 3 (Aggregation Matrix).
The aggregation matrix of the aggregation cuboid C on the core cuboid Cc is

defined as the following (m × n) matrix MCc,C ( or simply M when Cc and C
are clear from context).

MCc,C [i, j] =

{
1, if Cf [j] ∈ Qset(C[i]);

0, otherwise.

We define the aggregation matrix of S on Cc as the row block matrix with
the ith row block as the aggregation matrix of the ith aggregation cuboid in S.

We use S1 to represent the set of all 1-* aggregation cuboids for a given Cc,
and M1 the aggregation matrix of S1 on Cc (that is MCc,S1 ), referred to as the
1-* aggregation matrix.

Aggregation matrix and compromiseability are illustrated in Table 3. By rep-
resenting individual salaries with variables xi, we get a linear systemMCc,S1 ·−→X =−→
B . It has at least one solution, since −→

B is caculated from the “real” salaries,
which must satisfy the stated linear system. From linear algebra [21], each xi

can have either a unique value or infinitely many different values among all the
solutions to MCc,S1 ·−→X = −→

B . This depends onMCc,S1 but not on
−→
B (this is not

valid if additional knowledge about −→X is known to users, for example, salaries
are non-negative [23, 24, 22]). If an xi has a unique value among all the solutions,
then clearly the sensitive value represented by xi was compromised. In this ex-
ample, x1 has the value of 3900 in any solution, so Alice’s salary for October is
compromised. In Definition 4, we formalize the definition of compromiseability.
We distinguish between two cases, that is, the trivial case illustrated by the third
quarter data of Table 1, and the complementary case illustrated by the fourth
quarter data.
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Table 3. Equations formulating the disclosure of the core cuboid given in Table 2

1 (Alice) 2 (Bob) 3 (Jim) 4 (Mary) 5 (Sub Total)

1 (Oct) x1 x2 x3 N/a 7100
2 (Nov) N/a x4 x5 N/a 4100
3 (Dec) x6 N/a N/a x7 4100
4 (Bonus) x8 N/a N/a x9 6000

5 (Sub Total) 7000 4300 3000 7000 -
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0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
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Definition 4 (Compromiseability).
Given a data cube < Cc, Sall > and a set of aggregation cuboids S ⊆ Sall, B
is arbitrarily chosen such that MCc,S .

−→
X = −→

B has at least one solution. S
is said to compromise Cc, if at least one component xi of −→X has the same
value among all the solutions to MCc,S .

−→
X = −→

B .
1. Cc is trivially compromised by S if there is an integer i ∈ [1,m] such that

the ith row of MCc,S is ej. Here 1 ≤ j ≤ n.
2. Cc is non-trivially compromised by S if Cc is not trivially compromised by S.

It is well-known that Cc is compromised by S if and only if there exists at
least one unit row vector ei ( where ei[i] = 1 and ei[j] = 0 for j �= i) in any
reduced row echelon form of MCc,S [21]. This yields an alternative definition of
compromiseability which we shall use in the rest of this paper.

3.2 Trivial Compromiseability

In this section, we derive cardinality-based criteria of non-compromiseability in
the trivial case. We have two results. Firstly, full core cuboids cannot be trivially
compromised. The second is an upper bound on the cardinality of the core cuboid
such that it is trivially compromised by the set of all 1-* aggregation cuboids.
They are stated and proved in Theorem 1.
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Theorem 1. 1. A full core cuboid Cf cannot be trivially compromised by any
set of aggregation cuboids S.

2. Cc is trivially compromised by S1 if |Cc| < 2k−1 ·max(D1, D2, . . . , Dk) for
k ≥ 2

Proof: Given in [30] (ommitted here due to space limitation).
Theorem 1 provides cardinality-based criteria for the two extreme cases, i.e.,

the core cuboid is either full or sparse. However, cardinality-based criteria are
ineffective for cases in between. As an example, consider the third quarter data
in Table 1, which is trivially compromised. Without changing the cardinality,
evenly distributing the three “N/a” in three months makes the core cuboid free of
trivial compromise. This invalidates any cardinality based criteria because trivial
compromiseability varies for core cuboids with exactly the same cardinality.

3.3 Non-trivial Compromiseability

In this section, we derive cardinality-based criteria for determining compro-
miseability in the non-trivial case. We have two results. The first is that full
core cuboids cannot be non-trivially compromised. The second is a lower bound
on the cardinality of the core cuboid such that it remains safe from non-trivial
compromise. First we have Lemma 1.

Lemma 1. 1. Cc can not be non-trivially compromised by any single cuboid.
2. If Cc cannot be compromised by S1, then it cannot be compromised by Sall.
3. For any integers k and D1, D2, . . . , Dk that satisfy Di ≥ 4 for 1 ≤ i ≤ k,

there is a k-dimensional data cube < Cc, Sall >, with integer boundaries Di,
such that Cc is non-trivially compromised by S1.

Proof: Given in [30] (ommitted here due to space limitation).
Because of the second claim of Lemma 1, it is sufficient to safeguard the

core cuboid from the collection of 1-* aggregation cuboids. The last condition in
Lemma 1 shows that it is impossible to obtain a criteria for preventing non-trivial
compromiseability by only looking at the dimension cardinalities.

Theorem 2 (Non-trivial Compromiseability).

1. Cf cannot be non-trivially compromised by S1.
2. For any integers k and Di ≥ 4, there exists a k-dimensional data cube <

Cc, Sall > satisfying |Cf −Cc| = 2Dl+2Dm−9 such that Cc is non-trivially
compromised by S1, where Dl and Dm are the least two among Di.

3. If |Cf −Cc| < 2Dl+2Dm − 9, then Cc cannot be non-trivially compromised.

Proof: See the Appendix.
The first claim in Theorem 2 guarantees the non-trivial compromiseability

of full core cuboid. Second and third claims give a tight lower bound on the
cardinality of a core cuboid for it to remain free of non-trivial compromises. The
second claim also implies that no cardinality based criteria can be derived for
core cuboids with a cardinality below the computed lower bound.
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Corollary 1 (Non-trivial Compromiseability).
If for any i ∈ [1, k], there exists j ∈ [1, Di] such that |Pi(Cf , j)−Pi(Cc, j)| =

0, Cc cannot be non-trivially compromised.

Proof: Follows from the proof of Theorem 2. ✷

By Corollary 1, full slice on every dimension guarantees non-compromiseabil-
ity in the non-trivial case.

4 A Cardinality-Based Inference Control Algorithm for
Data Cubes

This section describes an algorithm to control inferences in data cube style OLAP
queries using the results on compromiseability developed in Section 3. Our al-
gorithm is based on a three-tier model consisting of core data, pre-computed
aggregations and answerable queries.

4.1 Three-Tier Inference Control Model

Our three-tier model consists of three basic components and two abstract re-
lations in between as given below and illustrated in Figure 1. In addition we
enforce three properties on the model.

1. Three Tiers:
(a) A set of data items D.
(b) A set of aggregations A.
(c) A set of queries Q.

2. Relations Between Tiers:
(a) RAD ⊆ A ×D.
(b) RQA ⊆ Q× A.

3. Properties:
(a) |A| << |Q|.
(b) There are partitions PD on D and PA on A, such that for any (a, d) ∈

RAD and (a′, d′) ∈ RAD, d and d′ are in the same chunk of PD if and
only if a and a′ are in the same chunk of PA.

(c) D is not compromised by A.

Three-tier inference control model simplifies inference control problem in sev-
eral ways. Firstly, because all queries in Q are derived from aggregations in A,
it suffices to ensure the non-compromiseability A instead of Q. This reduces the
complexity of inference control due to the first characteristic of A. Secondly,
the second characteristic of A allows us to adopt a divide-and-conquer approach
to further reduce the complexity of inference control. Thirdly, inference control
is embedded in the off-line design of A and RAD, so the overhead of on-line
inference control is eliminated or reduced. Although the restriction of Q to be
derived from A reduces the total number of answerable queries, A can be de-
signed in such a way that it contains most semantics required by the application.
Hence the restricted queries are mostly arbitrary and meaningless with respect
to application requirements.
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Data Set
(D)

Pre-defined Aggregations
(A)

User Queries
(Q)

RDA

RAQ

Inference Control

Fig. 1. Three-tier model for controlling inferences

Fig. 2. Inference control algorithm for data cubes

4.2 Inference Control Algorithm

The inference control algorithm shown in Figure 2 applies the results given in
Section 3 using our three-tier model. The algorithm first partitions the core
cuboid into disjoint chunks, each of which is then passed to the subroutine
Ctrl Inf Chunk. The subroutine checks the non-compromiseability of the sub-
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data cube defined on this chunk of data, using the cardinality based criteria. If it
is compromised the subroutine returns an empty set, indicating no aggregation
is allowed on the data. Otherwise, the subroutine returns the set of all aggrega-
tion cuboids of the sub-data cube. The final outcome is the union of all partial
results returned by the subroutine (this set of aggregations can then be used to
answer data cube style OLAP queries without inference problem).

Correctness The correctness of the algorithm, that is, the non-
compromiseability of the final result is straight-forward. The subroutine
Ctrl Inf Chunk guarantees the non-compromiseability of each sub-data cube
respectively. In addition, the sub-data cubes are disjoint, making the non-
compromiseability of each of them independent of others.

Runtime Analysis: The main routine of the algorithm partitions Cc by eval-
uating the k dimensions of each tuple. Let n = |Cc|, so the runtime of the main
routine is O(nk)=O(n) (suppose k is fixed with respect to n). The subroutine
Ctrl Inf Chunk is called for each of the N =

∏k
i=1 mi chunks (mi are defined in

the algorithm). It evaluates the cardinality of each input chunk C′
c, which has

the same complexity as establishing its 1-* aggregation matrix M ′
1.

Let n′ =
∏k

i=1D
′
i be the number of columns in M ′

1 ( D′
i are defined in the

algorithm), then m′ = n′ ∑k
i=1

1
D′

i
is the number of rows. Let Dmax

i be the max-
imum value among D′

i. Out of the (m
′n′) elements, O(m′ ·Dmax

i ) elements must
be considered to compute M ′

1. Suppose (
∑k

i=1
1

D′
i
)Dmax

i = O(k). Then the run-

time of the subroutine is O(k ·∏k
i=1D

′
i). It is called N times so the total runtime

is O(k ·∏k
i=1 mi ·

∏k
i=1D

′
i) = O(k ·∏k

i=1 mi ·
∏k

i=1
Di

mi
), which is O(k ·∏k

i=1 Di) =
O(n). We note that by definition, determining non-compromiseability has a com-
plexity of O(n3) and the maximum non-compromiseable subset of aggregations
cannot be found in polynomial time [11].

Enhancing the Algorithm: The algorithm demonstrates a simple application
of the cardinality based criteria in Section 3, which can be improved in many
aspects. The dimension hierarchies inherent to most OLAP datasets can be
exploited to increase the semantics included in the final output of the algorithm.
For example, assume time dimension has a hierarchy comprised of day, week,
month and year. Instead of partitioning the dataset arbitrarily, each week can be
used for a chunk. Queries about weeks, months and years can then be answered
with only the aggregations in algorithm output.

Notice that the key to cardinality-based non-compromiseability is that each
chunk in the partition of a core cube must be either empty or dense (full). The
row shuffling [4] technique proposed by Barbara et al. increases the subspace
density of data sets by shuffling tuples along those categorical, unordered di-
mensions. Row shuffling can be integrated into the inference control algorithm
as a pre-processing step prior to partitioning.
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Data Cube Operations: We briefly discuss how our algorithm may address
common data cube operations such as slicing, dicing, rolling up, drilling down
and range query. Slicing, dicing and range query require aggregations to be
defined on a subspace formed by intervals in dimension domains. Our algorithm
also partitions the data set into small chunks. Therefore, in order to enhance our
algorithm to address these operations, the subspace required by these data cube
operations should be formed as the union of multiple chunks. Rolling up and
drilling down require aggregations to be defined at different granularities than
those in the original data cube. Rolling up does not directly create an inference
threat because with coarser granulated queries include less information about
individual data. Our ongoing work is addressing these details.

Although update operations are uncommon in decision support systems, data
stored in data warehouses need to be updated over time. Our algorithm is suit-
able for update operations in two aspects. Firstly, changing values has no effect
on cardinality, which determines the non-compromiseability in our algorithm.
Secondly, because we have localized protection by partitioning data set into
small disjoint chunks, the effect of an insertion or deletion is restricted to only
the chunks containing updated tuples.

5 Conclusions

Based on a definition of non-compromiseability to mean that each unknown
sensitive variable has more than one choices of value to fit a given set of their
aggregations, we have derived sufficient conditions for non-compromiseability in
sum-only data cubes. We have proved that full core cuboids can not be com-
promised, and that there is a tight lower bound on the cardinality of a non-
compromiseable core cuboid. To apply our results to the inference control of
data cube style OLAP queries, we have shown a divide and conquer algorithm
based on a three-tier model. Future work includes enhancing our results and al-
gorithm to include data cube operations and consider other variations of OLAP
queries.
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[4] D. Barbará and X. Wu. Using approximations to scale exploratory data analysis
in datacubes. In Proceedings of the Fifth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 382–386, 1999. 65



Cardinality-Based Inference Control in Sum-Only Data Cubes 67

[5] L. L. Beck. A security mechanism for statistical databases. ACM Trans. on
Database Systems, 5(3):316–338, 1980. 57

[6] A. Brodsky, C. Farkas, and S. Jajodia. Secure databases: Constraints, infer-
ence channels, and monitoring disclosures. IEEE Trans. Knowledge and Data
Engineering, 12(6):900–919, 2000. 57

[7] A. Brodsky, C. Farkas, D. Wijesekera, and X.S. Wang. Constraints, inference
channels and secure databases. In the 6th International Conference on Principles
and Practice of Constraint Programming, pages 98–113, 2000. 57

[8] F.Y. Chin, P. Kossowski, and S.C. Loh. Efficient inference control for range
sum queries. Theoretical Computer Science, 32:77–86, 1984. 57
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Appendix

Proof(Theorem 2):

1. Without loss of generality, we show that t0 = (1, 1, . . . , 1) cannot be nontriv-
ially compromised by S1. Let C′

f = {t : ∀i ∈ [1, k], t[i] = 1 ∨ t[i] = 2}. Since
(D1, D2, . . . , Dk) > 1, we have that C′

f ⊆ Cf and |C′
f | = 2k. It suffices to

prove that t0 cannot be compromised by S1 in the data cube < C′
f , Sall >.

Let M ′
1 be the 1-* aggregation matrix of S1 on C′

f . According to Defini-
tion 3, there are 2k non-zero column vectors in M ′

1, corresponding to the 2
k

tuples in C′
f . In the rest of the proof we formally show that each of the 2k

non-zero column vectors can be represented by the linear combination of the
left 2k−1 column vectors. Then, it follows from linear algebra that t0 cannot
be compromised by S1 in data cube < C′

f , Sall > (and hence in < Cf , Sall >.
In order to prove our informally stated claim, we define the sign assignment
vector as an n dimensional column vector tsign where n is |Cf |, as follows:
– tsign[1] = 1
– tsign[2i + j] = −tsign[j] for all 0 ≤ i ≤ k − 1 and 1 ≤ j ≤ 2i

– tsign[j] = 0 for all j > 2k

Claim: M ′
1 · tsign = 0, where 0 is the n dimensional zero column vector.

Justification:

Let t = S1[i], t[l] = ∗ for l ∈ [1, k].
Let v be M ′

1[i,−].
Suppose t[j] = 1 or t[j] = 2 for all j �= l.

Then |Qset(t)| = 2, and as a consequence we get Qset(t) = {t1, t2}
where t1, t2 ∈ Cf , t1[l] = 1,t1[l] = 2
and t1[j] = t2[j] = t[j] for all j �= l

Hence, there are two integers j1, j2 ∈ [1, n] satisfying
v[j1] = v[j2] = 1 and v[j] = 0 for any j �= j1, j2.

By Definition 3, M ′
1[−, j1] (the jth

1 column of M ′
1) and M

′
1[−, j2]
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correspond to t1 and t2 respectively.
Because C′

f is formed in dictionary order, we get j2 = j1 + 2l−1.
Hence, we have v · tsign = 0.

Otherwise, |Qset(t)| = 0; and hence Qset(t) = φ.
Hence, v = 0, and hence, 0 · tsign = 0.

This justifies our claim. Hence, as stated earlier, the justification concludes
the main proof.

2. Without loss of generality we assume D1, D2 are the least two among Di’s.
For an arbitrary but fixed value of D2, we show by induction on D1 that Cc

as constructed in the proof of Lemma 1 satisfies |Cf −Cc| = 2D1+2D2 − 9.
Inductive Hypothesis: Cc as constructed in the proof of Lemma 1 satisfies:
– |Cf − Cc| = 2j + 2D2 − 9 for any j ≥ 4.
– | P1(Cf , j)− P1(Cc, j) |= 2 for any j ∈ [1, D1].

Base Case: In the base case of the proof of Lemma 1, the core cuboid Cc

satisfies |Cf − Cc| = 2D1 + 2D2 − 9. Notice that the core cuboid, D1 = 4,
and | P1(Cf , j)−P1(Cc, j) |= 2. This validates the base case of our inductive
hypothesis.
Inductive Case: Suppose for D1 = j we have |Cf −Cc| = 2j+2D2−9 and |
P1(Cf , j)−P1(Cc, j) |= 2. Let C′

f be the full core cuboid corresponding to C′
c

for D1 = j+1. By the definition of C in the proof of Lemma 1, we have |C| =
|P1(Cc, j)| and as a consequence |C′

f−C′
c| = |Cf −Cc|+2 = 2(j+1)+2D2−9.

Since P1(C′
c, j + 1) = C. Hence, | P1(C′

f , j)− P1(C′
c, j) |= 2. This validates

the inductive case of our inductive argument and consequently concludes our
proof of the tightness of the cardinality lower bound for avoiding nontrivial
compromiseability.

3. Lower Bound: We show that if Cc is nontrivially compromised then we
have |Cf − Cc| ≥ 2D1 + 2D2 − 9. First we make following assumptions.
(a) The tuple t = (1, 1, . . . , 1) ∈ Cc is nontrivially compromised by S1

(b) No tuple in Cc is trivially compromised
(c) There exists S ⊆ S1 such that S non-trivially compromises t, but for

any C ∈ S, S \ C does not non-trivially compromise t
(d) For any t′ ∈ Cf \Cc, t cannot be nontrivially compromised by S1 in data

cube < Cc ∪ {t′}, Sall >.
Assumption (b) holds by Definition 4. Assumption (c) is reasonable consid-
ering the case S contains only a single aggregation cuboid. Assumption (d)
is reasonable considering the case |Cf \ Cc| = 1.
Claim: Suppose Assumption (a),(b),(c), and (d) hold. Furthermore assume
that there is a C ∈ S where t ∈ C satisfies t[i] = ∗. Then |Pi(Cf , 1) −
Pi(Cc, 1)| ≥ 1, and |Pi(Cf , j)− Pi(Cc, j)| ≥ 2 holds for any j ∈ [2, Di].
Justification: The proof is by contradiction. Without loss of generality, we
only justify the claim for i = k and j = 2. That is, given a C ∈ S satisfying
t[k] = ∗ for any t ∈ C, we prove that |Pk(Cf , 2)− Pk(Cc, 2)| ≥ 2.
First we transform the aggregation matrix of S on Cc by row permutation
into a singly bordered block diagonal form (SBBDF) [28], denoted byMm×n.
The ith diagonal block ofM corresponds to Pk(Cc, i) and {t : t ∈ S\C, t[k] =
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i} , and the border of M denotes the aggregation cuboid C. We call the
columns of M corresponding to the ith diagonal block as the ith slice of M .
Due to Assumption (a), there exists a row vector a satisfying a ·M = e1.
Let ri be M [i,−] then we get e1 =

∑m
i=1 a[i] · ri. Suppose each diagonal

block of M has size m′ × n′. Use rj
i , for 1 ≤ j ≤ Dk to represent the row

vector composed of the elements of ri that falls into the jth slice ofM . Notice
that there are n′ elements in rj

i . We also use e′1 and 0′ to represent the n′

dimensional unit row vector and n′ dimensional zero row vector, respectively.
Then the following are true:
i. e′1 =

∑m′

i=1 a[i]r
1
i +

∑m
i=m−m′+1 a[i]r

1
i

ii. 0′ =
∑2m′

i=m′+1 a[i]r
2
i +

∑m
i=m−m′+1 a[i]r

2
i

First we suppose |Pk(Cf , 2) − Pk(Cc, 2)| = 0, that is, the second slice of M
contains no zero column. We then derive contradictions to our assumptions.
Since |Pk(Cf , 2)− Pk(Cc, 2)| = 0 the first slice of M contains no more non-
zero columns than the second slice of M does. Intuitively if the latter is
transformed into a zero vector then applying the same transformation on
the former leads to a zero vector, too. This is formally represented as:
iii. 0′ =

∑m′

i=1 a[m
′ + i]r1i +

∑m
i=m−m′+1 a[i]r

1
i .

Subtracting (iii) from (i) gives e′1 =
∑m′

i=1(a[i] − a[m′ + i])r1i . That im-
plies Cc is nontrivially compromised by S \ {Ck}, contradicting Assumption
(c). Thus Pk(Cf , 2)− Pk(Cc, 2)| �= 0.
Next we assume |Pk(Cf , 2) − Pk(Cc, 2)| = 1 and derive a contradiction to
our assumptions.
First the row vector r3i satisfies the following condition:
iv. 0′ =

∑3m′

i=2m′+1 a[i]r
3
i +

∑m
i=m−m′+1 a[i]r

3
i .

Let t′ ∈ Pk(Cf , 2) \ Pk(Cc, 2). Notice that (i), (ii) still hold. Suppose t′

corresponds toM [−, y] = 0. Now assume we add t′ to Pk(Cc, 2), consequently
we have M [−, y] �= 0. Due to Assumption (d), we have that the left side of
(ii) becomes e′1, that is, a · M [−, y] = 1. There is also an extra 1-element
M [x, y] in the border of M .
Now let t′′ be the tuple corresponding toM [−, y+n′] in the third slice ofM .
Suppose t′′ ∈ Pk(Cc, 3) and consequently M [−, y + n′] �= 0. We have that
M [−, y + n′] =M [−, y] and consequently a ·M [−, y + n′] = 1.
By removing t′ from Pk(Cc, 2) we return to the original state that all our
assumption hold. Now we show by contradiction that t′′ ∈ Pk(Cc, 3) cannot
hold any longer. Intuitively, since t′ is the only missing tuple in the second
slice of M , the third slice of M contains no more non-zero vectors than the
second slice of M does, except t′′. Because a · M [−, y + n′] = 1, elements
of a transform the second slice of M to a zero vector, as shown by (ii), also
transform the third slice of M to a unit vector. This is formally represented
in (v):
v. e′′ =

∑3m′

i=2m′+1 a[i−m′]r3i +
∑m

i=m−m′+1 a[i]r
3
i

Subtracting (iv) from (v) we get that e′′ =
∑3m′

i=2m′+1(a[i − m′] − a[i])r3i ;
implying Cc is compromised by S \ {Ci}. Hence, Assumption (c) is false.
Consequently, t′′ /∈ Cc.
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Similar proof exists for the ith slice of Cc, where i = 4, 5, . . . , Dk. However,
M [x,−] �= 0 because if so, we can let ax be zero and then decrease the number
of missing tuples in Cc, contradicting Assumption (d). Hence M [x,−] is
a unit vector with the 1-element in the first slice ofM . However, this further
contradicts Assumption (b), that no trivial compromise is possible. Hence
we have that |Pk(Cf , 2)− Pk(Cc, 2)| = 1 is false.
Now consider |Pk(Cf , 1)−Pk(Cc, 1)|. Suppose all the assumptions hold, and
|Pk(Cf , 1) − Pk(Cc, 1)| = 0. Let t1, t2 ∈ Pk(Cf , 2) \ Pk(Cc, 2). Now define
C′

c = Cc \ {t} ∪ {t1} and M ′ be the aggregation matrix of S on C′
c. From

a·M = e1, and Assumption (d) we get a·M ′ = ei, whereM [−, i] corresponds
to t1. This implies the nontrivially compromise of t1 in < C′

c, Sall >, with
|Pk(Cf , 1)−Pk(C′

c, 1)| = 1, which contradicts what we have already proved.
Hence, we get |Pk(Cf , 1)−Pk(Cc, 1)| ≥ 1. This concludes the justification of
our claim.
The claim implies that the number of missing tuples in Cc increases mono-
tonically with the following:
– The number of aggregation cuboids in S.
– Di, provided there is C ∈ S satisfying t[i] = ∗ for any t ∈ C.

Hence |Cf −Cc| reaches its lower bound when S = {C1, C2}, which is equal
to 2D1+2D2−9, as shown in the first part of the current proof - concluding
the proof of Theorem 2.

✷
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