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Abstract— Centroid, cardinality, fuzziness, variance and skew-
ness are all important concepts for an interval type-2 fuzzy
set (IT2 FS) because they are all measures of uncertainty, i.e.
each of them is an interval, and the length of the interval is
an indicator of the uncertainty. The centroid of an IT2 FS has
been defined by Karnik and Mendel. In this paper, the other
four concepts are defined. All definitions use the Mendel-John
Representation Theorem for IT2 FSs. Formulas for computing
the cardinality, fuzziness, variance and skewness of an IT2 FS
are derived. Unlike the formulas for the centroid of an IT2 FS,
which must be computed by iterative Karnik-Mendel algorithms,
these new formulas have closed-form expressions, so they can be
computed very fast. These definitions are useful not only for
measuring the uncertainties of an IT2 FS, but also in measuring
the similarity between two IT2 FSs.

I. INTRODUCTION

Fuzzy sets (FSs) is an intuitive method to model uncertainty.
As pointed out by Cross and Sudkamp [8], “the quantification
of the degree of uncertainty in a FS depends upon the type
of uncertainty one is trying to measure and on the particular
measure selected for that type of uncertainty.”

Fuzziness [8], [19] is a commonly used uncertainty measure
for type-1 (T1) FSs. Additionally, centroid, cardinality, vari-
ance and skewness are also important characteristics of T1 FSs,
because they can be used to measure the distance or similarity
between two T1 FSs. For example, Wenstøp [31] used the cen-
troid and the cardinality of T1 FSs to measure their distance.
This enables the one FS to be found from a group of T1 FSs
Bi (i = 1, . . . , N) that most resembles a target T1 FS A.
Bonissone [4], [5] used a two-step approach to solve the same
problem. In his first step, four measures–centroid, cardinality,
fuzziness and skewness–are used to identify several FSs from
the N Bi which are close to A.

Recently, there has been a growing interest in type-2 (T2)
fuzzy set and system theory [24], [25], [39]. The membership
grades of a T2 FS are T1 FSs in [0, 1] instead of crisp numbers.
Since the boundaries of T2 FSs are blurred, they are especially
useful in circumstances where it is difficult to determine an
exact membership grade [24]. To date, interval T2 (IT2) FSs
are the most widely used T2 FSs.

Though many applications [2], [12], [24], [34], [38], [41]
have demonstrated that IT2 FSs are better at modeling un-
certainties than T1 FSs, uncertainty measures for IT2 FSs
remain undefined. Centroid, cardinality, fuzziness, variance
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and skewness are uncertainty measures for IT2 FSs because
each of them is an interval (see Section III), and the length
of the interval is an indicator of uncertainty, i.e. the larger
(smaller) the interval, the more (less) the uncertainty. These
measures may also be used to measure the similarity between
two IT2 FSs, e.g. the centroid and cardinality of IT2 FSs are
used in [32] to define a vector similarity measure for IT2 FSs.

The centroid of an IT2 FS has been well-defined and
studied by Karnik and Mendel [15]. Because the centroid of an
IT2 FS has no closed-form solution, they developed iterative
algorithms, now called Karnik-Mendel (KM) Algorithms, to
compute it. The cardinality of an IT2 FS was introduced
in [32]. For completeness, the centroid and cardinality are
again introduced in this paper. Additionally, the other three
characteristics of IT2 FSs–fuzziness, variance and skewness–
are defined and shown how to be computed.

The rest of this paper is organized as follows: Section II
provides background materials on IT2 FSs and the Mendel-
John Representation Theorem. Section III gives definitions of
centroid, cardinality, fuzziness, variance and skewness for IT2
FSs, and explains how to compute them. Section IV draws
conclusions.

II. BACKGROUND

A. Interval Type-2 Fuzzy Sets (IT2 FSs)
An IT2 FS, Ã, is to-date the most widely used kind of T2

FS, and is the only kind of T2 FS that is considered in this
paper. It is described as1

Ã =
∫

x∈X

∫
u∈Jx

1/(x, u) =
∫

x∈X

[∫
u∈Jx

1/u

]/
x (1)

where x is the primary variable, Jx ⊆ [0, 1] is the primary
membership of x, u is the secondary variable, and

∫
u∈Jx

1/u
is the secondary membership function (MF) at x. Note that (1)
means: Ã : X → {[a, b] : 0 ≤ a ≤ b ≤ 1}. Uncertainty about
Ã is conveyed by the union of all of the primary memberships,
called the footprint of uncertainty of Ã [FOU(Ã)], i.e.

FOU(Ã) =
⋃

x∈X

Jx (2)

An IT2 FS is shown in Fig. 1. The FOU is shown as the
shaded region. It is bounded by an upper MF (UMF) μÃ(x)
and a lower MF (LMF) μ

Ã
(x), both of which are T1 FSs;

consequently, the membership grade of each element of an
IT2 FS is an interval [μ

Ã
(x), μÃ(x)].

1This background material is taken from [28]. See also [24].
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Fig. 1. An IT2 FS. Ae is an embedded T1 FS.

Note that an IT2 FS can also be represented as

Ã = 1/FOU(Ã) (3)

with the understanding that this means putting a secondary
grade of 1 at all points of FOU(Ã).

For discrete universes of discourse X and Jx, an embedded
T1 FS Ae has N elements, one each from Jx1 , Jx2 , . . . , JxN ,
namely u1, u2, . . . , uN , i.e.

Ae =
N∑

i=1

ui/xi ui ∈ Jxi ⊆ [0, 1]. (4)

Examples of Ae are μÃ(x) and μ
Ã
(x); see, also Fig. 1. Note

that if each Jxi is discretized into Mi levels, there will be a
total of nA Ae, where

n
A

=
N∏

i=1

Mi. (5)

B. Representation Theorem
Mendel and John [26] have presented a Representation

Theorem for a general T2 FS, which when specialized to an
IT2 FS can be expressed as:

Representation Theorem for an IT2 FS: Assume that
primary variable x of an IT2 FS Ã is sampled at N val-
ues, x1, x2, . . . , xN , and at each of these values its primary
memberships ui are sampled at Mi values, ui1, ui2, . . . , uiMi .
Let Aj

e denote the jth embedded T1 FS for Ã. Then Ã is
represented by (3), in which2

FOU(Ã) =
n

A⋃
j=1

Aj
e =

⋃
x∈X

{
μ

Ã
(x), . . . , μÃ(x)

}

≡
⋃

x∈X

[
μ

Ã
(x), μÃ(x)

]
. (6)

This representation of an IT2 FS, in terms of simple T1 FSs,
the embedded T1 FSs, is not very difficult to prove, but it is
very useful for deriving theoretical results; however, it is not
recommended for computational purposes, because it would
require the enumeration of the n

A
embedded T1 FSs and n

A

[given in (5)] can be astronomical. The Representation Theo-
rem will be used heavily in defining the centroid, cardinality,
fuzziness, variance and skewness of IT2 FSs.

2Although there are a finite number of embedded T1 FSs, it is customary
to represent FOU(Ã) as an interval set [µ

Ã
(x), µÃ(x)] at each x. Doing

this is equivalent to discretizing with infinitesimally many small values and
letting the discretizations approach zero.

III. UNCERTAINTY MEASURES FOR IT2 FSS

In this section T1 FS definitions of cardinality, fuzziness,
variance and skewness are extended to IT2 FSs3. Because
defining the variance and skewness of an IT2 FS uses its
centroid, the definition of the centroid of an IT2 FS is
reviewed first. Additionally, because discrete versions of these
definitions are more frequently used in practice, and one can
easily deduce the corresponding continuous versions of these
definitions from the discrete versions, only discrete cases are
considered in this paper.

As stated in the Introduction, all five concepts, i.e. centroid,
cardinality, fuzziness, variance and skewness, are uncertainty
measures for IT2 FSs because each of them is an interval (see
the latter part of this section), and the length of the interval is
an indicator of uncertainty.

A. Centroid of an IT2 FS

The centroid c(A) of the T1 FS A is defined as

c(A) =
∑N

i=1 xiμA(xi)∑N
i=1 μA(xi)

. (7)

Definition 1: The centroid CÃ of an IT2 FS Ã is the union
of the centroids of all its embedded T1 FSs Ae, i.e.,

CÃ ≡
⋃
∀Ae

c(Ae) = [cl, cr], (8)

where
⋃

is the union operation, and

cl = min
∀Ae

c(Ae) (9)

cr = max
∀Ae

c(Ae). (10)

It has been shown [15], [23], [24], [27] that cl and cr can
be expressed as

cl =

∑L
i=1 xiμÃ(xi) +

∑N
i=L+1 xiμÃ

(xi)∑L
i=1 μÃ(xi) +

∑N
i=L+1 μ

Ã
(xi)

(11)

cr =

∑R
i=1 xiμÃ

(xi) +
∑N

i=R+1 xiμÃ(xi)∑R
i=1 μ

Ã
(xi) +

∑N
i=R+1 μÃ(xi)

. (12)

Switch points L and R, as well as cl and cr, are computed by
using the iterative KM algorithms [15], [24].

Example 1: Consider the FOU shown in Fig. 2. The domain
of x, [0, 7], was discretized into 8 equally-spaced points in
the computation, i.e. N = 8. Note that N = 8 is only for
illustrative purpose; in practice N is usually chosen to be much
larger so that the results are more accurate. Because xi, μÃ(xi)
and μ

Ã
(xi) (i = 1, . . . , 8) are used in several other examples

below, their values are shown in Table I. CÃ in this case is
[2.70, 3.92]. This result can be verified as follows:

3The centroid of an IT2 FS has been well-defined by Karnik and Mendel
[15] and Mendel [24]. A continuous version definition of the cardinality of
an IT2 FS was introduced in [32]. In this paper a discrete version definition
of the cardinality is introduced.
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Because cl, as computed by a KM algorithm, is 2.70, and
2.70 ∈ [x3, x4], the final switch point L in (11) must be 3, i.e.

cl =

∑3
i=1 xiμÃ(xi) +

∑8
i=4 xiμÃ

(xi)∑3
i=1 μÃ(xi) +

∑8
i=4 μ

Ã
(xi)

= 2.70

Similarly, cr = 3.92 ∈ [x4, x5] indicates that the final switch
point R in (12) must be 4, i.e.

cr =

∑4
i=1 xiμÃ

(xi) +
∑8

i=5 xiμÃ(xi)∑4
i=1 μ

Ã
(xi) +

∑8
i=5 μÃ(xi)

= 3.92

1

0

u

x

A�

0.8

1 2 5 7l
c

r
c 6

Fig. 2. The centroid of an IT2 FS. cl = 2.70 and cr = 3.92. The dashed
lines indicate the embedded T1 FS determining cl, and the solid lines indicate
the embedded T1 FS determining cr .

TABLE I
xi , µÃ(xi) AND µ

Ã
(xi) (i = 1, . . . , 8) FOR IT2 FS Ã SHOWN IN FIG. 2.

i 1 2 3 4 5 6 7 8
xi 0 1 2 3 4 5 6 7

µÃ(xi) 0 0.5 1 1 1 0.67 0.33 0
µ

Ã
(xi) 0 0 0.4 0.8 0.53 0.27 0 0

B. Cardinality of an IT2 FS

Definitions of the cardinality of T1 FSs have been proposed
by several authors, e.g. De Luca and Termini [9], Kaufmann
[17], Gottwald [11], Zadeh [40], Blanchard [3], Klement [18],
Wygralak [36], etc. Basically there are two kinds of proposals
[10], [35]: 1) those which assume that the cardinality of a
T1 FS could be a precise number; and, 2) those which claim
that it should be a fuzzy integer. De Luca and Termini’s [9]
definition of cardinality, also called the power of a T1 FS, is
the sum of all membership grades, i.e.

p
DT

(A) =
N∑

i=1

μA(xi). (13)

(13) is the most frequently used definition of cardinality;
however, p

DT
(A) increases as N increases, and lim

N→∞
p

DT
(A)

does not exist. In this paper a normalized cardinality for a T1
FS is defined based on (13), i.e.

p(A) =
1
N

N∑
i=1

μA(xi). (14)

p(A) can be viewed as the average membership grade of A in

its universe of discourse. Observe that p(A) converges as N
increases.

The cardinality of T2 FSs has not been studied by many
researchers. Jang and Ralescu [14] defined a fuzzy-valued
cardinality of a FS-valued function, which can be viewed as a
general T2 FS. Szmidt and Kacprzyk [30] defined an interval
cardinality for intuitionistic fuzzy sets (IFS). Though IFSs are
different from IT2 FSs, Atanassov and Gargov [1] showed that
every IFS can be mapped to an interval valued FS, which is an
IT2 FS under a different name. Using Atanassov and Gargov’s
mapping, Szmidt and Kacprzyk’s interval cardinality for an
IT2 FS Ã is

PSK(Ã) = [min
∀Ae

p
DT

(Ae), max
∀Ae

p
DT

(Ae)]

≡ [p
DT

(μ
Ã
), p

DT
(μÃ)] (15)

Note that (15) is defined based on (13). In the following an
interval cardinality for an IT2 FS is defined based on (14).

Definition 2: The cardinality of an IT2 FS Ã is the union
of all cardinalities of its embedded T1 FSs Ae, i.e.,

PÃ ≡
⋃
∀Ae

p(Ae) = [pl, pr] , (16)

where

pl = min
∀Ae

p(Ae) (17)

pr = max
∀Ae

p(Ae). (18)

Note that this definition is quite similar to Szmidt and
Kacprzyk’s definition [see (15)]. The only difference is that
a different T1 cardinality measure is used in (16).

Theorem 1: pl and pr in (17) and (18) can be computed as

pl = p(μ
Ã
(x)) (19)

pr = p(μÃ(x)). (20)

The proof of Theorem 1 is straightforward, so it is omitted
here.

Example 2: For the IT2 FS Ã shown in Fig. 2, μ
Ã
(xi) and

μÃ(xi) (i = 1, . . . , 8) are summarized in Table I; hence, (19)
and (20) are computed as:

pl =
1
8

8∑
i=1

μ
Ã
(xi) = 0.25

pr =
1
8

8∑
i=1

μÃ(xi) = 0.56

Consequently, PÃ = [0.25, 0.56].

C. Fuzziness of an IT2 FS

The fuzziness (entropy) of a T1 FS is used to quantify the
amount of vagueness in it. A T1 FS C is most fuzzy when all
its memberships equal 0.5. A T1 FS A is more fuzzy than a
T1 FS B if A is nearer to such a C than B is.
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Fig. 3. A is more fuzzy than B. A: solid lines; B: dashed lines.

Example 3: In Fig. 3 A is more fuzzy than B because the
memberships of A are closer to u = 0.5.

A number of measures have been proposed for fuzziness
[19]. An early approach is Kaufmann’s index of fuzziness [16],
which is defined by taking the Minkowski r-metric distance
between A and the nearest crisp set Anear , i.e.

f
Ka

(A) =

[
N∑

i=1

|μA(xi) − μAnear (xi)|r
] 1

r

, (21)

where Anear is defined as

μAnear(x) =
{

0, if μA ≤ 1/2
1, otherwise . (22)

Yager [37] defined fuzziness based on the lack of distinction
between a FS A and its complement A, i.e.

f
Y
(A) = 1 −

[∑N
i=1 |μA(xi) − (1 − μA(xi))|r

] 1
r

N
1
r

= 1 −
[∑N

i=1 |2μA(xi) − 1)|r
] 1

r

N
1
r

, (23)

where r is a positive constant.
Klir and Folger [19] proposed

f
KF

(A) = N −
N∑

i=1

|μA(xi) − μA(xi)| (24)

as a measure of fuzziness. This is an un-normalized version
of (23) when r = 1.

Kosko [22] defined fuzzy entropy as

f
Ko

(A) =
A ∩ A

A ∪ A
(25)

where ∩ = min and ∪ = max. This definition is equivalent to
measuring the compatibility between A and A with the Jaccard
Index [13].

It is straightforward to show that all of the above definitions
are actually special cases of a larger class of measures of
fuzziness [21]

f(A) = h

(
N∑

i=1

g(μA(xi))

)
, (26)

where h is a monotonically increasing function from R+ to
R+, and, g : [0, 1] → R+ is a function associated with each
xi. Additionally, 1) g(0) = g(1) = 0; 2) g(0.5) is a unique
maximum of g; and, 3) g must be monotonically increasing
on [0, 0.5] and monotonically decreasing on [0.5, 1].

Example 4: For Kaufmann’s index of fuzziness [see (21)],

h(t) = t1/r (27)

and

g(μA(xi)) =
{

μr
A(xi), 0 ≤ μA(xi) ≤ 0.5

(1 − μA(xi))r, 0.5 < μA(xi) ≤ 1 (28)

Illustrations of h in (27) and g in (28) when r = 1 are shown
in Fig. 4.

0 t

( )h t

1

1

(a)

0 x

( )g x

10.5

(b)

Fig. 4. Example of h and g. (a) h in (27) when r = 1; (b) g in (28) when
r = 1.

In the rest of this subsection f(A) is used to denote a
generic fuzziness definition for a T1 FS A. Theoretically,
f(A) may be any T1 fuzziness definition; however, normalized
versions such as (23) and (25) are preferred because they
converge as N increases.

Several researchers have proposed definitions of the fuzzi-
ness for IT2 FSs. Burillo and Bustince’s [6] definition is

F
BB

(Ã) =
N∑

i=1

[
μÃ(xi) − μ

Ã
(xi)

]
(29)

Szmidt and Kacprzyk [30] defined the fuzziness of an IFS.
Using Atanassov and Gargov’s [1] mapping from an IFS to
an IT2 FS, it is

F
SK

(Ã) =
1
N

N∑
i=1

1 − max[1 − μÃ(xi), μÃ
(xi)]

1 − min[1 − μÃ(xi), μÃ
(xi)]

(30)

Zeng and Li [42] proposed several formulas for computing the
fuzziness of Ã. Two discrete versions are

F
ZL1(Ã) = 1 − 1

N

N∑
i=1

∣∣∣μÃ(xi) + μ
Ã
(xi) − 1

∣∣∣ (31)

and

F
ZL2(Ã) = 1 −

√√√√ 1
N

N∑
i=1

[
μÃ(xi) + μ

Ã
(xi) − 1

]2
(32)
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Note that (29)-(32) are all crisp. In the following a definition
of fuzziness is proposed that is an interval.

Definition 3: The fuzziness FÃ of an IT2 FS Ã is the union
of the fuzziness of all its embedded T1 FSs Ae, i.e.,

FÃ ≡
⋃
∀Ae

f(Ae) = [fl, fr], (33)

where fl and fr are the minimum and maximum of the
fuzziness of all Ae, respectively, i.e.

fl = min
∀Ae

f(Ae) (34)

fr = max
∀Ae

f(Ae). (35)

Theorem 2: Let Ae1 be defined as

μAe1(x) =

⎧⎪⎨
⎪⎩

μÃ(x),
μÃ(x) is further away
from 0.5 than μ

Ã
(x)

μ
Ã
(x), otherwise

(36)

and Ae2 be defined as

μAe2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μÃ(x),
both μÃ(x) and μ

Ã
(x)

are below 0.5

μ
Ã
(x),

both μÃ(x) and μ
Ã
(x)

are above 0.5

0.5, otherwise

(37)

Then (34) and (35) can be computed as

fl = f(Ae1) (38)
fr = f(Ae2). (39)

The proof is given in a journal version of this paper [33].
Example 5: Consider the IT2 FS Ã in Fig. 5, which is the

same as the IT2 FS shown in Fig. 2. xi, μ
Ã
(xi) and μÃ(xi)

(i = 1, . . . , 8) are given in Table I, and according to (36)
and (37), Ae1 and Ae2 are as shown in Fig. 5. μAe1(xi)
and μAe2(xi) are summarized in Table II, and they can be
substituted into any of the T1 fuzziness measures, (21)-(25),
to compute FÃ, e.g. when Yager’s definition [see (23)] is used
and r = 1,

fl = f
Y
(Ae1) = 0.07

fr = f
Y
(Ae2) = 0.63

Consequently, FÃ = [0.07, 0.63].

1

0

u

x

A�

0.8

1 2 6 7

0.5

1e
A

2e
A

3 4 5

Fig. 5. Examples of Ae1 (the dashed lines) and Ae2 (the solid lines).

TABLE II
µAe1 (xi) AND µAe2 (xi) FOR THE IT2 FS Ã SHOWN IN FIG. 5.
xi , µÃ(xi) AND µ

Ã
(xi) (i = 1, . . . , 8) ARE GIVEN IN TABLE I.

i 1 2 3 4 5 6 7 8
xi 0 1 2 3 4 5 6 7

µAe1 (xi) 0 0 1 1 1 0.27 0 0
µAe2 (xi) 0 0.5 0.5 0.8 0.53 0.5 0.33 0

1

u

x

A

B

0

Fig. 6. Illustration of the variance of T1 FSs. A: solid lines; B: dashed
lines.

D. Variance of an IT2 FS

The variance of a T1 FS A measures its compactness, i.e.
a smaller (larger) variance means A is more (less) compact.

Example 6: In Fig. 6 A has smaller variance than B be-
cause it is more compact.

One popular definition of the (possibilistic) variance of a
T1 FS A is given by Carlsson and Fullér [7] as “the expected
value of the squared deviations between the arithmetic mean
and the endpoints of its level sets,” i.e.,

v(A) =
∫ 1

0

α

([
a1(α) + a2(α)

2
− a1(α)

]2

+
[
a1(α) + a2(α)

2
− a2(α)

]2
)

dα

=
1
2

∫ 1

0

α[a2(α) − a1(α)]2dα, (40)

where [a2(α), a1(α)] is an α-cut [20] on A. Note that (40)
requires A to be convex so that α-cut Decomposition Theorem
[20] can be used. Because not all embedded T1 FSs of an IT2
FS are convex (e.g. the T1 FS represented by the dashed lines
in Fig. 2 is not convex), (40) cannot be extended directly to
IT2 FSs by using the Mendel-John Representation Theorem.
Consequently, the following definition of the variance of a T1
FS is proposed.

Definition 4: The variance of a T1 FS A is defined as

v(A) =
1
N

N∑
i=1

[xi − c(A)]2 μA(xi). (41)

where c(A) is defined in (7).
One way to define the variance VÃ of an IT2 FS Ã is to

find the union of the variances of all its embedded T1 FSs Ae,
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i.e.,

VÃ ≡
⋃
∀Ae

v(Ae) =
⋃
∀Ae

[
1
N

N∑
i=1

[xi − c(Ae)]
2
μAe(xi)

]

(42)

There does not seem to be any practical way to compute VÃ

except to compute the variances of all Ae and to then find
their union. Because there are an uncountable number of Ae,
this method is not possible. The following relative variance
of Ae to Ã is introduced, after which it is used to define the
variance of Ã.

Definition 5: The relative variance of an embedded T1 FS
Ae to an IT2 FS Ã, VÃ(Ae), is defined as

vÃ(Ae) =
1
N

N∑
i=1

[
xi − c(Ã)

]2
μAe(xi), (43)

where
c(Ã) =

cl + cr

2
(44)

is the center of the centroid of Ã, CÃ, that is given in (8).
The difference between (43) and (42) is that in (43) the

variance of Ae is evaluated relative to c(Ã), the center of the
centroid of Ã, whereas in (42) the variance of Ae is evaluated
relative to c(Ae), the centroid of Ae.

Definition 6: The variance of an IT2 FS Ã, VÃ, is the union
of relative variance of all its embedded T1 FSs Ae, i.e.,

VÃ ≡
⋃
∀Ae

vÃ(Ae) = [vl, vr], (45)

where vl and vr are the minimum and maximum relative
variance of all Ae, respectively, i.e.

vl = min
∀Ae

vÃ(Ae) (46)

vr = max
∀Ae

vÃ(Ae). (47)

Theorem 3: (46) and (47) can be computed as

vl = sÃ(μ
Ã
(x)) (48)

vr = sÃ(μÃ(x)). (49)

Again, the proof is given in a journal version of this paper
[33].

Definition 7: The standard deviation of an IT2 FS Ã,
STD(Ã), is

STD(Ã) = VÃ
1/2 = [

√
vl,

√
vr] (50)

The relationship between the centroid and standard deviation
of Ã is shown in Fig. 7.

√
vl (

√
vr) is an indicator of the

compactness of the most (least) compact embedded T1 FS of
Ã, and

√
vr − √

vl is an indicator of the area of the FOU.
Generally, the larger (smaller) the FOU is, the larger (smaller)√

vr −√
vl is.

x

( )c A�

l
v−

r
v−

l
v

r
v

Fig. 7. The standard deviation of Ã.
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Fig. 8. Illustration of the skewness of T1 FSs. A: solid lines; B: dashed
lines; C: dotted lines.

Example 7: For the IT2 FS shown in Fig. 2, and xi, μ
Ã
(xi)

and μÃ(xi) shown in Table I,

c(Ã) = (cl + cr)/2 = (2.70 + 3.92)/2 = 3.31

vl =
1
8

8∑
i=1

(xi − 3.31)2μ
Ã
(xi) = 0.22

vr =
1
8

8∑
i=1

(xi − 3.31)2μÃ(xi) = 1.16

Consequently, VÃ = [0.22, 1.16] and STD(Ã) = [0.47, 1.08].

E. Skewness of an IT2 FS

The skewness of a T1 FS A, s(A), is an indicator of its
symmetry. s(A) is smaller than zero when A skews to the
right, is larger than zero when A skews to the left, and is
equal to zero when A is symmetrical.

Example 8: In Fig. 8 A has skewness smaller than zero
because it skews to the right, B has skewness larger than zero
because it skews to the left, and C has skewness zero because
it is symmetrical.

There are a few different definitions of skewness for T1
FSs. Subasic and Nakatsuyama’s [29] definition is

s
SN

(A) = mc(A) − ms(A) (51)

where mc(A) is the center of the core of A and ms(A) is the
center of the support of A.

In [5] Bonissone used the following definition

s
B
(A) =

N∑
i=1

[xi − c(A)]3μA(xi). (52)

In this paper a normalized version of (52) is used, i.e.

s(A) =
1
N

N∑
i=1

[xi − c(A)]3μA(xi). (53)
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Observe that s(A) converges as N increases, and it is consis-
tent with the definition of the variance of A in (41).

One way to define the skewness of an IT2 FS Ã, SÃ, is to
find the union of the skewness of all its embedded T1 FSs Ae,
i.e.,

SÃ ≡
⋃
∀Ae

s(Ae) =
⋃
∀Ae

[
1
N

N∑
i=1

[xi − c(Ae)]3μAe(xi)

]
.

(54)

Again, there does not seem to be any practical way to compute
SÃ except to compute the skewness of all Ae and to then
find their union. Because there are an uncountable number of
Ae, this method is also not possible. The following relative
skewness of Ae to Ã is introduced, after which it is used to
define the skewness of Ã.

Definition 8: The relative skewness of an embedded T1 FS
Ae to an IT2 FS Ã, sÃ(Ae), is defined as

sÃ(Ae) =
1
N

N∑
i=1

[xi − c(Ã)]3μA(xi), (55)

where c(Ã) is the center of the centroid of Ã [see (44)].
The difference between (55) and (54) is that in (55) the

skewness of Ae is evaluated relative to c(Ã), the center of the
centroid of Ã, whereas in (54) the skewness of Ae is evaluated
relative to c(Ae), the centroid of Ae.

Definition 9: The skewness of an IT2 FS Ã, SÃ, is the
union of relative skewness of all its embedded T1 FSs Ae,
i.e.,

SÃ ≡
⋃
∀Ae

sÃ(Ae) = [sl, sr], (56)

where sl and sr are the minimum and maximum relative
skewness of all Ae, respectively, i.e.

sl = min
∀Ae

sÃ(Ae) (57)

sr = max
∀Ae

sÃ(Ae). (58)

Theorem 4: Define Ael and Aer as

μAel
(x) =

{
μÃ(x), x ≤ c(Ã)
μ

Ã
(x), x > c(Ã)

(59)

μAer (x) =
{

μ
Ã
(x), x ≤ c(Ã)

μÃ(x), x > c(Ã)
(60)

Then (46) and (47) can be computed as

sl = sÃ(Ael) (61)
sr = sÃ(Aer). (62)

Again, the proof is given in a journal version of this paper
[33].

Example 9: Consider the IT2 FS Ã in Fig. 9, which again
is the same as the IT2 FS shown in Fig. 2. xi, μ

Ã
(xi) and

μÃ(xi) (i = 1, . . . , 8) are summarized in Table I, and from

Example 7, c(Ã) = 3.31. According to (59) and (60), Ael

and Aer are as shown in Fig. 9. μAel
(xi) and μAer (xi) are

summarized in Table III. It follows that

sl =
1
8

8∑
i=1

(xi − 3.31)3μAel
(xi) = −0.87

sr =
1
8

8∑
i=1

(xi − 3.31)3μAer (xi) = 1.13

Consequently, SÃ = [−0.87, 1.13].

1

0

u

x

A�

0.8

1 2 5 7( )c A�

el
A

er
A

6

Fig. 9. Illustrations of Ael (the dashed lines) and Aer (the solid lines). Note
that c(Ã) = 3.26.

TABLE III
µAel

(xi) AND µAer (xi) FOR THE IT2 FS Ã SHOWN IN FIG. 9.
xi , µÃ(xi) AND µ

Ã
(xi) (i = 1, . . . , 8) ARE GIVEN IN TABLE I.

i 1 2 3 4 5 6 7 8
xi 0 1 2 3 4 5 6 7

µAel
(xi) 0 0.5 1 1 0.53 0.27 0 0

µAer (xi) 0 0 0.4 0.8 1 0.67 0.33 0

IV. CONCLUSIONS

In this paper, four important concepts for IT2 FSs–
cardinality, fuzziness, variance and skewness–have been de-
fined. All concepts used the Mendel-John Representation
Theorem for IT2 FSs. Formulas for computing these concepts
were also obtained. Unlike the formulas for the centroid of an
IT2 FS, which must be computed by iterative KM algorithms,
all these new formulas have closed-form expressions, so they
can be computed very fast4. These definitions can be used
to measure the uncertainties of IT2 FSs, and in fact the
centroid and cardinality have already been used to compute
the similarity of two IT2 FSs in [32].

We are presently considering normalized versions of vari-
ance and skewness, so that they will conform to their proba-
bility counterparts.
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