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ABSTRACT In this study, we investigate the detection of cardiomegaly on frontal chest radiographs through

two alternative deep-learning approaches - via anatomical segmentation and via image-level classification.

We used the publicly available ChestX-ray14 dataset, and obtained heart and lung segmentation annotations

for 778 chest radiographs for the development of the segmentation-based approach. The classification-based

method was trained with 65k standard chest radiographs with image-level labels. For both approaches,

the best models were found through hyperparameter searches where architectural, learning, and regu-

larization related parameters were optimized systematically. The resulting models were tested on a set

of 367 held-out images for which cardiomegaly annotations were hand-labeled by two independent expert

radiologists. Sensitivity, specificity, positive predictive value, negative predictive value, and area under the

receiver operating characteristic curve (AUC) were calculated. The performance of the segmentation-based

system with an AUC of 0.977 is significantly better for classifying cardiomegaly than the classification-

based model which achieved an AUC of 0.941. Only the segmentation-based model achieved comparable

performance to an independent expert reader (AUC of 0.978). We conclude that the segmentation-based

model requires 100 times fewer annotated chest radiographs to achieve a substantially better performance,

while also producing more interpretable results.

INDEX TERMS Deep learning, chest radiographs, anatomy segmentations, cardiomegaly.

I. INTRODUCTION

Recent literature on the automatic interpretation of chest

X-ray (CXR) images has been dominated by methods which

learn to predict labels indicating the presence or absence of a

specific abnormality in the CXR [2], [22], [30]. Such labels

are frequently referred to as ‘image-level’ labels since they

refer to the image as a whole and provide no more specific

information, for example, regarding the location or severity

of the abnormality. The popularity of this method of analysis

is likely related to the recent release of numerous large public

datasets, each of which provides multiple image-level labels

for a variety of abnormalities [5], [22], [23], [38]. However,

image-level labels may not be the optimal way to learn to

recognise specific abnormalities. Since these labels provide

no information on the shape or location of the abnormality,
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it is likely that a very large number of labelled samples will

be needed to train a supervised-learning system. Furthermore,

the trained system provides no insight or intuition into how it

infers labels. Such a ‘black-box’ system is more difficult to

trust and less likely to find acceptance in a clinical setting.

In this work, we investigate how a more intuitive and

interpretable segmentation-based method to detect abnor-

mality compares with the state of the art in deep-learning

using image-level labels. The abnormality investigated in this

case is cardiomegaly, one of the most frequently mentioned

findings in radiology reports for chest radiography exams.

Cardiomegaly refers to an enlargement of the heart and can

be used as a marker for heart disease [14], [26]. Due to its

wide availability, high cost-effectiveness, and low radiation

dose, chest X-rays are often the first imaging study acquired

and can be utilized as a fast screening tool for cardiomegaly.

In order to detect this condition, radiologists examine the car-

diac silhouette and calculate the cardiothoracic ratio (CTR),
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a commonly used radiographic index measured as the ratio of

maximum horizontal cardiac diameter to the maximum hori-

zontal thoracic diameter [15] (Figure 1). A CTR greater than

0.5 is the generally accepted threshold considered to indicate

an enlarged cardiac silhouette, referred to as cardiomegaly.

A vast number of studies have addressed the cardiomegaly

detection task along with other abnormalities in a multi-label

classification scenario [2], [18], [30], [39], [40], predicting all

available labels from the datasets used. Many of these works

use the ChestX-ray14 dataset [38] which was released by the

National Institutes of Health in 2017 with 112,120 CXRs,

each labelled with binary labels for 14 different abnor-

malities. The labels are automatically extracted from the

text analysis of radiology reports. These studies employed

widely used state-of-the-art classification architectures, and

applied slightly different augmentation and preprocessing

techniques to tackle the classification problem. In particular,

Baltruschat et al. [2] investigated the performance of different

network architectures, namely ResNet-38, ResNet-50, and

ResNet-101, for classification of 14 abnormalities on the

ChestX-ray14 dataset [38]. They achieved a similar level of

performance as other recently published studies [18], [40],

but all these studies were limited due to their evaluation

on the noisy held-out evaluation set where the labels were

extracted from radiology reports using natural language pro-

cessing [28]. In order to address this, Rajpurkar et al. [30]

annotated a held-out evaluation set from ChestX-ray14 with

the majority vote of 3 radiologists (not publicly available),

and employed a 121-layer DenseNet architecture. The images

were resized to 512 x 512 and normalized with the mean

and standard deviation of images in the ImageNet training

set before being fed into the network. They reported state-

of-the-art results where the proposed algorithm achieved

radiologist-level performance on 11 abnormalities in their

held-out evaluation set, however, performed significantly

worse than the radiologists for 3 abnormalities, one of which

was cardiomegaly.

Some earlier works attempted to detect cardiomegaly

through segmentation-based solutions via measuring CTR.

Ginneken et al. [37] investigated the performance of three

supervised segmentation methods for anatomical segmenta-

tions, namely active shape models, pixel classification, and

active appearance models. They showed that both active

shape models and active appearance models reached a mean

absolute error of 0.012 for cardiothoracic ratio measurement

on their 247 held-out set. Candemir et al. [7] proposed a

graph-cut lung field segmentation method which was then

adapted to localize the heart region using heart models in

order to measure the CTR. They reported 0.77 sensitivity

and 0.76 specificity for the detection of cardiomegaly on

500 held-out evaluation images. Similarly, Dallal et al. [13]

proposed a method that employed the same lung segmen-

tation method proposed by Candemir et al. [7] and using

the Harris operator to detect the heart boundaries from the

resulting lung field segmentation in order to measure the

CTR. They reported a root mean squared error of 0.06 on their

FIGURE 1. Measurement of the cardiothoracic ratio in chest radiographs.
Maximum horizontal thoracic diameter = 266.72 (in mm), maximum
horizontal cardiac diameter = 146.86 (in mm), CTR = 0.55
(146.86/266.72). CTR > 0.5 and therefore this is a case of cardiomegaly.

103 held-out images. Recent work by Li et al. [25] used a deep

learning system for heart and lung field segmentation and

showed improved performance for detection of cardiomegaly

achieving a sensitivity of 0.97 and specificity of 0.92 on their

500 held-out set.

This study is the first to directly compare segmentation-

based and classification-based solutions for cardiomegaly

detection. We implement state-of-the-art deep learning meth-

ods for heart and lung segmentation, through which we cal-

culate CTR directly, and also for image-level classification

of cardiomegaly. Hyperparameter optimization is applied in

all cases to ensure the best possible solution is obtained.

We investigate the performance differences between the

segmentation-based and classification-based systems for car-

diomegaly detection, and the effect of varying the training-set

size in each case.

II. DATA

The data used in this study was retrospectively obtained

from the publicly available ChestX-ray14 dataset [38]. It is

composed of 112,120 frontal view chest radiographs from

30,805 patients stored as 8-bit grayscale images with dimen-

sions of 1024× 1024. The dataset was automatically labeled

from text reports, indicating the presence or absence of 14 dif-

ferent thoracic abnormalities including cardiomegaly.

Heart enlargement, i.e. cardiomegaly, cannot reliably be

assessed on AP view chest radiographs since the distance

between the X-ray source and the patient is non-standardized

on AP view, which causes a variable magnification of the

heart. Hence, we selected only posteroanterior (PA) studies.

This resulted in 67,310 PA images of 28,868 patients, 44%

male, 41% abnormal.
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FIGURE 2. Flowchart of the data selection procedure. CXR = chest x-ray, PA = posteroanterior, CTR = cardiothoracic ratio,
class-method = image-level cardiomegaly classification, seg-method = heart and lung segmentation. Images are from the
publicly available ChestX-ray14 dataset.

A. HELD-OUT EVALUATION SET

For the final model evaluation, we created a class-balanced

set of 400 images (Figure 2). Using the labels provided we

randomly sampled 200 cases with cardiomegaly (200/1563)

and 200 without cardiomegaly (200/65,747).

A chest radiologist with over 30 years of experience and

another chest radiologist with over 5 years of experience

independently annotated the maximal horizontal cardiac and

thoracic diameters on all evaluation cases. Cases where radi-

ologists could not reliably locate the heart borders were

excluded from the study, leaving 367 cases. The annotations

of the more experienced radiologist are used as the reference

standard throughout this work, while the other radiologist is

used as a second reader, for comparison with our automated

methods.

B. TRAINING & VALIDATION SET

1) CLASSIFICATION-BASED METHOD

After the selection of only posteroanterior (PA) studies as

seen in Figure 2, there was a total of 65,205 chest radiographs

from 28,468 patients (excluding the patients in held-out eval-

uation set). This set was used as our training&validation set

(3000 for validation), using the publicly available image-

level cardiomegaly labels for training the classification-based

method.

2) SEGMENTATION-BASED METHOD

To develop deep neural networks to segment the heart and

lungs we first set out to obtain manual segmentations of heart

and lung boundaries. In order to select challenging cases

for annotation of heart and lung boundaries, we developed

a standard U-net [32] architecture which segments the heart

and lung area, trained on a separate publicly available dataset,

namely JSRT [34]. The JSRT dataset consists of 247 images

from scanned films with a resolution of 2048 × 2048 and

12-bit depth. The reference standard for the heart and lung

boundaries of those images are provided with the SCR

dataset [37]. Our deep learning system was trained on a

randomly selected 200 cases (200/247) and the remaining

47 cases were used as the validation set. The images were

scaled to a dimension of 256 x 256, and the network was

trained with Adam optimizer with a learning rate of 10−5.

Further, a set of 2000 radiographs was randomly

selected from the 65,205 remaining images in the ChestX-

ray14 dataset (Figure 2). The JSRT-trained system was tested

on those cases and visual inspection was used to select

814 cases most of which the algorithm performed sub-

optimally. Those 814 cases were presented to a medical

student and a computer scientist (with experience analyzing

chest radiographs) who were instructed to annotate the heart

and lung areas. An experienced radiologist was consulted for

difficult cases and cases where the heart boundaries could not

be inferred were excluded. This resulted in 778 radiographs

(178 for validation) with lung and heart area annotations to

be used as the segmentation training & validation set.

III. METHODS

Two approaches for cardiomegaly detection are described in

this section: firstly a classification approach based on image

level labels (class-method) and secondly the segmentation-

based approach (seg-method). For each approach hyperpa-

rameter optimization was run for 200 experiments. The final

hyperparameters chosen were those that yielded the highest

performance on the validation set.

A. CLASSIFICATION-BASED METHOD

To classify cardiomegaly using image-level labels we imple-

mented three state-of-the-art classification architectures,

ResNet18, ResNet50 [19], and DenseNet121 [20], which

have achieved excellent performance in several computer

vision and medical image analysis tasks. Particularly, they

were previously shown to achieve high-performance levels
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on the ChestX-ray14 dataset with multi-label classification

settings [2], [30]. Training and architecture related hyperpa-

rameters of the class-method were systematically optimized

to ensure optimum performance.

All the network architectures were pretrained on Ima-

geNet, and a fully connected layer (2 output units with Soft-

Max activations) was added after the global average pooling

layer. The networks were trained with 65,205 frontal stan-

dard chest radiographs (3000 for validation) from ChestX-

ray14 dataset, as in Figure 2, using categorical cross-entropy

loss. Since there is a class imbalance problem in such

a scenario (1156 images with cardiomegaly among 65k),

we employed an over-sampling technique [4] by sampling the

positive cardiomegaly cases until the dataset was balanced.

All images underwent per sample mean-standard deviation

normalization. Data augmentation was applied to the training

samples by means of inception-like preprocessing [6], [36].

This consists of applying a random rotation up to 7 degrees,

random resizing with a scale in the range [0.7, 1], and random

cropping a 4:3 or 3:4 part of the chest X-ray.

1) CLASS-METHOD HYPERPARAMETER OPTIMIZATION

Several aspects of the hyperparameters were optimized for

the class-method for 200 experiments.

Due to the very long training time of the class-method

(which can take from 2 hours to 23 hours for one experiment

depending on the network architecture and other hyperparam-

eters), the hyperopt library [3] was used for 50 experiments.

In every experiment during the optimization using hyperopt,

the model being optimized is trained from scratch with the

candidate hyperparameters for a maximum number of epochs

predefined for each model. The selection of the candidate

hyperparameters are based on Bayesian optimization, i.e., the

hyperparameters were selected based on a trade-off between

the results of the previous iterations, the regions of unex-

plored hyperparameter space, and their underlying distribu-

tion.

Further, we also optimized the hyperparameters through

grid search, which can be run in parallel unlike hyperopt, for

an additional 150 experiments.

The hyperparameters range and the values selected after

the optimization can be seen in Table 1. We used three

commonly used architectures, DenseNet121, ResNet50, and

ResNet18, as a hyperparameter value in order to optimize

the network architecture for our problem settings. Due to

memory constraints, we made sure that the batch size was

set to 8 when the network architecture was DenseNet121 or

ResNet50 with an input resolution of 512 otherwise to 16.

Based on the hyperparameter optimization results, after

every 100 iterations, the validation loss was calculated on the

whole validation set. If the validation loss did not decrease

compared to the previous step, the learning rate was reduced

by multiplying it with 0.2. The model which showed the least

validation error was selected as our final model.

After the hyperparameter optimization, the best model

found for the class-method was ResNet50 trained with the

largest input resolution of 512. During the experiments,

we observed that all the deep learning models were power-

ful and achieved a high level of performance and that the

most crucial hyperparameters on performance were learning-

related, i.e. learning rate.

The hyperparameter optimization procedure took around

23 days with hyperopt on a PC equipped with TitanX GPU,

and 6 days for grid search optimization (run in parallel)

for 150 experiments using several GPU, TitanX, GTX1080,

GTX1080ti, GTXTitanx, and TitanV. The code was imple-

mented in Tensorflow [1].

B. SEGMENTATION-BASED METHOD

The segmentation-based approach (seg-method) is designed

to address the cardiomegaly detection task on chest radio-

graphs, through segmentation of the heart and lungs and

subsequent calculation of the cardiothoracic ratio (CTR).

As illustrated in Figure 3, two different models were devel-

oped for heart and lung field segmentation respectively. After

segmentation, the maximum horizontal cardiac and thoracic

diameters were calculated and used to calculate CTR and

hence the presence or absence of cardiomegaly based on the

clinically used CTR threshold of 0.5.

For the development of heart and lung segmentation

models, a U-net-like fully convolutional network architec-

ture [32] was implemented and its training, regularization,

and architecture-related hyperparameters were systematically

optimized for the best model selection.

The U-net architecture [32] is a state-of-the-art segmen-

tation network, which has achieved promising results on a

variety of medical image segmentation tasks [9], [13]. It con-

sists of contracting and expanding paths, where the contract-

ing path is composed of convolution operations decreasing

the spatial resolution and the expanding path consists of

transposed convolutions increasing the resolution. Further,

the details that were lost through downsampling operations

are recovered through skip connections which pass feature

maps from the contracting to the expanding path.

During training, each model was trained by optimizing

the binary cross-entropy loss between the predicted masks

and the reference standard (heart or lung masks), which is

formulated as follows:

BCE = −
1

N

N∑

i=1

yi log ŷi + (1 − yi)log(1 − ŷi)

where N denotes the number of images, yi represents the

reference standard for the sample i, ŷi represents the model

prediction for the sample i.

All images underwent per sample mean-standard devia-

tion normalization. Data augmentation with random rota-

tion, vertical and horizontal shift, zooming, and brightness

was applied to improve system robustness. The model was

trained for a maximum of 300 epochs, terminating if there

was no improvement in the validation set performance for
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TABLE 1. Optimized hyperparameters for the class-method. The naming convention follows [10]. LR = learning rate. LR reduced factor indicates the factor
to multiply learning rate with in case of no improvement is seen on the validation set performance during training.

20 successive epochs. We selected the epoch with the best

performance on the validation set.

1) SEG-METHOD HYPERPARAMETER OPTIMIZATION

Similar to the class-method, the hyperparameters of the seg-

method were optimized using the hyperopt library [3] for

200 experiments.

The heart and lung segmentation models were opti-

mized separately. A specific set of learning, architecture and

regularization-related parameters [11], [16], [24], [35] were

selected for the hyperparameter search as listed in Table 2

(with the naming convention as in [10]). The learning rate

was the only continuous hyperparameter and was sampled

from a log uniform distribution. The other hyperparameters

were sampled from a discrete uniform distribution between

the defined choices.

As a regularization hyperparameter, the selection of

dropout (with a probability of 0.5) [35] before each con-

volution in the expanding path was introduced as a binary

hyperparameter.We used batch normalization [21] after every

convolution layer as it improved performance by enabling

more efficient learning.

Due to the limitations of computational memory, some

restrictions on the combinations of hyperparameter settings

were required. While a large batch size helps to stabilize the

training, the depth of the network and the number of convolu-

tion operations per layer increase the capacity of the network,

and the receptive field and the higher resolution images allow

the network to see more details within the image. However,

not all these conditions can be satisfied at the same time

due to memory constraints. Therefore, the selection of these

hyperparameters was conditioned on each other: when the

input resolution was 512, the batch size was chosen as 4, and

when the depth of the network was larger than 4, the number

of convolution operations per depth was limited to 2 and the

number of initial feature maps limited to 32.

The best models found after the hyperparameter opti-

mization for both heart and lung segmentation were U-net

architecture with the highest depth 6 as in Table 2. During

the experiments, we observed that a larger input resolution

yielded better performance.

The hyperparameter optimization procedure took around

13 days for each of the lung and heart segmentation models

on a PC equipped with TitanX GPU and with the code imple-

mented in Keras [10] with Tensorflow backend [1].

IV. EXPERIMENTS

The seg-method and class-method performance were investi-

gated for cardiomegaly classification. Further, since the seg-

method additionally produces a clinically relevant measure,

CTR, the performance of this system was also evaluated in

terms of CTR accuracy.

A. CARDIOMEGALY CLASSIFICATION

We evaluate the performance of the two methods and of

the second reader by calculating the area under the receiver

operating characteristic curve (AUC). To construct ROC

curves the reference standard CTR values were thresholded

at 0.5 in order to obtain binary cardiomegaly labels. The

sensitivity and specificity of each system and the reader

performance is then computed at all possible operating points

by applying various thresholds on the CTR output score

(second-reader and seg-method) or SoftMax prediction for

cardiomegaly (class-method) in order to produce an ROC

curve.

It is important to note that the class-method was trained

on a considerably larger dataset compared to the seg-method.

This was done considering the different levels of annotation

efforts between the two methods in order to have a fair

comparison, and to investigate the performance of the class-

method in its full potential. To validate our experimental

design, we have also included the performance of the class-

method when being trained with the same small dataset as the

seg-method in our ROC analysis.

The kappa statistic [12] between the reference standard

and the second reader and the models are calculated. Further,

the sensitivity, specificity, positive predictive value, and nega-

tive predictive value and their 95% confidence intervals [17],

[27] are reported, based on a fixed threshold of 0.5.

B. TRAINING SET SIZE ANALYSIS

In order to investigate the effect of the number of train-

ing images on the cardiomegaly classification performance,

we constructed learning curves.We train both the seg-method

and the class-method networkswith varying numbers of train-

ing images and determine the effect of this on the method

performance. The seg-method was trained with 50, 100, 200,

300, 400, 500, 600 images using 178 images in the validation

set for each experiment and the class-methodwas trainedwith

2.5k, 5k, 10k, 20k, 40k, 62k images each using 3000 images
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FIGURE 3. Illustration of the architecture pipeline for the seg-method. CTR = cardiothoracic ratio. Two different models are trained, for heart and
lung field segmentation, respectively. CTR is derived from those predicted segmentation maps by determining the maximum horizontal thoracic
and cardiac diameter and computing the ratio.

TABLE 2. Hyperparameter optimization for the seg-method. Regularization, learning and architecture related hyperparameters are optimized and ranges
are demonstrated. The naming convention follows [10].

as the validation set. We analyzed the results with the AUC

score.

C. CTR ANALYSIS

1) HEART AND LUNG SEGMENTATION

Since the seg-method detects cardiomegaly through lung

and heart segmentation, the segmentation performance of

the final models, which were found through hyperparam-

eter optimization, were evaluated on the full JSRT dataset

(247 images). We used intersection over union (IOU), also

known as Jaccard index, as a performance measure which is

calculated as follows:

IOU =
| X ∩ Y |

| X ∪ Y |

where X represents the output of the network, and Y is the

reference standard segmentation output. IOU quantifies the

overlap between X and Y as the ratio between the number of

pixels that are common between X and Y (cardinality of the

intersection set) and the total number of pixels present across

both of them (cardinality of the union set).

2) CTR CALCULATION

The performance of the seg-method was analyzed as a regres-

sion task in order to evaluate the performance in terms of

CTR accuracy. Segmentation predictions can directly be used

to calculate maximal horizontal cardiac and thoracic diam-

eter, and used to calculate CTR as their respective ratio.

The reference standard is created from the first radiologist

CTR annotations to which the performance of the seg-method

and the second reader can be compared.

The mean absolute error was used to evaluate the accuracy

of CTR predictions with respect to the reference standard as

follows:

MAE =
1

N

N∑

i=1

| ǫt |,

where N denotes the number of images, and ǫt represents

the difference between the predicted CTR and the reference

standard CTR.

Moreover, CTR performance was also evaluated with Pear-

son correlation coefficient to summarize the strength of the

linear relationship between the reference standard and the

CTR predictions. The differences in CTRmeasurements, and

the cardiac (in mm) and thoracic diameters (in mm) between

the reference standard and the seg-method and the second

reader were analyzed.

V. RESULTS

A. CARDIOMEGALY CLASSIFICATION

As shown in Figure 4, the class-method performed reasonably

well, but with clearly much lower specificity at all sensitivity

settings compared to the seg-method. The performance of

the second reader and the seg-method are very similar to each

other on this dataset with an AUC of 0.978 (95% confidence
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FIGURE 4. Receiver operating characteristic curves for detection of
cardiomegaly in the held-out evaluation set (N = 367). Reference =

Radiologist 1, TS: Number of training samples, The second reader
(Radiologist 2). Shaded areas represent the 95% confidence intervals. The
reference standard CTR values were thresholded at 0.5 in order to obtain
binary cardiomegaly labels.

interval [CI]: 0.969, 0.988) and 0.977 (95% [CI]: 0.966,

0.988), respectively. In contrast, the class-method obtained

an AUC of only 0.941 (95% confidence interval [CI]: 0.922,

0.959) when it was trained on a large dataset (62k). Further,

the performance of the class-method decreased considerably

achieving an AUC of 0.830 (95% confidence interval [CI]:

0.789, 0.863) when it was trained on the same small dataset

as the seg-method (600).

The kappa statistic for cardiomegaly classification (at a

threshold of 0.5) between the reference standard and the sec-

ond reader was 0.856 while for the seg-method and class-

method were 0.870 and 0.683, respectively. The sensitivity,

specificity, positive predictive value (PPV), and negative pre-

dictive value (NPV) (at a fixed threshold of 0.5) on the held-

out evaluation set are provided in Table 3. The seg-method

and the second reader showed similar performance levels with

the sensitivity of 0.97 and 0.91 and specificity of 0.90 and

0.95, respectively.

B. TRAINING SET SIZE ANALYSIS

The impact of the number of training images on the classifi-

cation performance is illustrated in Figure 5a and 5b for both

seg-method and the class-method. Figure 5a illustrates that

seg-method benefits from an increased number of training

images until the number of training images reaches 500.

It seems that increasing this number further does not bring

any performance gain.

The effect of the number of training images for the per-

formance of the class-method appears to be more crucial

compared to the seg-method in Figure 5b. The performance

continues to increase substantially with the addition of more

training data even after 40k training images.

Moreover, Figure 5a and 5b demonstrates that only

100 training images were sufficient for the seg-method to

achieve a better performance than the class-method which

was trained with 62k training images.

C. CTR ANALYSIS

1) HEART AND LUNG SEGMENTATION

The seg-method achieved 0.87 and 0.95 intersection over

union (IOU) on the full JSRT dataset (247 images) for heart

and lung segmentation, respectively.

2) CTR CALCULATION

The mean absolute error between both the seg-method and

the second reader against the CTR reference standard was

0.0135 as seen in Table 3. The scatter plots of the reference

standard CTR against the predicted CTR values of the model

and the second reader are provided in Figure 6a and 6b,

respectively. In line with our expectations, the misclassified

cases for both the second reader and the seg-method are con-

sistently those cases where the CTR is close to the threshold

value of 0.5. Both the model and the second reader CTR

predictions against the reference standard appear highly cor-

related, showing 0.960 and 0.965 Pearson correlation coeffi-

cient, respectively.

The histogram of the differences between the reference

standard CTR values and the seg-method and the second

reader are illustrated in Figure 6c and 6d, respectively. For

both the seg-method and the second reader, the majority of

the differences were less than 0.06. In particular, there were

7 cases out of 367 where the differences between both the

seg-method and the second reader to the reference standard

were higher than this value.

The range of differences between the reference standard

maximal horizontal cardiac and thoracic diameters and the

model and the second reader are shown in Figure 6e and

6f, respectively. The measurement differences for both the

cardiac and thoracic diameters were in a similar range for the

model and the second reader.

3) DIFFICULT CASE ANALYSIS

Example cases for the predictions of seg-method and class-

method are shown in Figure 7. Misclassified cases where the

reference standard is close to the CTR threshold of 0.5 are

less interesting since these differences can be caused by

inter-reader variability. Therefore we analyzed the misclas-

sified cases where the reference standard was higher than

0.55 or lower than 0.45. There were no misclassified cases

for both seg-method and class-method when the reference

standard was lower than 0.45. However, class-method mis-

classified 8 cases where the reference standard was higher

than 0.55 while the seg-method misclassified only one single

case.
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TABLE 3. Comparison of the seg-method with the class-method and the second reader. PPV = positive predictive value, NPV = negative predictive value,
MAE = mean absolute error. The number between brackets denote 95% confidence intervals. MAE is calculated against the reference standard for CTR.
Since the class-method produces a binary output, MAE can not be calculated. All other measures relate to binary classification of cardiomegaly status.

FIGURE 5. The performance of the seg-method and the class-method for various training set sizes. TS = number of training samples. All curves are
computed for the held-out evaluation set (N = 367). Shaded areas represent the 95% confidence intervals.

VI. DISCUSSION

In this work, it was demonstrated that a segmentation-

based model trained on a modestly sized collection of chest

radiographs (778 images) achieves an AUC of 0.977 for

the detection of cardiomegaly, which is comparable to an

independent second reader with an AUC of 0.978. The seg-

method reached a high sensitivity and specificity on this task

at 97% and 90%, respectively. In contrast, the class-method

of image-level classification for cardiomegaly achieves a sig-

nificantly lower performance with an AUC of 0.941 although

it has been trained on 65,205 images. The performance

achieved by the class-method is nonetheless representative

of the state-of-the-art for classification-based solutions since

several studies [2], [8], [22], [29], [30], [33] reported simi-

lar or lower cardiomegaly classification performance which

were evaluated on a variety of datasets.

Experimental results demonstrated that the seg-method

trained on only 100 annotated images can still outperform the

class-method (Figure 5), trained on 65k images. This result

highlights the difference between the methods in several

aspects. First, it reveals that integrating domain knowledge

from segmentations in subsequent image analysismay greatly

reduce the volume of annotated training data required to

achieve high performance. It additionally suggests that much

improved accuracy can be obtained on these tasks, even with

very limited training data. Finally, the seg-method opens the

black-box solution of the class-method by producing the heart

and lung segmentation and the diameters making up the CTR

measure, rather than producing a single classification output.

This is likely to be useful in clinical settings where the use

of black-box algorithms is typically viewed as a high-risk

solution.

It is notable that the class-method continued to improve

in performance as additional training data was added.

We hypothesize that with enough training samples it would

eventually obtain a similar performance to the seg-method

and the second reader. Further, the performance of class-

method might be improved if the training labels did not

contain any noise, although deep-learning systems have been

shown to be robust to training label noise in recent studies [6],

[31]. However the method would remain, nonetheless, inex-

plicable to clinicians.

Compared to the previous studies using segmentation-

based solutions for cardiomegaly classification [7], [13],
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FIGURE 6. MAE = mean absolute error, CTR = cardiothoracic ratio. (a) and (b): The scatter plots of the reference standard CTR values against the CTR
values of the seg-method and the second reader respectively. Correctly classified and misclassified samples are visualized in purple and green,
respectively. (c) and (d): The histogram of the CTR differences between the reference standard and the seg-method and second reader respectively.
(e) and (f): The box plot of the differences between the maximal horizontal cardiac and thoracic diameters between the reference standard and the
seg-method and the second reader in mm.

our seg-method showed a substantially improved perfor-

mance. Considering the fact that the heart and lung field

segmentation performance is the key to the algorithm per-

formance, it is clear that the improved performance of our

seg-method relies heavily on our segmentation methodology.

Unlike earlier studies, we employed a deep learning model,

a state-of-the-art segmentation network [32], and system-

atically optimized its hyperparameters to segment the lung
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FIGURE 7. Example cases of the model predictions. CTR = cardiothoracic ratio, RS = reference standard. (a)-(c): Three example cases of
the seg-method predictions. Model prediction CTR (reference standard CTR). Cases a and b are correctly classified and case c is
misclassified. (d)-(i): Example cases of the class-method predictions. d and e are the correctly classified cases, whereas f is an example of
misclassification.

and heart field with optimal accuracy. This can be seen

with the intersection over union (IOU) score reported for

the heart and lung field segmentation in these studies. For

instance, Candemir et al. [7] showed that they achieved

IOU of 0.70 and 0.95 for the heart and lung segmenta-

tion, respectively whereas Dallal et al. [13] achieved IOU

of 0.57 with their heart segmentation approach. However, our

model achieved IOU of 0.87 and 0.95 on the JSRT dataset for

heart and lung field segmentation, respectively, outperform-

ing the results reported in [37].

This result suggests that there is a difference with a large

margin in terms of heart segmentation performance between

our proposed deep learning approach and the earlier stud-

ies. Recent work by Li et al. [25] which also used a deep

learning segmentation model supports this result. In this

work, the obtained CTR values are comparable with man-

ual measurements although they required 5000 manually

segmented scans for training, compared to just 778 in this

work. Our work is the first to provide a direct comparison

between segmentation-based and end-to-end image-level car-

diomegaly classification demonstrating the advantages of the

former, both in terms of clinical interpretation and perfor-

mance. We also provide an online demo1 where interested

readers can test out our seg-method algorithm.

1https://grand-challenge.org/algorithms/cxr-cardiomegaly-
detection/

While it is clear that annotations of heart and lung bound-

aries are more time-consuming to obtain than image-level

labels (which are often extracted using automatic methods

from radiology reports), we believe that segmentation of

anatomy is important not only for cardiomegaly detection,

but also in the identification and quantification of many other

abnormalities. Our manual segmentations took an average

of 2 minutes per image (for both heart and lung boundaries)

and we expect that our trained segmentation networks could

now serve as guidance in many clinically interpretable abnor-

mality detection systems. Future work will investigate the

incorporation and importance of anatomical segmentation in

other clinically relevant tasks.

This study has several limitations. First, all chest radio-

graphs were retrieved from a single institution, which may

affect the robustness of the system in evaluating images from

other sources. Second, lateral view chest radiographs were

not considered in our study although they might potentially

be used, when in doubt, as complementary information to

accept or reject cardiomegaly. Further, the cases for which

the determination of CTR measurements was not possible

(due to invisibility of anatomical boundaries) were manually

excluded from our held-out evaluation set. In clinical prac-

tice, such images cannot be used for the determination of

cardiomegaly. The automated rejection of such cases by the

model would be a useful tool in clinical settings and might be

a good future research direction.
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We conclude that we have implemented a segmentation-

based cardiomegaly algorithm with performance comparable

to a human reader, and with the advantages of improved accu-

racy and better interpretability compared to the image-level

classification method. Future work will investigate extending

the segmentation-based approach to other diagnostic tasks.
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