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Cardioprotection by Klotho through
downregulation of TRPC6 channels
in the mouse heart
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Klotho is a membrane protein predominantly produced in the kidney that exerts some

antiageing effects. Ageing is associated with an increased risk of heart failure; whether Klotho

is cardioprotective is unknown. Here we show that Klotho-deficient mice have no baseline

cardiac abnormalities but develop exaggerated pathological cardiac hypertrophy and remo-

delling in response to stress. Cardioprotection by Klotho in normal mice is mediated by

downregulation of TRPC6 channels in the heart. We demonstrate that deletion of Trpc6

prevents stress-induced exaggerated cardiac remodelling in Klotho-deficient mice. Further-

more, mice with heart-specific overexpression of TRPC6 develop spontaneous cardiac

hypertrophy and remodelling. Klotho overexpression ameliorates cardiac pathologies in these

mice and improves their long-term survival. Soluble Klotho present in the systemic circulation

inhibits TRPC6 currents in cardiomyocytes by blocking phosphoinositide-3-kinase-dependent

exocytosis of TRPC6 channels. These results provide a new perspective on the pathogenesis

of cardiomyopathies and open new avenues for treatment of the disease.
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K
lotho is an antiageing protein predominantly produced in
the kidney and several other tissues including parathyroid
glands and epithelial cells of the choroids plexus1. Mice

homozygous for a hypomorphic Klotho allele (kl/kl) manifest
multiple ageing-related phenotypes including skin and muscle
atrophy, hyperphosphatemia, osteoporosis and vascular
calcification, and die prematurely at around 2–3 months of age.
The full-length Klotho protein is a type-1 membrane protein with
a large extracellular domain of 952 amino acids in human, a
membrane-spanning segment, and a short 11 amino acids
intracellular carboxyl terminus1. Membranous Klotho associates
with fibroblast growth factor (FGF) receptors to form co-
receptors for the ligand FGF23, a bone-derived circulating
hormone that lowers serum phosphate levels by increasing
renal phosphate excretion, suppressing 1,25-dihyroxyvitamin D
synthesis, and decreasing gastrointestinal phosphate absorption2–5.
Klotho-deficient mice have severe hyperphosphatemia due to
defects in the Klotho-FGF23-vitamin D regulatory axis5–7. This
phosphate retention is pivotal for growth retardation and premature
death of Klotho-deficient mice. Dietary phosphate restriction
rescues growth defects and premature death of the mice5–7. The
notion that FGF receptor and Klotho form obligatory co-receptors
for FGF23 is supported by the demonstration that systemic
injection of bioactive FGF23 decreases serum levels of phosphate
in wild–type (WT) mice, but not in Klotho-deficient mice8.

The extracellular domain of Klotho is composed of two
internal repeats, KL1 and KL2, each sharing amino-acid sequence
homology to family 1 glycosidases1. The extracellular domain of
Klotho is shed into the systemic circulation, urine and
cerebrospinal fluid9. In urine, soluble Klotho regulates several
ion transporters in the apical membrane of kidney tubules10–12.
The physiological function of soluble Klotho present in the
systemic circulation is mostly unknown.

The heart responds to injury and stress signals by pathological
growth and remodelling that often progresses to heart failure and
sudden death13. One key regulatory step in the development of
pathological cardiac growth and remodelling is activation of
calmodulin-dependent serine–threonine protein phosphatase
calcineurin by abnormal calcium signalling14. Once activated by
increases in intracellular calcium, calcineurin dephosphorylates
and causes nuclear translocation of nuclear factor of activated T
cells (NFAT) transcription factors, which bind the regulator
regions of cardiac genes and in conjunction with other
transcription factors induce gene expression and promote
hypertrophic growth and remodelling.

Extracellular stimuli increase intracellular Ca2þ levels by
either promoting its release from intracellular organelles or its
entry across the plasma membrane. The TRPC family channels
are Ca2þ -permeable cation channels expressed in the plasma
membrane of many tissues including the heart15. The TRPC
family includes seven members, and is divided into two groups
based on structural and functional similarities: TRPC1/4/5, which
are not sensitive to diacylglycerol (DAG), and TRPC3/6/7, which
are activated by DAG. TRPC2 is not expressed in humans.
Evidence indicates that Ca2þ influx through cardiac TRPC
channels—including TRPC1, 3, 4, 5 and 6—is important in
calcineurin signalling and hypertrophic growth of hearts16–22.
The expression of TRPC1, 3, 4, 5 and/or 6 is increased in hyper-
trophic hearts stimulated by various types or forms of stresses and
their downregulation protects against cardiac hypertrophy. Some
members of TRPC family channels, such as TRPC6, contain
NFAT-responsive elements in their promoters, which have a
pivotal role in amplifying and sustaining gene expression through
a feed-forward circuit16. Thus, TRPC6 is an important modulator
of cardiac hypertrophy and a potential target for treatment.
However, physiological function of TRPC6 in the heart and its

regulation remain poorly understood, limiting therapeutic
strategies for targeting the pathway. Here we show that
soluble Klotho inhibits cardiac TRPC6 channels and protects
the heart against stress-induced pathological hypertrophy and
remodelling.

Results
Klotho deficiency aggravates pathological heart growth. Klotho
expression is decreased in aging, a condition associated with
increased risk for heart failure23,24. We examined the role of
Klotho in protecting the heart using Klotho-hypomorphic mice
rescued by dietary phosphate restriction. To avoid potential
variations caused by strain and gender differences, we studied
male mice congenic for the 129/SvJ background by backcrossing
for 46 generations. As reported previously5–7, dietary phosphate
restriction lowered serum phosphate levels and rescued growth
defects and premature death of Klotho-deficient mice (Supple-
mentary Figs S1 and S2a). Serum levels of sodium, potassium,
chloride, calcium, magnesium and urea nitrogen were not
different between WT and kl/kl mice on a phosphate-restricted
diet (Supplementary Table S1). Phosphate restriction did not
affect the growth of WT mice (Supplementary Fig. S1). Klotho-
hypomorphic mice on low-phosphate diet remained markedly
Klotho-deficient (Supplementary Fig. S2b).

To investigate the potential cardioprotective effect of Klotho,
we measured heart weight indices (heart weight normalized to
body weight or tibia length) as well as the overall heart size in WT
and Klotho-deficient mice. Heart weight indices (Fig. 1a,b) and
the overall heart size measured using magnetic resonance imaging
(MRI) (Fig. 1c) were not different between WT and Klotho-
deficient mice at baseline. Overstimulation by isoproterenol (ISO)
induced pathological hypertrophy in WT mice as reflected by
increase in heart weight indices and the overall heart size, and
these ISO-induced changes were aggravated in Klotho-deficient
mice (Fig. 1a–c). ISO overstimulation is a well-accepted
experimental model of stress-induced cardiac hypertrophy25,26.
Phosphate restriction itself did not alter cardiac responses to
stress, as baseline and ISO-induced increases in heart mass were
not different between WT mice fed normal and phosphate-
restricted diets (Supplementary Fig. S2c).

Pathological cardiac hypertrophy and remodelling are also
characterized by increased (re)expression of fetal genes that are
normally quiescent in adult hearts, including brain natriuretic
peptide (BNP), atrial natriuretic peptide (ANP) and b-myosin
heavy chain (b-MHC)13,14. Consistent with the notion that Klotho
deficiency accelerates ISO-induced pathological cardiac remo-
delling, the expression of cardiac fetal genes was increased by
ISO in WT mice, and such increase in gene expression was
augmented in Klotho-deficient mice (Fig.1d–f). Increased
expression of these cardiac fetal genes is mediated by activation
of the calcineurin-NFAT pathway14. The Trpc6 gene contains
NFAT-responsive elements in the promoter and its expression is
upregulated in several human and rodent models of heart
failure16,17,20. We therefore measured the expression of Trpc6 in
ISO-treated WT and Klotho-deficient hearts. Trpc6 mRNA levels
were increased in WT hearts after ISO treatment (Supplementary
Fig. S3a). For comparison, ISO treatment did not alter the
expression of Trpc6 in other tissues including the blood vessels,
lung, kidney and liver. As was observed for cardiac fetal genes, ISO-
induced increases in Trpc6 mRNA were enhanced in Klotho-
deficient relative to WT mice (Supplementary Fig. S3b). Interstitial
fibrosis is another consequence of pathological cardiac hypertrophy
and remodelling16. Trichrome staining of heart sections revealed
fibrosis in WT hearts after ISO treatment, and Klotho deficiency
worsened ISO-induced cardiac fibrosis (Fig. 1g).
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In support of these results from morphometric and gene
expression studies, functional analysis of hearts using MRI showed
that ISO treatment decreased the ejection fraction of WT hearts,
and Klotho-deficiency markedly aggravated the ISO-induced
decline in the ejection fraction (Fig. 1h). Left ventricular end-
systolic and end-diastolic volumes were markedly increased, and
stroke volumes were decreased in Klotho-deficient mice after ISO
treatment (Supplementary Fig. S4a,b), indicating chamber
dilatation as well as impaired contractility of the left ventricle
(LV). Severe heart failure with lung oedema developed in some
Klotho-deficient mice after ISO treatment (Supplementary Fig.
S4c,d). Thus, Klotho deficiency does not cause baseline cardiac
abnormalities but renders the heart more susceptible to stress-
induced pathological cardiac remodelling.

Klotho attenuates stress-induced cardiac hypertrophy. To fur-
ther corroborate the above experimental data indicating that
Klotho protects the heart against stress-induced cardiac remo-
delling, we examined ISO-induced cardiac changes in transgenic
mice that overexpress Klotho (KL-Tg). These mice live B20–30%
longer than WT littermates, and the circulating level of soluble
Klotho in transgenic mice is B100% higher than WT (B200 pM
in transgenic mice versus B100 pM in WT mice)27. Klotho
overexpression in mice did not cause detectable changes in heart
mass index and the heart size at baseline (Fig. 2a,b), and nor did it
alter the systemic blood pressure (systolic BP: 103±7mmHg and
103±4mmHg, WT versus KL-Tg, n¼ 4 each). Klotho
overexpression yet blunted the ISO-induced cardiac
hypertrophic responses (Fig. 2a,b). Consistent with the notion

that Klotho protects against stress-induced cardiac remodelling,
Klotho overexpression did not alter BNP and Trpc6 mRNA levels
at baseline, but attenuated ISO-induced increases in BNP and
Trpc6 mRNA expression (Fig. 2c,d). It has been reported that
elevated serum FGF23 promotes cardiac hypertrophy28. Because
Klotho and FGF23 work in the same pathway to regulate
phosphate metabolism, we measured serum phosphate and
FGF23 levels. Klotho overexpression in mice did not alter
serum phosphate or FGF23 levels (Fig. 2e,f), indicating that the
cardioprotective effect of Klotho was not mediated by serum
FGF23. As Klotho overexpression mice and control WT
littermates were fed normal phosphate diets, these studies also
exclude the role of dietary phosphate restriction in
cardioprotection by Klotho.

Klotho protects the heart by downregulation of TRPC6. Next,
we investigated the mechanism by which Klotho protects against
stress-induced cardiac hypertrophy and remodelling. We have
observed that Klotho-deficiency aggravated ISO-induced increa-
ses in Trpc6 expression, and conversely Klotho overexpression
attenuated the ISO-induced increases in cardiac Trpc6 mRNA
expression (Supplementary Fig. S3b and Fig. 2d). Inhibition of
cardiac TRPC6 by gene silencing or by dominant-negative
expression of mutant channels confers cardioprotection17,20. We
examined whether Klotho may protect the heart by inhibiting
TRPC6 by crossing Klotho-deficient mice with global Trpc6-
knockout mice29. Mice with global deletion of Trpc6 grow
normally and have no apparent defects in major organ systems at
baseline30. Consistently, we found that the baseline heart mass
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Figure 1 | Klotho-deficient mice display exaggerated ISO-induced cardiac hypertrophy. (a,b) Heart weight/body weight (HW/BW) (a) and heart

weight/tibia length (HW/TL) (b) ratios of WT and homozygous klotho-hypomorphic mice (kl/kl) treated with ISO or vehicle (PBS). Mice were fed a

low-phosphate diet after weaning. At the time of study (B3 months of age), body weight of WT and kl/kl mice were not different (25.1±0.76 g versus

24.2±1.22 g). Also, systemic blood pressure of WT and kl/kl mice were not different (systolic BP: 122±4mmHg versus 119±5mmHg). Data were

mean±s.e.m.; n¼6 for each group. *Po0.01 versus no ISO; #Po0.02 between indicated groups. (c) Magnetic resonance images of WT (n¼ 5) and kl/kl

(n¼4) mice (along the long axis of hearts) before and after ISO treatment. Scale bar, 1 cm. (d–f) Expression of ANP (d), BNP (e) and b-MHC (f) in hearts of

WTand kl/kl mice described in a, measured by quantitative RT–PCR, and normalized to GAPDH. Shown are mRNA levels relative to WTmice without ISO

treatment (which is assigned the value 1). Data were mean±s.e.m.; n¼ 6 for each group. *Po0.01 versus no ISO; #Po0.01 between indicated groups.

(g) Heart sections of mice (a) were stained with Masson’s trichrome (blue is collagen). Magnification was � 200 and � 25 (insets), respectively. Yellow

scale bar, 50mm; white scale bar, 250 mm. (h) Ejection fraction of WT and kl/kl mice (a) calculated based on left ventricular stroke and end-diastolic

volumes measured by MRI (see Supplementary Fig. S4 for measurements). *Po0.01 versus no ISO; #Po0.01 between indicated groups.
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index was not different between mice with global deletion of
Trpc6 and control WT littermates (Fig. 3a). Deletion of Trpc6
partially protected against ISO-induced cardiac remodelling,
but completely prevented the exaggerated ISO-induced cardiac
hypertrophy in Klotho-deficient mice. Consistent with these
results, deletion of Trpc6 attenuated ISO-induced increases
in ANP and BNP mRNA, and abolished the exaggerated
ISO-induced increases in the mRNA in Klotho-deficient mice
(Fig. 3b,c).

We further investigated cardioprotection by Klotho using
transgenic mice that overexpress TRPC6 in hearts. Mice with
cardiac-specific overexpression of TRPC6 develop spontaneous
cardiac hypertrophy and also have heightened sensitivity to
stress-induced hypertrophy16. We crossed mice with cardiac
TRPC6 overexpression with transgenic mice overexpressing
Klotho to create double transgenic mice, and compared the
survival rate, heart mass index and cardiac fetal gene expression
of double transgenic mice with those having cardiac
overexpression of TRPC6 and with WT littermates. Compared
with WT littermates at 24 months of age, cardiac TRPC6-
overexpressing mice had decreased survival and increased heart
mass index and cardiac fetal gene expression without ISO
treatment (Fig. 3d–f). Klotho overexpression tended to improve
the survival of cardiac TRPC6-overexpressing mice, prevented the
increase in heart mass, and markedly diminished the increase in
fetal gene expression induced by overexpression of TRPC6 in
hearts. These studies also support the notion that Klotho protects
the heart by inhibiting cardiac TRPC6.

Soluble Klotho inhibits TRPC6 in isolated cardiac myocytes.
Klotho is not expressed in the heart. We tested the hypothesis
that soluble Klotho present in the systemic circulation mediates
the inhibition of cardiac TRPC6. TRPC6 is activated by DAG15.
We examined TRPC6 channel activity in freshly isolated
ventricular myocytes by whole-cell patch-clamp recording using
stimulation by endothelin-1 (ET1) to release DAG (Fig. 4a).
Ventricular myocytes from WT mice without ISO treatment
showed baseline ET-1-activated TRPC-like currents presumably
mediated by non-TRPC6 channels, as currents were not different
between Trpc6-knockout mice (C6� /� ) and WT littermates
(Fig. 4b). ISO treatment increased TRPC6-mediated currents in
WT hearts (Fig. 4a,b); the role of TRPC6 is supported by the facts
that the increase was eliminated in Trpc6-knockout mice
(Fig. 4b), and identical currents were seen in TRPC6-
overexpressing hearts (Fig. 4a and Supplementary Fig. S5). Cell
capacitance (a measurement of surface area of cells) of ventricular
myocytes was increased in WT hearts after ISO and in TRPC6-
overexpressing hearts (Fig. 4c), supporting the conclusion that
myocyte hypertrophy occurred under these conditions. Klotho
overexpression in mice prevented the ISO-induced increases in
currents (Fig. 4b), and acute addition of soluble Klotho to culture
media decreased TRPC6-mediated currents in myocytes isolated
from WT mice after ISO treatment (Fig. 4d). Similarly, direct
addition of soluble Klotho inhibited the currents in myocytes
isolated from TRPC6-overexpressing mice (Fig. 4e). It is
theoretically possible that Klotho inhibits TRPC6 by decreasing
the production of DAG. However, soluble Klotho decreased
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TRPC6 currents in cardiomyocytes directly activated by
membrane-permeant DAG (Fig. 4f), indicating that it inhibits
cardiac TRPC6 channel function acting downstream of DAG.

Klotho blocks IGF and PI3K-dependent exocytosis of TRPC6.
Because isolated mouse cardiomyocytes cannot be cultured con-
tinuously and the low abundance of endogenous TRPC6 in
hearts, we further investigated the mechanism of regulation by
soluble Klotho using HEK cells expressing recombinant TRPC6
as well as isolated cardiac myocytes. As in cardiomyocytes,
soluble Klotho decreased DAG-activated TRPC6 channels in
HEK cells (Fig. 5a). Soluble Klotho treatment decreased cell
surface abundance of TRPC6 measured by biotinylation assays
(Fig. 5b). Soluble Klotho exhibits sialidase (Sial) activity and
increases cell surface abundance of TRPV5 channels by cleaving
sialic acids in the N-glycans of channels11. The Sial activity of
Klotho is not responsible for the regulation of TRPC6, as purified
Sial had no effect on TRPC6 whereas it stimulated TRPV5
(Fig. 5c,d). The above results also indicate that soluble Klotho
decreases cell surface expression of TRPC6 via a mechanism not
restricted to cardiomyocytes.

The decrease in cell-surface abundance of TRPC6 by soluble
Klotho may be caused by decreased exocytosis and/or increased
endocytosis of the channel. Blocking exocytosis by v-SNARE
inhibitor tetanus toxin31 decreased TRPC6 currents, and
prevented further inhibition by soluble Klotho (Fig. 5e).
Because tetanus toxin completely prevented the effect by
Klotho, the major (if not the sole) action of Klotho on TRPC6

is by blocking exocytosis. Consistent with this notion, we found
that blocking endocytosis using a dominant-negative dynamin
did not affect the ability of Klotho to inhibit TRPC6:
Coexpression with dominant-negative dynamin increased the
basal (that is, without KL) TRPC6 currents, indicating inhibition
of endocytosis of channels, but soluble Klotho decreased TRPC6
currents similarly in cells expressing dominant-negative dynamin
and in cell expressing the control WT dynamin (Fig. 5f).

Phosphoinositide-3-kinase (PI3K)-activating growth factors
increase cell surface abundance of TRPC channels by
stimulating exocytosis32. Soluble Klotho inhibits PI3K signalling
by insulin and insulin-like growth factors (IGF), which
contributes to the antiaging and tumor suppression effects of
Klotho27,33–35. We therefore tested the hypothesis that soluble
Klotho inhibits TRPC6 by interfering with IGF1 activation of
PI3K to promote exocytosis of channels. To allow for studying the
effect of IGF1, we first examined the effect of serum deprivation.
Serum deprivation lowered TRPC6 cell surface abundance and
activities, and prevented the inhibition by soluble Klotho
(Fig. 6a,b). The role of IGF1 is demonstrated by findings
showing that physiological concentrations of IGF1 (10 nM)
reproduced the effect of serum to promote TRPC6 currents and
that soluble Klotho inhibited IGF1-stimulated TRPC6 currents
(Fig. 6c). Moreover, PI3K inhibitor wortmannin decreased
TRPC6 currents stimulated by IGF1, and prevented a further
decrease of TRPC6 by soluble Klotho (Fig. 6d). These results
support the notion that soluble Klotho inhibits IGF1 and PI3K-
dependent exocytosis of TRPC6. Because wortmannin abrogates
its effect, soluble Klotho acts upstream of PI3K.
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Finally, we examined whether soluble Klotho regulates TRPC6
in hearts via the same mechanism. Wortmannin decreased
TRPC6 currents and prevented the inhibition by soluble Klotho
in isolated cardiomyocytes (Fig. 6e). Furthermore, the effect of
wortmannin to decrease cardiac TRPC6 currents and to prevent
further inhibition by soluble Klotho was reproduced by tetanus
toxin, and the effects of wortmannin and tetanus toxin were not
additive (Fig. 6f). Thus, tetanus toxin and wortmannin inhibit
cardiac TRPC6 via the same mechanism; that is, by blocking
exocytosis of channels. Collectively, these data strongly support
the hypothesis that soluble Klotho inhibits TRPC6 by blocking
PI3K-dependent exocytosis of channels (Fig. 7).

Discussion
The data presented in this study provide compelling evidence
indicating that soluble Klotho protects the heart against stress-
induced cardiac hypertrophy and remodelling. Klotho expression
is decreased in aging23, thus decline in circulating soluble Klotho
may contribute to age-related cardiomyopathy in humans. One
consequence of cardiac aging is increased sensitivity to stress-
induced heart failure36 similar to the changes in Klotho-deficient
mice we observed here. Many Klotho-mediated aging phenotypes,
such as vascular calcification, growth defects and premature
death, are attributed to defects in the function of membrane

Klotho as co-receptors for FGF23 and phosphate retention3–8.
Our results indicate that the cardioprotective effect of soluble
Klotho is independent of FGF23 and phosphate metabolism.
First, Klotho overexpression in mice confers cardioprotection
without altering serum phosphate and FGF23 levels. Second,
dietary phosphate restriction normalizes serum phosphate levels
of Klotho-deficient mice to the level of WT mice, excluding
hyperphosphatemia as the culprit of cardiac dysfunction in these
mice. Moreover, deletion of Trpc6 completely prevents
exaggerated stress-induced cardiac hypertrophy and remodelling
in Klotho-deficient mice, indicating that cardioprotection by
Klotho is mediated by downregulation of TRPC6.

TRPC6 is broadly expressed in tissues15,37. Although it is
possible that the effect of Klotho on TRPC6 in other tissues also
contributes to cardioprotection, the following results indicate that
Klotho inhibition of cardiac TRPC6 has a critical role in the
process. First, Klotho ameliorates cardiac hypertrophy and
remodelling induced by heart-specific overexpression of TRPC6,
and Klotho inhibits TRPC6 in isolated cardiomyocytes. Second,
Klotho-deficient mice have no cardiac dysfunction at baseline, but
develop exaggerated cardiomyopathy in response to ISO
treatment. ISO treatment causes upregulation of Trpc6 mRNA
in the heart, but not in other tissues that influence
cardiac function, such as the blood vessels, lung, and kidney.
The effect of Trpc6 deletion to prevent ISO-induced exaggerated
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cardiomyopathy in Klotho-deficient mice is therefore most likely
due to abolition of ISO-induced increases of cardiac TRPC6.

Our findings also have important implications in chronic
kidney disease (CKD), a disease that affects B10% of the general
population38,39. The prevalence of cardiac hypertrophy in
patients of advanced stages of CKD is estimated as high as
90%, and cardiac dysfunction is the main cause of death for the
patients39–41. Klotho is predominantly produced in the kidney,
and circulating levels of soluble Klotho are reportedly decreased
in CKD42,43. Our study supports that decreased levels of
soluble Klotho contribute to the pathogenesis of cardiac
hypertrophy in CKD. Recently, Faul et al. reported that FGF23
stimulates cardiomyocyte growth and increased serum FGF23
contributes to cardiac hypertrophy in CKD28. Interestingly,
FGF23 appears to induce cardiac hypertrophy independently of
stress factors, whereas Klotho deficiency predisposes the heart to
stress-induced pathological hypertrophy. Thus, increased FGF23
and Klotho deficiency may synergistically contribute to cardiac
hypertrophy in CKD by participating at different stages of
pathogenesis.

The physiological role of TRPC6 in hearts is elusive. Its
function appears to be dispensable, as mice with deletion of Trpc6

have no apparent cardiac dysfunction. Consistent with this
observation, we found that TRPC6 channel activity is undetect-
able in hearts at baseline. Overstimulation by ISO leads to
increase in Trpc6 mRNA levels and functional TRPC6 currents in
mouse hearts. Increased expression of cardiac TRPC6 has also
been reported in mouse models of cardiac hypertrophy induced
by calcineurin gene overexpression, by overstimulation by
neuroendocrine hormones including ET-1, phenylephrine and
angiotensin II, by thoracic aortic banding pressure overload, and
in human failing hearts16,17,20. Thus, soluble Klotho protects the
heart by acting on a molecule that is normally quiescent but
activated during stresses.

Mechanistically, we propose that IGFs such as IGF1 provide a
tonic stimulation for exocytosis of TRPC6 via PI3K, and soluble
Klotho exerts a tonic inhibition to the system (model in Fig. 7).
Cardiac stresses increase the intracellular Ca2þ concentration
from multiple mechanisms44. The abnormal intracellular calcium
signalling in the heart activates calcineurin and NFAT to initiate
fetal gene expression and pathological cardiac hypertrophy and
remodelling. TRPC6 contains NFAT-responsive elements in its
promoter and is also upregulated by stress. The increased Ca2þ

influx through TRPC6 causes a feed-forward cycle and further
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amplifies and sustains the process. By placing a brake on the
system, Klotho protects the heart. Conversely, Klotho deficiency
accelerates stress-induced cardiac remodelling. Without stress
signals to upregulate TRPC6, neither Klotho deficiency nor
overexpression in mice affects cardiac function at baseline.

Multiple studies have reported that soluble Klotho inhibits
intracellular signalling by insulin and IGF127,33–35. Kurosu et al.27

first reported that soluble Klotho inhibits insulin and IGF-
mediated activation of PI3K pathway by inhibiting activation of
receptors and repressing activated receptors. This antiinsulin/IGF
effect contributes to aging suppression by Klotho in mice. Wolf
et al. further found that soluble Klotho suppresses the growth of
human breast and pancreatic cancer cells33,34. They also found
that soluble Klotho coimmunoprecipitated with IGF1 receptors,
and suggested that soluble Klotho inhibits the intracellular
signalling by IGF1 at least partly by direct interactions with

receptors33. It was also reported that Klotho prolongs lifespan
and stress resistance in C. elegans by blocking insulin and IGF-
like signalling in worms35. Our results support these previous
reports and extend the antiinsulin/IGF role of Klotho to
cardioprotection. Cardioprotection by Klotho may contribute to
the antiaging effect of Klotho in mice. Activation of PI3K and
downstream Akt signalling cascade in the heart is important for
physiological cardiac growth, but it can also lead to pathological
cardiac hypertrophy13,45. Inhibition of TRPC6 by soluble Klotho
may be a mechanism for preventing PI3K to cause pathological
cardiac hypertrophy in the normal heart. Interestingly, shedding
of soluble Klotho from membranous Klotho is mediated by
metalloproteinases ADAM 10 and 17, and insulin stimulates the
shedding through the PI3K pathway46. Whether the regulation of
shedding of soluble Klotho by insulin/IGF1 has any roles in the
control of cardiac functions awaits future investigation.
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Other TRPC channels including TRPC1, 3, 4 and 5 are also
present in the heart. Increased expression of these channels is also
associated with cardiac hypertrophy induced by pathological
stimuli and downregulation confers the protection17–20. Cardiac
TRPC channels are likely heteromultimers of different TRPC
members15,22,23, which may partly explain why inhibition of
different TRPC channels can confer cardioprotection. The exact
molecular composition and stoichiometry of TRPC channels that
form heteromultimers with TRPC6 in the heart, however,
remains unknown. In this study, deletion of Trpc6 totally
abolishes exaggerated ISO-induced cardiac hypertrophy and
remodelling in Klotho-deficient mice, indicating that inhibition
of TRPC6 alone is sufficient for cardioprotection. Our study yet
does not exclude the possibility that soluble Klotho also exerts
inhibition on other TRPC channels that form multimers with
TRPC6. Of note, Trpc6 deletion only partially blunts ISO-induced
hypertrophy, and other factors besides TRPC6 (such as other
TRPC channels) are also involved in the hypertrophic response to
ISO treatment.

Pharmacological TRPC antagonism is in development as a
potential treatment of cardiac hypertrophy21,22,47. As an
endogenous hormone that may extend human lifespan, soluble
Klotho or its analogues or activators48 may prove to be important
therapeutic agents. The involvement of TRPC6 in multiple
models of cardiac hypertrophy and heart failure16,17,20 and the
ability of Klotho to protect against cardiac hypertrophy induced

by heart-specific overexpression of TRPC6 suggest that Klotho-
based therapeutic strategies may be applicable to diverse cardiac
diseases. TRPC6 is also expressed in the kidney, and systemic and
pulmonary vasculature, and increased TRPC6 function in these
tissues leads to pathologies15,37,49,50. Klotho-based therapeutics
may also be valuable in treating TRPC6-related pathologies in
other organs.

One major unanswered question in the pathogenesis of cardiac
hypertrophy and remodelling is how the heart distinguishes
between overwhelming intracellular calcium transients during
each normal cardiac cycle and the abnormal calcium signalling
induced by stress signals44. Mice with Klotho deficiency or
overexpression have no apparent cardiac abnormalities at
baseline. The selective targeting to the stress-induced abnormal
calcium signalling by Klotho may provide clues to answer this
question in the future.

Methods
General experimental procedures of mice. Klotho-hypomorphic, KL-Tg, Trpc6-
knockout, and TRPC6-Tg (line L16) mice have been described1,16,27,29. Each
mouse line was backcrossed to 129/SvJ mice for 46 generations to achieve
congenic background. For dietary phosphate restriction, mice were fed a purified
diet containing with 0.2% (wt/wt) inorganic phosphate (TD-09073, Harlan Teklad,
Madison, WI) from weaning at B3 weeks of age. Normal phosphate diets contain
0.35% inorganic phosphate. All mice subjected to experiments were males at B3
months of age, unless otherwise specified. Blood pressure was measured in WT,
Klotho-hypomorphic and KL-Tg mice using a tail-cuff sphygmomanometer as
previously described51.

For induction of cardiac hypertrophy, ISO (2mg kg� 1 per day diluted in PBS)
was injected subcutaneously to mice once per day for 10 consecutive days52.
Control mice received PBS injection. At day 11, mice were euthanized and hearts
were isolated. After measurement of weight, a portion of the hearts was snap-
frozen in liquid N2 and saved for RNA isolation, and the remainder fixed and
stored for histology. All animal protocols were approved by the University of Texas
Southwestern Institutional Animal Care and Use Committee.

Real-time quantitative RT–PCR analysis of mRNA. RNA was extracted
from heart samples with trizol (Invitrogen), reverse-transcribed into cDNA
(Taqman reverse transcription reagents, Applied Biosystems-Roche), and mRNA
abundance was analysed by real-time PCR with SYBR-green (iTaq or iQ
SYBR-green Supermix, BioRad). Primers: GAPDH, 50-tgcaccaccaactgcttagc-30,
50-ggcatggactgtggtcatgag-30 ; ANP, 50-gccatattggagcaaatcct-30 , 50-gcaggttcttgaaatcca
tca-30 ; BNP, 50-ccaaggcctcacaaaagaac-30 , 50-agacccaggcagagtcagaa-30 ; b-MHC,
50-ttggatgagcgactcaaaaa-30 , 50-gctccttgagcttcttctgc-30 ; Trpc6, 50-cgctgccaccgtatgg-30 ,
50-ccgccggtgagtcagt-30 .

Histological analysis. Dissected hearts were rinsed in PBS and incubated in
Krebs–Henseleit solution lacking Ca2þ for 30min, and were then fixed in 4%
paraformaldehyde overnight at room temperature. Samples were dehydrated and
stored in 50% ethanol, mounted in paraffin and sectioned. Sections were then
stained with haematoxylin and eosin or with Masson’s Trichrome stain.

Serum collection and measurement. Blood was drawn from mice using retro-
orbital bleeding method. Samples were immediately centrifuged, and supernatant
collected and stored. Serum phosphate and FGF23 levels were measured using a
phosphate assay kit (Stanbio labs, San Antonio, TX) and FGF23 ELISA kit
(Kainos lab, Japan), respectively.

Cardiac MRI. Cardiac MRI of mice was performed in the Mouse MRI Core Facility
of UT Southwestern Medical Center as previously described53. To determine the
LV volume, multiple parallel slices of 1-mm thickness perpendicular to the long
heart axis were imaged. The area of LV of each slice at both end-diastolic and end-
systolic phases was measured using ImageJ software. LV volume was calculated as
the sum of area of all slices at either phase. Stroke volume is the difference between
end-diastolic and end-systolic volumes. Ejection fraction is the percentage of stroke
volume over end-diastolic volume.

Isolation of cardiac ventricular myocyte. Isolation of mouse ventricular myocytes
was performed per established procedure54. Briefly, mice received heparin (100U
per mouse) and anaesthesia. Hearts were quickly removed and perfused retrograde
via the aorta with a solution containing (in mM) 113 NaCl, 4.7 KCl, 1.2 MgSO4,
0.6 KH2PO4, 0.6 Na2HPO4, 10 NaHCO3, 30 taurine, 5.5 glucose, 10 2,3-
butanedione monoxime, 10 HEPES (at pH 7.4) and followed by a solution
containing in addition 1mgml� 1 type 2 collagenase (Worthinton) and
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Figure 7 | Working model for Klotho-mediated inhibition of TRPC6.

Normally, TRPC6 channel activity is undetectable in hearts. Stresses (such

as ISO overstimulation in this study) cause an abnormal intracellular Ca2þ

signalling, which activates calcineurin and NFAT, thereby inducing cardiac

hypertrophy and remodelling, as well as Trpc6 gene expression.

Upregulation of TRPC6 provides a feed-forward loop that amplifies and

sustains the pathological cardiac responses. IGF1 activates PI3K to promote

exocytosis of TRPC6. Soluble Klotho (sKlotho) inhibits IGF1 activation of

PI3K, partly by direct interactions with the receptors. Inhibition of TRPC6 by

sKlotho targeting at IGF1 and PI3K protects the heart from stress-induced

cardiac hypertrophy. Without stress signal to upregulate TRPC6 expression,

sKlotho has no effect on the heart at baseline. PLC, phospholipase C.
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0.1mgml� 1 protease XIV (Sigma). The perfusion solution was maintained at
37 1C and equilibrated with 100% O2. Thereafter, the ventricle was removed,
chopped into small pieces, and further digested in the enzyme solution. After
stopping enzyme digestion by adding 2.5% bovine serum albumin and 0.1mM
CaCl2, the tissue-cell suspension was filtered through a sterilized-gauze sponge,
centrifuged using a tabletop centrifuge at 50g for 1min. The resulting cell pellet was
resuspended in the stopping buffer and [Ca2þ ] titrated to 0.5mM by addition of
100mM CaCl2 stock solution in four steps over 20min. Isolated myocytes were
stored at room temperature until use.

Whole-cell recording. For recording of isolated myocytes, cells were transferred
into a perfusion chamber mounted on an inverted microscope and continually
perfused at the rate of 1mlmin� 1 with bath solution. Whole-cell currents were
recorded under voltage-clamp using an Axopatch 200B patch-clamp amplifier
(Axon instruments Inc., Foster City, CA, USA)55. Voltage protocol consists of
holding at � 40mV and repetitive descending ramp pulses from þ 120 to
� 120mV for 500ms applied every 10 sec. The pipette solution contained (in mM)
9.4 NaCl, 120 CsCl, 1 MgCl2, 3.5 CaCl2, 10 BAPTA, 10 HEPES, 0.2 NaGTP (pH
7.2) (calculated ionized [Ca2þ ]B80 nM) and the bath solution contained 140
NaCl, 5 CsCl, 1 MgCl2, 1.2 CaCl2, 10 glucose, 10 HEPES (pH 7.4). Bath solution
also contained 1 mM of nifedipine and 3mM of NiCl2 to block current flow through
L-type Ca2þ channel and Naþ /Ca2þ exchanger, respectively. The pipette
resistance was B2–3MO when filled with the pipette solution. Whole-cell access
resistance was o10MO. ET-1 (20 nM) was administrated using focal application
method. The distance between the tip of the applicator and myocyte was o50 mm.
Currents were low-pass filtered at 2 kHz and sampled every 0.1ms. Data
acquisition was performed using pClamp9.2 program (Axon Instrument, Inc.) and
analysis using Prism (V3.0) software (GraphPad Software, San Diego, CA, USA).
For whole-cell recording of recombinant TRPC6 channels in HEK cells,
the pipette and bath solution contained (in mM) 120 Cs-aspartate (Cs-Asp),
10 CsCl, 1 MgCl2, 2 MgATP, 5 EGTA, 1.5 CaCl2 (free [Ca2þ ]¼ 70 nM) and 10
CsHEPES (pH 7.2) and 140 NaCl, 5 KCl, 0.5 EGTA and 10 NaHEPES (pH 7.4),
respectively.

Surface biotinylation assay. HEK cells expressing haemagglutinin (HA)-tagged
TRPC6 (in 35-mm culture dish) were incubated with or without soluble Klotho,
washed with 1ml of ice-cold PBS three times, and incubated with 1ml of PBS
containing 1.5mgml� 1 EZ-link-NHS-SS-biotin (Thermo Scientific) for 2 h at 4 1C.
After quenching with glycine-containing PBS for 20min, cells were lysed in a
buffer (150mm NaCl, 50mm Tris–HCl, 5mm EDTA, 1% Triton X-100, 0.5%
deoxycholate and 0.1% SDS) containing protease inhibitor mixture for 30min. For
detection of biotinylated proteins, lysates were precipitated by streptavidin-agarose
beads (Thermo Scientific) for 2 h at 4 1C. Beads were subsequently washed three
times with TBS containing 1% Triton X-100. Biotin-labelled proteins were eluted in
sample buffer, separated by SDS–PAGE, and transferred to nitrocellulose
membranes for western blotting using mouse monoclonal anti-HA antibody
(Sigma-Aldrich; 1:250 dilution) or anti-a-tubulin antibody (Sigma-Aldrich; 1:500
dilution).

Statistical analysis. Statistical comparison was made between control and
experimental groups conducted during the same time period. Each experiment was
repeated at least once at separate times and with similar results. Data are presented
as means±s.e.m. Statistical comparison between two groups of data were made
using two-tailed unpaired Student’s t-test. Multiple comparisons were determined
using one-way analysis of variance followed by Tukey’s multiple comparison tests.
Statistical comparison of Kaplan–Meier cumulative survival curves was made using
‘log-rank’ analysis (http://bioinf.wehi.edu.au/software/russell/logrank/).
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