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ABSTRACT 

Importance:  Early epidemiological studies report associations of diverse cardiometabolic 

conditions especially body mass index (BMI), with COVID-19 susceptibility and severity, but 

causality has not been established. Identifying causal risk factors is critical to inform preventive 

strategies aimed at modifying disease risk. 

Objective: We sought to evaluate the causal associations of cardiometabolic conditions with 

COVID-19 susceptibility and severity. 

Design: Two-sample Mendelian Randomization (MR) Study. 

Setting: Population-based cohorts that contributed to the genome-wide association study 

(GWAS) meta-analysis by the COVID-19 Host Genetics Initiative. 

Participants: Patients hospitalized with COVID-19 diagnosed by RNA PCR, serologic testing, 

or clinician diagnosis. Population controls defined as anyone who was not a case in the cohorts.  

Exposures: Selected genetic variants associated with 17 cardiometabolic diseases, including 

diabetes, coronary artery disease, stroke, chronic kidney disease, and BMI, at p<5×10−8 from 

published largescale GWAS. 

Main outcomes: We performed an inverse-variance weighted averages of variant-specific 

causal estimates for susceptibility, defined as people who tested positive for COVID-19 vs. 

population controls, and severity, defined as patients hospitalized with COVID-19 vs. population 

controls, and repeated the analysis for BMI using effect estimates from UKBB. To estimate 

direct and indirect causal effects of BMI through obesity-related cardiometabolic diseases, we 

performed pairwise multivariable MR. We used p<0.05/17 exposure/2 outcomes=0.0015 to 

declare statistical significance. 
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Results:  Genetically increased BMI was causally associated with testing positive for COVID-19 

[6,696 cases / 1,073,072 controls; p=6.7×10−4, odds ratio and 95% confidence interval 1.08 

(1.03, 1.13) per kg/m2] and a higher risk of COVID-19 hospitalization [3,199 cases/897,488 

controls; p=8.7×10−4, 1.12 (1.04, 1.21) per kg/m2]. In the multivariable MR, the direct effect of 

BMI was abolished upon conditioning on the effect on type 2 diabetes but persisted when 

conditioning on the effects on coronary artery disease, stroke, chronic kidney disease, and c-

reactive protein. No other cardiometabolic exposures tested were associated with a higher risk 

of poorer COVID-19 outcomes.  

Conclusions and Relevance: Genetic evidence supports BMI as a causal risk factor for 

COVID-19 susceptibility and severity. This relationship may be mediated via type 2 diabetes. 

Obesity may have amplified the disease burden of the COVID-19 pandemic either single-

handedly or through its metabolic consequences. 
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KEY POINTS 

Question: Is there a causal association between cardiometabolic conditions and COVID-19 

susceptibility or severity?  

Findings: Using two-sample Mendelian randomization of 17 cardiometabolic diseases and 

traits, only body mass index was found to be causally associated with testing positive for 

COVID-19 (6,696 cases/ 1,073,072 controls; p=6.7×10−4) and a higher risk of COVID-19 (3,199 

cases/897,488 controls; p=8.7×10−4). 

Meaning: Genetic evidence supports BMI as a causal risk factor for COVID-19 susceptibility 

and severity.  
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INTRODUCTION 

There is high heterogeneity in both susceptibility and severity of SARS-CoV2 infection 

with clinical severity1,2 ranging from asymptomatic carriers to life-threatening respiratory failure 

and death3. Epidemiological studies using both retrospective and prospective cohorts of 

different sizes and from multiple countries have reported evidence that underlying 

cardiometabolic conditions4-29 may be associated with an increased risk of severe COVID-19 

illness (i.e., hospitalization, intubation, mechanical ventilation or death30) . Coronary artery 

disease4-6, chronic kidney disease7-12, obesity13-17 and type 2 diabetes8,18-21 have a strong and 

consistent evidence for association with COVID-19 severity30.  There is less compelling 

evidence for cerebrovascular disease4,22-28 (i.e., stroke) and hypertension4,6,27-29 leading to 

severe manifestations of COVID-19. Additional evidence suggests that these cardiometabolic 

traits may be associated with disease susceptibility31; however without universal testing, this 

correlation is difficult to prove. 

While early reports are crucial to inform clinical decision making and public health policy 

during a pandemic of a new pathogen, correlative observational data can be plagued by 

residual confounding. Thus, there remain inherent challenges in drawing causal inferences from 

these epidemiologic studies. Mendelian Randomization (MR) is an analytic approach that uses 

human genetic variation known to influence modifiable exposures to examine their causal effect 

on disease32. MR is especially useful for disentangling causal pathways of phenotypically 

clustered risk factors that are difficult to randomize or prone to measurement error. By 

identifying causal relationships between cardiometabolic risk factors and COVID-19 

susceptibility or severity, we may be able to mitigate their impact on disease risk and avoid 

spurious conclusions that lead to misinformation or incite unnecessary anxiety. 
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We hypothesize that only some cardiometabolic conditions have a causal relationship 

with COVID-19 illness or its disease course. Thus, we sought to evaluate the causal 

associations of 17 cardiometabolic exposures with COVID-19 susceptibility and severity using 

two-sample MR analyses. Causal effects were estimated from genome-wide association studies 

(GWAS) summary statistics of these cardiometabolic diseases and related traits and COVID-19-

related outcomes from the COVID-19 host genetics initiative (https://www.covid19hg.org/)33. 

METHODS 

Candidate instrument selection for cardiometabolic diseases and traits 

We extracted association summary statistics from published large-scale GWAS meta-

analysis to generate sets of genetic instruments for 17 cardiometabolic diseases and traits, 

type 1 diabetes34, type 2 diabetes35, hemoglobin A1c36, fasting glucose adjusted for body mass 

index (BMI)36, fasting insulin adjusted for BMI36, BMI37, waist-hip ratio38, low-density lipoprotein 

cholesterol39, high-density lipoprotein cholesterol39, triglycerides39, systolic blood pressure40, 

diastolic blood pressure40, creatinine-based estimated glomerular filtration rate (eGFR)41, 

chronic kidney disease41 coronary artery disease42, any stroke43, and c-reactive protein44 (CRP), 

a non-specific biomarker of inflammation that can be elevated in people with high 

cardiometabolic risk. We used genetic variants associated with these exposures at genome-

wide significance (p<5x10-8) and excluded those that were not represented in the COVID-19 

outcome GWAS datasets. Using the LD_clumping function, we pruned the list of candidate 

instruments for linkage disequilibrium (LD; R2>0.01) and discarded variants that were within 1-

Mb distance from other candidate instruments with a stronger association. Aanalyses were 

performed using the R package “twosampleMR” v.4.045,46. 

COVID-19 susceptibility and severity from the COVID-19 Host Genetics GWAS meta-analysis 
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The COVID-19 Host Genetics Initiative is an international genetics collaboration that 

aims to uncover the genetic determinants of outcomes related to COVID-19 susceptibility and 

severity33. To accomplish this, investigators from around the world assembled individual-level 

clinical and genetic data and performed individual GWAS. Summary statistics were shared via 

a cloud-based computing platform, and centralized meta-analysis was performed. Single-

variant association testing were adjusted for age, age2, sex, age*sex, genetic ancestry 

principal components and other study-specific covariates. An allele frequency filter of 0.0001 

and an INFO filter of 0.6 was applied to each study prior to meta-analysis with inverse-

variance weighting. Summary statistics from the third round of GWAS meta-analysis, shared 

publicly on July 2, 2020, were used to test the 17 sets of genetic instruments against COVID-

19 outcomes assembled by the COVID-19 Host Genetics Initiative. 

For our two primary analyses, we selected the COVID-19 outcomes with the largest 

number of cases. For Susceptibility: 1) COVID-19 by RNA PCR, serologic testing, or clinician 

diagnosis by chart review or ICD-coding (6,696) vs. population controls (N=1,073,072) and for 

Severity: 2) hospitalization of patients with COVID-19 by RNA PCR, serologic testing, or 

physician diagnosis (N=3,199) vs. population controls defined as any person who was not a 

case (i.e., people who tested negative, were never tested, or had an unknown testing status; 

N=897,488),As controls were not selected based on testing results, specific characteristics, or 

testing status, they were likely to be representative of the general population. 

To determine whether statistically significant results from the primary analyses were 

consistent across different definitions for COVID-19 susceptibility, severity, and control groups, 

we performed secondary MR analyses of the four remaining available outcomes. For 

Susceptibility: 1) COVID-19 positive by RNA PCR, serologic testing, or clinician diagnosis 

(N=3,523) vs. COVID-19 negative by RNA PCR, serologic testing, or self-report (N=36,634); 2) 

predicted COVID-19 based on symptoms or COVID-19 positive by self-report (N=1,865) vs. no 
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predicted COVID-19 based on symptoms or no COVID-19 by self-report (N=29,174) using a 

model developed by Menni et al. 202047, and for Severity: 3) critical respiratory illness, defined 

by death, intubation, Continuous Positive Airway Pressure (CPAP), Bilevel Positive Airway 

Pressure (BiPAP), Continued external Negative Pressure (CNP), or very high flow positive end 

expiratory pressure oxygen in patients with COVID-19 by RNA PCR or serologic testing 

(N=536) vs. population controls (N=329,391) and 4) hospitalization (N=928) vs. no 

hospitalization within 21 days of testing positive for COVID-19 (N=2,028). 

Mendelian Randomization analysis of COVID-19 susceptibility and severity 

To estimate the causal association of each exposure with each outcome, we performed 

two-sample MR analyses using the random-effects inverse-variance weighted (IVW) method, 

whereby genetic variant-outcome coefficients were modeled as a function of genetic variant-

exposure coefficients weighted by the inverse of the squared genetic variant-outcome standard 

errors48. The use of random effects provides a concise estimation and considers potential 

heterogeneity among estimates from individual variants49. We used p<0.05 / 17 exposures / 2 

outcomes = 0.0015 to declare statistical significance with the understanding that this threshold 

may be conservative as exposures are clinically correlated. We reported causal effect estimates 

as odds ratios for the outcome per log-odds of binary exposures or unit change of continuous 

exposures. For BMI, we repeated the analysis using untransformed variables from UK Biobank 

(http://www.nealelab.is/uk-biobank) to report causal effect estimates per unit change of raw BMI. 

Accounting for pleiotropy  

An assumption of MR is that instruments do not influence the outcome independently of 

the risk factor of interest (i.e. non-mediated pleiotropy). We tested this assumption in a series of 

sensitivity analyses. We used the Weighted Median Estimator (WME)50 which requires ≥ 50% of 
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the contribution to the causal estimate to be from valid instruments; if so, its causal estimate is 

stable. We then used the MR-Egger regression51 whereby a linear regression of variant-

outcome on variant-exposure coefficients was performed without constraining the intercept to 

the origin. The slope of the regression line provides the corrected causal estimates even when 

none of the instruments are valid51. Next, we used the mode-based estimate which is consistent 

when the largest number of similar single-variant MR estimates are derived from valid 

instruments even when the majority are invalid52. If all MR models produce similar causal 

estimates despite making different assumptions on the validity of instruments, we would be 

more confident of the robustness of our results53. In other sensitivity analysis, we applied MR 

pleiotropy residual sum and outlier (MR-PRESSO)54 and leave-one-out analysis to determine 

whether outliers may be biasing the overall causal estimate. To estimate direct and indirect 

causal effects of BMI via obesity-related cardiometabolic diseases, CAD, stroke, CKD, type 2 

diabetes, and CRP, we performed pairwise multivariable MR wherein we conditioned upon the 

effects of these exposures with BMI to simultaneously estimate their independent causal effects. 

RESULTS 

Selection of genetic instruments for exposures  

We obtained genetic instruments for the 17 exposures for MR analyses after excluding variants 

that were in LD (r2>0.01) and in close proximity (1 Mb) to other candidate instruments with 

stronger P-values. Genetic instruments explained between 0.2 to 5.3% of the variance or liability 

of each exposure (Table 1). Contributing studies included in these exposure GWAS meta-

analyses were predominantly of European ancestry.  

Causal effect of each cardiometabolic exposure on COVID-19 susceptibility and severity 

 Of the 17 cardiometabolic exposures, only BMI was found to be causally associated with 
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COVID-19 susceptibility and severity even after accounting for multiple testing (Figure 1). 

Genetically increased BMI was associated with a higher risk of testing positive for COVID-19 

(p=6.7×10−4) and a higher risk of COVID-19 hospitalization (p=8.7×10−4) compared to population 

controls using random effects IVW (Figure 1). For both outcomes, we identified no 

heterogeneity of effects (p=0.52; p=0.49,) or outlying genetic variants by the leave-one-out 

analysis or MR-PRESSO. To obtain interpretable effect estimates, we repeated the analysis 

using beta estimates of raw BMI from UK Biobank55 and found consistent results: odds ratio 

1.08 per kg/m2 increase in BMI (95% CI 1.03, 1.13, p=1.3×10−3 for testing positive with COVID-

19; odds ratio 1.12 per kg/m2 increase in BMI (95% CI 1.04, 1.21, p=1.7×10−3) for COVID-19 

hospitalization. Point estimates from the MR-Egger, WME, and weighted MODE, were in the 

same direction as IVW (Figure 2 and Supplemental Figures 1-6). The MR-Egger intercept p was 

0.49 and 0.24 for susceptibility and severity, respectively, indicating the absence of directional 

pleiotropy. The MR results of the remaining four COVID-19 susceptibility and severity 

outcomes had p>0.001 (Supplemental Table 1). 

 To determine whether the causal effect of BMI was mediated through obesity-related 

cardiometabolic diseases, we performed pairwise multivariable MR of BMI with each of the 

cardiometabolic diseases, type 2 diabetes, chronic kidney disease, coronary artery disease, any 

stroke, and CRP. The direct effects of BMI on the two COVID-19 outcomes were abolished 

upon conditioning on the genetic effects of type 2 diabetes (p>0.05). Adjusting for the genetic 

effects on the other diseases did not attenuate the direct effect of BMI (p<0.05, Supplemental 

Table 2) 

While none of the other cardiometabolic exposures was found to increase COVID-19 

susceptibility or severity, we found a borderline association between having a higher genetic 

predisposition to T1D with a lower risk of testing positive for COVID-19 and hospitalization vs. 

population controls, though the associations were not statistically significant after accounting for 
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multiple testing (Supplemental Table 3). 

 

DISCUSSION 

Cardiometabolic diseases have been identified to be risk factors for COVID-19 illness30.  

Since risk factors may be only correlated, and not causally related, with outcomes of interest, it 

is paramount to assess causality to inform preventive strategies. Using two-sample MR, we 

found that genetically increased BMI was the only risk factor for COVID-19 susceptibility and 

severity among the 17 cardiometabolic diseases and traits tested, whereby the odds of testing 

positive for COVID-19 was 8% higher per kg/m2 increased in BMI and the odds of 

hospitalization with COVID-19 was 12% higher per kg/m2 increase in BMI than the general 

population. Our MR findings support the multiple epidemiologic studies that have reported a 

strong and robust association between obesity and COVID-19 illness13-17. Adjusting for the 

genetic effect of type 2 diabetes obliterated the direct causal effect of BMI, suggesting that type 

2 diabetes may be a mediator in the causal association of BMI and COVID-19 illness. By 

understanding causality, we can aim to modify causal exposures for the purpose of mitigating 

disease risk. 

Apart from BMI, the other cardiometabolic exposures tested are unlikely to play a key 

causal role in contracting COVID-19 or worsening the illness. Observational correlations of 

cardiometabolic conditions with COVID-19 outcomes may be partly due to clinical clustering 

with obesity. It is noteworthy that correlational risk factors can still have clinical utility in 

identifying at-risk patients even if causality is refuted. However, if preventive efforts only target 

correlated, but not causal, risk factors, disease risk may not be reduced. We found a negative 

trend between a higher genetic predisposition for type 1 diabetes and a lower risk of 

hospitalization and testing positive for COVID-19. A negative association with COVID-19 
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outcomes could be observed if people with underlying medical conditions were more likely than 

the general population to undergo testing for COVID-19 and receive a negative test result, made 

concerted efforts at reducing their risk of viral exposure in response to public health messaging, 

or were encouraged by health professionals to recuperate at home and not come to the hospital 

when ill with mild viral symptoms. We could speculate that the autoimmune nature of type 1 

diabetes provides protection compared to the general population. Additionally, it is noteworthy 

that people with T1D, unlike T2D, do not generally have higher BMI than the general population. 

More investigation is needed to further understand the cause of this negative association.  

Our study had limitations. The variances explained in the exposures by genetic 

instruments were modest, though well within the ranges that were typical for complex traits. The 

use of weak genetic instruments could have limited our ability to detect subtle causal 

associations and does not exclude the possibility of modest effects. It is also possible that, with 

larger sample sizes, the association of other cardiometabolic exposures with COVID-19 

outcomes may become significantly significant and confidence intervals would narrow around 

true estimates. Additionally, our analysis did not factor non-linear exposure-outcome 

relationships. The causal estimates by MR-Egger were not as compelling suggesting that 

horizontal pleiotropy or other confounding factors could have biased estimates. Yet, MR-Egger 

is a less efficient estimator than the other methods50 and is generally considered as only one of 

several sensitivity analyses used to evaluate the plausibility of findings. In our primary analyses 

we chose to use controls that were broadly defined as not being a case. Without universal 

testing, the control group, albeit representative of the general population, could have been 

contaminated with people who had contracted COVID-19, particularly those with only mild or no 

viral symptoms (asymptomatic), which would have biases estimates towards the null. 

Nevertheless, our results were consistent when using controls that were narrowly defined as 

people who tested negative for COVID-19.  
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Obesity contributes to higher levels of circulating proinflammatory adipokines and 

cytokines56-61 which may intensify virally induced inflammation,62-69 and could contribute to acute 

respiratory distress syndrome, the main cause of mortality from COVID-1970,71. We did not 

include critical respiratory illness in the primary analysis because the sample size of cases was 

small. When larger samples become available, future MR analyses can be performed to clarify 

whether the causal relationship between BMI and COVID-19 illness extends to critical 

respiratory illness. While contributing studies to the Host Genetics Initiative did not provide 

information on self-reported race or ethnicity, most were presumably European and association 

analyses were adjusted for ancestry PCs. Well-powered studies in people of non-European 

ancestral origins are critically needed to as ethnic and racial minorities in the U.S. are 

disproportionately affected by the pandemic7,11,27,72-74. We recognize that the primary social 

drivers of viral exposure and spread (i.e., crowding within households, wealth and education 

gaps, working in essential jobs that render social distancing challenging, language barriers, and 

poor access to healthcare) are likely correlated with, or are themselves, determinants of 

obesity75,76. Future investigations are required to determine whether addressing these upstream 

social factors mitigates the impact of obesity on COVID-19 outcomes.  

CONCLUSION 

Our study provides genetic evidence that support or refute causality for a plethora of 

cardiometabolic conditions that can inform preventive strategies aimed at modifying risk of 

COVID-19 illness. Among the 17 cardiometabolic exposures tested, only BMI was found to be a 

causal risk factor for COVID-19 susceptibility and severity, which is consistent with multiple 

epidemiologic studies that have reported an association between obesity and COVID-19 illness. 

We conclude that obesity may have amplified the disease burden of the COVID-19 pandemic 

either single-handedly or through its metabolic consequences. To the extent that obesity is a 

modifiable risk factor with a strong environmental component, public health measures that aim 
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to diminish the societal obesity burden could be incorporated into an effective preventive 

strategy for COVID-19 outcomes. Similarly, preventive measures that increase the risk of 

obesity (e.g. limitation of access to open spaces for exercise) should be viewed with caution. 

Future research is required to understand the mechanisms through which obesity increases the 

risk of COVID-19 outcomes, and whether obesity-related conditions are along the causal 

pathway. Our study has shown how large-scale genotype-phenotype summary data rapidly 

assembled during a pandemic and made freely accessible to the research community can 

accelerate research with immediate and direct application to clinical practice and public health 

messaging. 
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FIGURE LEGENDS 

Figure 1. Forest plot causal effect estimates and 95% confidence interval for each exposure 

and the two main outcomes analyzed. Causal estimates are reported as odds ratios per unit of 

the exposure: hemoglobin A1c, A1C: %-unit; fasting glucose, FG: mg/dL; fasting insulin, FI: 

natural log; body mass index, BMI: inverse normally transformed residuals; waist-hip-ratio, 

WHR: inverse normally transformed residuals; c-reactive protein, CRP: rank-based inverse-

normal transformed; low-density lipoprotein, LDL: standardized; high-density lipoprotein, HDL: 

standardized; triglycerides, TG: standardized; systolic and diastolic blood pressure: mmHg: 

eGFR ml min−1 per 1.73 m2; type 1 diabetes, type 2 diabetes, coronary artery disease, chronic 

kidney disease, any stroke: log-odds. 

Figure 2. Sensitivity analyses using other MR methods and results using UK Biobank effect 

estimates. Causal estimates were reported as odds ratios (OR) per unit increase in body mass 

index (BMI). Locke et al.: inverse normally transformed residuals; UK Biobank: kg/m2 
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Table 1. Candidate genetic instruments of cardiometabolic diseases and traits. 
 

Exposure PMID Sample size, 

N 

Ancestry Candidate 

genetic 

instruments, 

N  

Genetic 

instruments 

used in 

analysis, N 

Estimated 

variance 

explained 

(%) 

Type 1 diabetes 25751624 6,808 cases/ 

12,835 

controls 

European 75 50 3.2 

Type 2 diabetes 30297969 898,130 (9% 

cases) 

European 243 226 3.1 

A1C Chen J, 

BioRxiv 

2020 

Up to 281,416 70% 

European 

216 105 2.2 

FG Chen J, 

BioRxiv 

2020 

Up to 281,416 70% 

European 

179 91 1.6 

FI adjusted for 

BMI 

Chen J, 

BioRxiv 

2020 

Up to 281,416 70% 

European 

96 61 1.0 

BMI 25673413 Up to 339,224 Mostly 

European 

75 72 1.7 

WHR adjusted 

for BMI 

25673412 Up to 224,459 Mostly 

European 

53 43 0.8 

CRP 31900758 Up to 418,642 European 439 437 5.3 

LDL 24097068 Up to 188,577 European 65 63 1.9 

HDL 24097068 Up to 188,577 European 54 53 1.8 

Triglycerides 24097068 Up to 188,577 European 39 38 1.3 

Systolic blood 

pressure 

30224653 >1,000,000 European 185 181 1.5 

Diastolic blood 

pressure 

30224653 >1,000,000 European 190 183 1.5 

Creatinine-

based eGFR 

31152163 >1,000,000 Mostly 

European 

547 280 3.3 

Chronic kidney 

disease 

31152163 64,164 

cases/561,055 

controls 

Mostly 

European 

23 21 0.6 

CAD 28714975 10,801 

cases/137,914 

controls 

Mostly 

European 

50 50 0.9 

Any stroke 29531354 67,162 cases 

and 454,450 

controls)  

Mostly 

European 

and East 

Asian 

23 16 0.22 

Where available, we used European-specific effect estimates in the MR analysis. Sample sizes were the 

maximum number indicated in the published manuscript. Estimated variance explained by genetic 

instruments was a sum of estimated variance explained by each variant calculated from reported P-

values, sample sizes, and proportion of cases and controls using the TwoSampleMR R functions 

get_r_from_lor() and get_r_from_pn(). 
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