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Insulin has important vascular actions to stimulate produc-
tion of nitric oxide from endothelium. This leads to capillary
recruitment, vasodilation, increased blood flow, and subse-
quent augmentation of glucose disposal in classical insulin
target tissues (e.g., skeletal muscle). Phosphatidylinositol
3-kinase-dependent insulin-signaling pathways regulating
endothelial production of nitric oxide share striking parallels
with metabolic insulin-signaling pathways. Distinct MAPK-
dependent insulin-signaling pathways (largely unrelated to
metabolic actions of insulin) regulate secretion of the vaso-
constrictor endothelin-1 from endothelium. These and other
cardiovascular actions of insulin contribute to coupling met-
abolic and hemodynamic homeostasis under healthy condi-
tions. Cardiovascular diseases are the leading cause of mor-
bidity and mortality in insulin-resistant individuals. Insulin
resistance is typically defined as decreased sensitivity and/or
responsiveness to metabolic actions of insulin. This cardinal
feature of diabetes, obesity, and dyslipidemia is also a prom-

inent component of hypertension, coronary heart disease, and
atherosclerosis that are all characterized by endothelial dys-
function. Conversely, endothelial dysfunction is often present
in metabolic diseases. Insulin resistance is characterized by
pathway-specific impairment in phosphatidylinositol 3-ki-
nase-dependent signaling that in vascular endothelium con-
tributes to a reciprocal relationship between insulin resis-
tance and endothelial dysfunction. The clinical relevance of
this coupling is highlighted by the findings that specific ther-
apeutic interventions targeting insulin resistance often also
ameliorate endothelial dysfunction (and vice versa). In this
review, we discuss molecular mechanisms underlying cardio-
vascular actions of insulin, the reciprocal relationships be-
tween insulin resistance and endothelial dysfunction, and im-
plications for developing beneficial therapeutic strategies
that simultaneously target metabolic and cardiovascular
diseases. (Endocrine Reviews 28: 463–491, 2007)
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I. Introduction

THE ESSENTIAL ROLE of insulin in regulating glucose
homeostasis led to its discovery approximately 85 yr

ago (1). However, it was not until 1949 that the ability of
insulin to promote glucose uptake was experimentally dem-
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onstrated (2). The biological actions of insulin are mediated
by specific cell surface receptors that were first described in
1971 (3). Insulin receptors are expressed on nearly every cell
in the body, and the molecular cloning of the insulin receptor
in 1985 (4, 5) allowed for investigations into the signal trans-
duction mechanisms underlying insulin action in both cel-
lular and physiological contexts. Over the last 20 yr, great
progress has been made in understanding the signal trans-
duction pathways controlling classical metabolic actions of
insulin to promote glucose uptake in skeletal muscle and
adipose tissue through translocation of the insulin-respon-
sive glucose transporter (GLUT) 4 (6). These studies have
informed more recent investigations into nonclassical car-
diovascular actions of insulin that play an important role in
coupling metabolic and cardiovascular physiology (7). In
insulin-resistant conditions, impairment of shared insulin-
signaling pathways in metabolic and cardiovascular tissues
contributes to reciprocal relationships between insulin resis-
tance and endothelial dysfunction. Multiple independent and
interdependent mechanisms involving glucotoxicity, lipotox-
icity, and inflammation contribute to a vicious synergy between
insulin resistance and endothelial dysfunction that helps to
explain frequent associations between metabolic and cardio-
vascular diseases exemplified by the metabolic syndrome. A
thorough understanding of the cardiovascular actions of insulin
in health and disease has important implications for developing
novel therapeutic strategies to improve metabolic and cardio-
vascular health simultaneously.

II. Insulin-Signaling Pathways Regulating
Cardiovascular Physiology

A. General features of insulin signal transduction pathways

The specific binding of insulin to its cognate cell-surface
receptor initiates activation of complex signal transduction
networks that regulate diverse cellular functions (8, 9). The
insulin receptor (IR), a ligand-activated tyrosine kinase,
phosphorylates intracellular substrates including IR sub-
strate (IRS) family members and Shc that serve as docking
proteins for downstream signaling molecules (10). Tyrosine
phosphorylation of IRS family members at multiple sites
creates Src homology 2 (SH2)-domain binding motifs for
numerous SH2-domain-containing effectors including phos-
phatidylinositol 3-kinase (PI3K) and Grb-2. PI3K is a het-
erodimer composed of a regulatory p85 subunit and a cat-
alytic p110 subunit. PI3Ks have been divided into three
classes. The heterodimeric class IA PI3Ks signal downstream
of tyrosine kinases such as the IR. Multiple isoforms of p85
and p110 exist and consist of p110�, p110�, and p110� cat-
alytic subunit isoforms that bind to the major regulator p85
isoforms, p85�, p55�, and p50� (11). When SH2 domains of
p85 subunit bind to tyrosine-phosphorylated motifs on
IRS-1, this allosterically activates the preassociated p110 cat-
alytic subunit to generate the lipid product phosphatidyl-
inositol 3,4,5-trisphosphate [PI(3,4,5)P3] from the substrate
phosphatidylinositol 4,5-bisphosphate (12). PI(3,4,5)P3 binds
to the pleckstrin-homology domain in 3-phosphoinositide-
dependent protein kinase-1 (PDK-1), resulting in its phos-
phorylation and activation to subsequently phosphorylate

and activate other downstream serine-threonine kinases in-
cluding Akt and atypical protein kinase C (PKC) isoforms
(13, 14). A phosphorylation cascade of serine-threonine ki-
nases downstream from PDK-1 in this PI3K-dependent
branch of the insulin-signaling pathway culminates in many
of the metabolic actions of insulin (Fig. 1). In addition to
PI3K-dependent insulin signaling, another major insulin sig-
naling branch involves tyrosine-phosphorylated IRS-1 or Shc
binding to the SH2 domain of Grb-2 that results in activation
of the preassociated GTP exchange factor Sos (8, 15). This
activates the small GTP binding protein Ras, which then
initiates a kinase phosphorylation cascade involving Raf,
MAPK/extracellular signal-regulated kinase kinase, and
MAPK (8, 16). This MAPK-dependent branch of insulin-
signaling pathways generally regulates biological actions re-
lated to growth, mitogenesis, and differentiation (Fig. 1).
Protein tyrosine phosphatases (e.g., PTP1B) that dephosphor-
ylate the IR and IRS-1 and lipid phosphatases (e.g., SHIP-2
and PTEN) that dephosphorylate PI(3,4,5)P3 play important
roles in negative regulation of insulin-signaling pathways
(17). Insulin signal transduction pathways are arranged in
highly complex networks that include multiple feedback
loops, cross-talk between major signaling branches, and
cross-talk from signaling pathways of heterologous receptors
(18). All of these complexities contribute to the specificity of
insulin signaling and insulin action. In addition, the multi-
functional nature of insulin responses is context dependent
as reflected by the distinct role of insulin-stimulated PI3K/
Akt pathway in promoting normal physiological, but not
pathophysiological cardiac growth (19–21). These studies
suggest that the growth-promoting actions of insulin are not
exclusively mediated by the MAPK pathway. Nevertheless,
one useful conceptual oversimplification is to consider two
major signaling branches: PI3K-dependent pathways that
mediate metabolic actions of insulin and MAPK-kinase-de-
pendent pathways that mediate nonmetabolic mitogenic and
growth effects of insulin (Fig. 1) (7). As described below,
these two major branches of insulin-signaling pathways also
regulate distinct biological functions related to regulation of
cardiovascular homeostasis.

B. Insulin signaling in vascular endothelium regulating
production of NO

Among the most important cardiovascular actions of in-
sulin is the stimulation of increased production of the potent
vasodilator nitric oxide (NO) from vascular endothelium
(22). In endothelial cells, endothelial NO synthase (eNOS)
catalyzes the conversion of the substrate l-arginine to the
products NO and l-citrulline (23). Classical vasodilators in-
cluding acetylcholine stimulate an increase in intracellular
calcium that promotes the binding of calcium/calmodulin to
eNOS. In the presence of a variety of cofactors, this results in
dissociation of eNOS from caveolin-1 with subsequent
dimerization and activation of eNOS (23, 24). The insulin-
signaling pathway in vascular endothelium that regulates
activation of eNOS employs a phosphorylation-dependent
mechanism that is completely distinct, separable, and inde-
pendent from classical calcium-dependent mechanisms used
by G protein-coupled receptors such as the acetylcholine
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receptor (24–27). In recent years, a complete biochemical
signaling pathway leading from the IR to phosphorylation
and activation of eNOS has been elucidated in vascular en-
dothelial cells in primary culture. This pathway requires
activation of the IR tyrosine kinase, which then phosphor-
ylates IRS-1 leading to binding and activation of PI3K; and
subsequent activation of PDK-1, which then phosphorylates
and activates Akt, which directly phosphorylates and acti-
vates eNOS, leading to increased production of NO within
a matter of minutes (Fig. 1) (22, 25, 28, 29).

1. IR tyrosine kinase. In human endothelial cells, IRs are ex-
pressed on the cell surface at a level approximately 10-fold
less than the related IGF-I receptor (IGF-IR) (�40,000 IR and
�400,000 IGF-IR per cell) (22). IGF-IRs and hybrid receptors
(IR/IGF-IR) composed of heterodimers containing an ��-
chain of the IR associated with an ��-chain of the IGF-IR have
low affinity for insulin (30). Physiological concentrations of
insulin (100–500 pm) selectively activate IR and downstream
signaling pathways leading to activation of eNOS, whereas
supraphysiological concentrations of insulin activate IGF-IR
and hybrid receptors (22, 31). The first study directly dem-
onstrating that insulin stimulates production of NO from
endothelial cells used an NO-selective electrode to show that

levels of NO produced in human umbilical vein endothelial
cells (HUVEC) in response to a maximally stimulating con-
centration of insulin are approximately twice those that can
be elicited by IGF-I stimulation (22). Overexpression of wild-
type IRs in HUVEC causes a 3-fold increase in insulin-stim-
ulated production of NO that is not seen in HUVEC trans-
fected with mutant kinase-deficient IRs (28). These data
suggest an essential role for IR tyrosine kinase activity in
activation of eNOS in response to insulin.

2. IRSs. IRS-1 is a major substrate for the IR tyrosine kinase.
Overexpression of wild-type IRS-1 in bovine aortic endothe-
lial cells (BAEC) results in a 3-fold increase in NO production
in response to a maximally stimulating concentration of in-
sulin (determined using the NO-specific fluorescent dye
DAF-2) (29). These results suggest that IRS-1 is capable of
mediating insulin-stimulated activation of eNOS. The rela-
tive contribution of IRS-2 in insulin-mediated NO produc-
tion in endothelial cells is not known. However, overexpres-
sion of IRS-2 in rat fibroblasts cotransfected with eNOS
significantly increases insulin-stimulated NO production
(29). Expression of a mutant IRS-1 (IRS1-F6) that is unable to
bind to the p85 subunit of PI3K inhibits both insulin-stim-
ulated PI3K activity and NO production in endothelial cells

FIG. 1. General features of insulin signal transduction pathways. PI3K branch of insulin signaling regulates glucose metabolism in skeletal
muscle, adipose tissue, and liver while stimulating NO production and vasodilation in vascular endothelium. MAPK branch of insulin-signaling
pathways generally regulates growth and mitogenesis and controls secretion of ET-1 in vascular endothelium.
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(29). Introduction of an IRS-1 antisense ribozyme into endo-
thelial cells substantially reduces insulin-stimulated produc-
tion of NO (29). Taken together, these results suggest that
IRS-1 is a necessary component (and the predominant IRS
family member) of the insulin-signaling pathway leading to
activation of PI3K that then enhances activation of eNOS.

3. PI3K. Downstream from IRS-1, the essential role of PI3K
in mediating insulin-stimulated production of NO is dem-
onstrated in studies where preincubation of HUVEC with
wortmannin (PI3K inhibitor) blocks NO production in re-
sponse to insulin (22, 27). More importantly, overexpression
of a dominant inhibitory mutant of the p85 regulatory sub-
unit of PI3K significantly and substantially inhibits insulin-
mediated production of NO in transfected HUVEC (28). In
addition, PI3K mediates effects of insulin to stimulate in-
creased expression of eNOS in endothelial cells (32, 33). In-
terestingly, inhibition of MAPK-dependent insulin-signaling
pathways may enhance the PI3K-dependent vascular actions
of insulin on eNOS (33, 34).

4. PDK-1. PDK-1 is immediately downstream from PI3K.
Overexpression of wild-type PDK-1 in BAEC results in a
2-fold increase in insulin responsiveness with respect to pro-
duction of NO. Expression of a kinase-deficient PDK-1 mu-
tant significantly blocks insulin-mediated production of NO
(29). These data suggest that PDK-1 is an essential compo-
nent of the insulin-signaling pathway leading to production
of NO in vascular endothelial cells.

5. Akt. Akt is activated in response to phosphorylation by
PDK-1. Akt directly phosphorylates human eNOS at Ser1177

(equivalent to Ser1179 in bovine eNOS), resulting in enhanced
eNOS activity (35). With respect to insulin signaling, the Akt
phosphorylation site on eNOS is absolutely essential for ac-
tivation of eNOS because cells expressing a mutant eNOS
with a disrupted Akt phosphorylation site (alanine substi-
tuted for serine at position 1179) are unable to produce NO
in response to insulin (25). Overexpression of dominant in-
hibitory mutant Akt proteins in HUVEC nearly completely
inhibits production of NO in response to insulin (28). Akt1
is the predominant isoform in the vasculature, and endo-
thelial cells from Akt1 knockout mice have significantly low
levels of active eNOS (36). Therefore, it is most likely that
Akt1 isoform mediates insulin-induced activation of eNOS.
Moreover, pretreatment of cells with the calcium chelator
BAPTA does not inhibit the ability of insulin to stimulate
phosphorylation of eNOS at Ser1179 or enhance eNOS activity
(25). In addition, insulin treatment does not alter intracellular
calcium levels in endothelial cells (27). This suggests that
insulin-stimulated production of NO is calcium-independent
and mediated by activation of Akt1.

6. Role of HSP90. Association of heat shock protein (HSP) 90
with eNOS is critically important for eNOS-mediated NO
production (24). Although insulin-induced eNOS activation
is calcium-independent, insulin stimulates calmodulin bind-
ing to eNOS (26). This requires HSP90 binding to eNOS,
which facilitates insulin-stimulated activation of eNOS me-
diated by phosphorylation of eNOS at Ser1177 by Akt.

Akt is a necessary signaling molecule for insulin-stimu-

lated activation of eNOS. However, activation of Akt per se
is not sufficient for activation of eNOS. For example, treat-
ment of endothelial cells with either insulin or platelet-de-
rived growth factor (PDGF) results in comparable phosphor-
ylation and activation of endogenous Akt. Nevertheless, only
insulin (but not PDGF) treatment results in phosphorylation
and activation of eNOS at the Akt phosphorylation site
Ser1179 with consequent production of NO (22, 25, 26). One
potential mechanism underlying this specificity may be that
insulin (but not PDGF) elicits the formation of a ternary
eNOS-HSP90-Akt complex (26).

7. Role of protein phosphatases. eNOS activity is enhanced by
phosphorylation at Ser1177 and decreased by phosphoryla-
tion at Thr495 (37). The temporal dynamics of phosphoryla-
tion at these regulatory sites involves both kinases and Ser/
Thr phosphatases. For example, PP-2A may specifically
dephosphorylate eNOS at Ser1177, whereas PP-1 has been
implicated in dephosphorylation of eNOS at Thr495 (24, 38).
In endothelial cells, insulin stimulates an acute decrease in
phosphorylation of eNOS at Thr495 while simultaneously
increasing phosphorylation of eNOS at Ser1177 (39). It is pos-
sible that insulin is activating a phosphatase targeting Thr495

while inhibiting a phosphatase targeting Ser1177.

8. Other vasodilators. Prostacyclin (PGI2), a metabolite of ara-
chidonic acid produced by cyclooxygenase-1 in endothelial
cells, is another endothelial-derived vasodilator (40). Insulin
acutely stimulates production of PGI2 from vascular endothe-
lium (41, 42). NO can directly suppress activity of cyclooxy-
genase-1 and decrease both basal and stimulated release of PGI2

(40, 43). However, inhibition of insulin-stimulated NO produc-
tion using N (G)-nitro-l-arginine methyl ester does not prevent
a PGI2 production in endothelial cells (41). This suggests that
insulin has direct actions to stimulate PGI2 production in an
NO-independent fashion. Insulin-signaling pathways regulat-
ing PGI2 production are yet to be elucidated.

C. Insulin signaling in vascular endothelium regulating
production of ET-1 and adhesion molecules

Endothelin-1 (ET-1) is a vasoconstrictor secreted by endo-
thelial cells that opposes vasodilator actions of NO (44).
Recent studies in BAEC and in mesenteric vascular beds have
demonstrated that insulin and other hormones acutely stim-
ulate the secretion of ET-1 using MAPK-dependent (but not
PI3K-dependent) signaling pathways (45–47).

Endothelial expression of cellular adhesion molecules
including intercellular adhesion molecule-1, vascular cell
adhesion molecule (VCAM-1), and E-selectin is critical in
modulating cell-cell interactions between circulating in-
flammatory cells and vascular endothelium. Insulin stim-
ulates increased expression of VCAM-1 and E-selectin on
endothelium using MAPK-dependent, but not PI3K-
dependent, signaling pathways (33). Blockade of PI3K-
dependent pathways enhances the effects of insulin or
vascular endothelial growth factor (VEGF) to increase
expression of these adhesion molecules (33).
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D. Insulin signaling in vascular smooth muscle

1. Production of NO in vascular smooth muscle cells (VSMC). In
the vasculature, bioavailable NO originates mostly from the
endothelium. Endothelial-derived NO diffuses into VSMC
where it activates guanylate cyclase to increase cGMP levels
that evoke vasorelaxation. However, expression of eNOS,
inducible NOS (iNOS), and neuronal NOS mRNA and pro-
tein has been detected in VSMCs in certain contexts (48–55).
This raises the possibility that NO production in VSMCs may
act in an autocrine fashion to regulate vasodilator functions.
In VSMC, insulin increases NOS (eNOS and iNOS) activity
and NO-dependent GMP production (48, 51, 56, 57). VSMCs
express both IR and IGF-IR (58). Physiological concentrations
of insulin stimulate IR autophosphorylation in VSMC and
result in a rapid increase in cGMP levels by activating eNOS
in human VSMCs (51, 56, 59, 60). Likewise, stimulation of
IR/IGF-IR evokes a rapid release of NO in VSMC (as as-
sessed using an NO-selective electrode) (61). Genistein (ty-
rosine kinase inhibitor) and wortmannin (PI3K inhibitor)
both block effects of insulin to stimulate activation of NO in
VSMC, suggesting that the IR tyrosine kinase and subse-
quent activation of PI3K are both necessary for regulation of
eNOS or iNOS by insulin in VSMC (48, 56).

2. VSMC contractility. Insulin attenuates VSMC contractility
by regulating agonist-induced increases in cytosolic calcium
through voltage-sensitive calcium channels and altering the
activity of myosin light chain phosphatases (62–64). This
may be mediated by signaling molecules including Rho ki-
nase and PKC (65–67). RhoA, a small GTP binding protein,
plays a key role in agonist-induced VSMC contraction (68).
Rho activation and membrane localization are regulated by
geranylgeranylation and phosphorylation of Rho (68). Active
RhoA recruits and stimulates ROK-�, which then phosphor-
ylates and inhibits myosin light chain (MLC) phosphatase
leading to an increase in levels of phosphorylated MLC and
heightened vascular tone (69, 70). In VSMCs, insulin acutely
inhibits geranyl-geranyl transferase and decreases mem-
brane levels of RhoA (66). In addition, insulin stimulates
phosphorylation of RhoA at Ser188, which prevents it from
binding to and activating ROK-� (66). These inhibitory ac-
tions of insulin are NO/cGMP-dependent, and may be me-
diated by cGMP-dependent protein kinase 1 (cGKI) � (66, 71).
Moreover, insulin-activated cGKI� interacts with and acti-
vates MLC phosphatase (72). In VSMC, wortmannin (PI3K
inhibitor) (48) and small interfering RNA against Akt (73)
abrogates the effects of insulin on the RhoA/ROK/MLC
phosphatase pathway, whereas expression of constitutively
active Akt up-regulates cGKI�, ROK-�, and MLC phospha-
tase activities (73). Thus, the PI3K/Akt insulin-signaling
pathway in VSMC is likely to mediate decreased
contractility.

3. Calcium flux in VSMC. Treatment of VSMC with insulin
impairs agonist-evoked increases in intracellular calcium
and accelerates the rate of calcium decline by inhibiting cal-
cium influx and stimulating calcium efflux (61, 62, 74–79).
Insulin treatment results in hyperpolarization of membrane
potential (80), stimulation of sodium pumps (81), and acti-
vation of Ca2�-dependent K� channels (82), which all tend

to reduce Ca2� influx via voltage-operated channels (74).
Insulin also activates Ca2�-pumps at the plasma membrane
and sarcoplasmic reticulum to enhance cytoplasmic Ca2�

efflux (79). Treatment of VSMC with genistein and tyrophos-
tin A-23 (tyrosine kinase inhibitors) attenuates these effects,
suggesting that these actions of insulin are mediated by the
IR (83). Inhibition of NOS also inhibits these effects of insulin
on intracellular calcium (60). NO/cGMP is known to increase
activity of sodium pumps (60) and activate Ca2�-dependent
K� channels (84). Moreover, IR/IGF-IR regulates sodium
pumps through signaling by PI3K and atypical PKC-� (85).
Thus, insulin-stimulated pathways involving PI3K/Akt/NO
may help to regulate decreases in intracellular calcium in
VSMC that result in decreased vasoconstrictor tone.

E. Insulin signaling in heart

Insulin regulates metabolism in the heart by modulating
glucose transport, glycolysis, glycogen synthesis, lipid me-
tabolism, protein synthesis, growth, contractility, and apo-
ptosis in cardiomyocytes (86–88). In addition, vasodilator
actions of insulin in coronary vasculature augment myocar-
dial perfusion (89). IRs are expressed at levels of about 10,000
to 100,000 receptors per cardiomyocyte. Oxidation of fatty
acids supplies approximately 70% of the heart’s energy
needs, however glucose and lactate may account for up to
30% of total ATP production. Insulin-stimulated glucose up-
take in cardiomyocytes is mediated primarily by the insulin-
responsive GLUT4. However, in addition to the basal cardiac
glucose uptake mediated by GLUT1, contraction-mediated
GLUT4 translocation to the sarcolemma may contribute sig-
nificantly to myocardial glucose uptake (90). As in other
insulin-sensitive tissues, insulin signaling via PI3K/Akt
pathways plays a key role in cardiac glucose uptake. Insulin-
stimulated activation of Akt also promotes cardiac glycogen
accumulation by simultaneously inhibiting activity of both
glycogen synthase kinase 3 and AMP-activated protein ki-
nase (86, 91). Moreover, in the heart, insulin-stimulated Akt
phosphorylates the transcription factor FOXO-1, which is
known to affect glucose and lipid metabolism (92).

1. Cardiac contractility. Insulin enhances cardiac contractility
in vivo in humans as well as in isolated cardiac muscle (86,
87, 93–95). Myocardial excitation is associated with trans-
membrane movement of extracellular Ca2� into cardiac myo-
cytes through activated Ca2� channels and reverse Na2�/
Ca2� exchange. This influx of Ca2� stimulates additional
release of Ca2� from the sarcoplasmic reticulum via ryano-
dine receptors, which results in myofilament activation and
contraction. Studies in isolated human cardiac myocytes sug-
gest that insulin enhances Ca2� influx through activation of
L-type Ca2� channels and reverse-mode Na2�/Ca2� ex-
change (94, 95). The PI3K inhibitors wortmannin or LY294002
inhibit the inotropic actions of insulin (94–96). The role of Akt
in inotropic actions of insulin has not been directly assessed.
Overexpressing Akt in cardiac myocytes is associated with
increased cytoplasmic Ca2� due to enhanced influx through
L-type Ca2� channels and release from sarcoplasmic reticu-
lum (20, 97). Insulin also enhances myofilament Ca2� sen-
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sitivity (95). Moreover, insulin increases cardiac NO produc-
tion through the PI3K/Akt/eNOS pathway (98), and this
may contribute to inotropic effects of insulin (99). Chronic
overexpression of myocardial Akt (�15-fold) leads to cardiac
dysfunction and heart failure (100), whereas a smaller (�2-
fold) increase in Akt activity/expression associated with ex-
ercise (for 4 wk) is not associated with impaired contractility
(101). These studies suggest that the effects of Akt activation
on cardiac contractility may be dependent on the magnitude
and duration of Akt activation (102).

2. Cardiac growth. The PI3K/PDK-1/Akt branch of insulin-
signaling pathways also plays an important role in devel-
opmental and physiological growth of the heart (19, 87, 88,
103). Downstream from Akt, activation of mammalian target
of rapamycin promotes cardiac growth, whereas suppres-
sion of GSK3� and FOXO helps to regulate cardiomyocyte
size (104, 105). Constitutive overexpression of Akt leads to
cardiac hypertrophy and dysfunction (20, 105). Thus, bene-
ficial effects of Akt on cardiac growth may depend on tem-
poral patterns of Akt activation as well as subcellular local-
ization of Akt (20, 97, 104, 105). Pathological cardiomyocyte
hypertrophy may be regulated by a distinct subset of the
insulin-signaling pathways involving MAPK, p38 MAPK,
and small G proteins Rho and Ras in addition to other sig-
naling pathways. including PI3K/Akt pathway, calcineurin-
nuclear factor of activated T cell pathway, kinases regulating
histone deacetylases, cyclin-dependent kinase-7 and -9, PKC,
and calmodulin kinase (104, 106).

III. Cardiovascular Actions of Insulin

PI3K-dependent insulin-signaling pathways in vascular
endothelium described above regulate vasodilator actions of
insulin, whereas MAPK-dependent insulin-signaling path-
ways tend to promote prohypertensive actions of insulin in
various tissues. Under healthy conditions, the various car-
diovascular actions of insulin exist in a balance that contrib-
utes to cardiovascular homeostasis (Fig. 2).

A. Insulin-stimulated capillary recruitment and blood flow

In humans, iv insulin infusion stimulates vasodilation and
increased blood flow in an NO-dependent fashion (107, 108).
Increases in insulin levels that accompany ingestion of a
mixed meal or a glucose load also increase limb blood flow,
decrease vascular resistance, and increase sympathetic ac-
tivity in some (109–112), but not in other studies (113, 114).
These effects occur at physiological concentrations of insulin
and in a relatively short time (30–60 min). Vasodilator ac-
tions of insulin comprise a spatially and temporally heter-
ogeneous process that occurs in distinct stages (115). First,
dilation of terminal arterioles increases the number of per-
fused capillaries (capillary recruitment) within a few minutes
without concomitant changes in total limb blood flow. This
is followed by relaxation of larger resistance vessels, which
increases overall limb blood flow (maximum flow reached
after 2 h) (116). The overall vasodilator response to insulin is
an integration of enhanced capillary recruitment and ele-
vated total blood flow.

FIG. 2. Cardiovascular targets and actions of
insulin.
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1. Skeletal muscle capillary recruitment. The microvascular unit,
a group of capillaries fed by a single terminal arteriole, is the
smallest functional unit for control of blood flow in skeletal
muscle (117). Dilation of terminal arterioles can produce
“maximal” opening (i.e., recruitment) of downstream depen-
dent capillaries without initially changing total blood flow
(118). Animal studies using isolated hindlimb preparations
and human studies using limb or tissue balance techniques
support the concept that insulin significantly modulates mi-
crovascular perfusion through capillary recruitment (93, 111,
115, 119–133). Insulin-stimulated capillary recruitment was
first studied by Rattigan et al. (122) in rat hindlimb by mea-
suring endothelial metabolism of exogenously infused
1-methylxanthine. Recently, a highly sensitive and specific,
noninvasive technique using ultrasound imaging of skeletal
muscle during microbubble contrast infusion has allowed for
real-time assessment of capillary recruitment in response to
insulin (111, 115, 127, 128, 130). In the hindlimb of anesthe-
tized rats, insulin infusion (steady-state plasma insulin levels
of �600 pm) increases microvascular volume by 1.5-fold after
5–10 min and is maximal (2.5-fold) after 20 min of insulin
infusion (130). Insulin-stimulated capillary recruitment oc-
curs well before changes in total limb blood flow that peak
after 2 h of insulin infusion (130). Upon cessation of insulin
infusion, increases in microvascular volume persist for 15–30
min after insulin concentrations return to basal levels (131).
Pretreatment with N (G)-nitro-l-arginine methyl ester (NOS
inhibitor) attenuates insulin-enhanced capillary volume by
50 to 70%, suggesting that these effects are partially NO-
dependent (129, 130). In addition to effects on endothelium-
derived NO, direct actions of insulin on VSMC, release of
other vasoactive factors, changes in muscle metabolism, and
alterations in sympathetic activity may contribute to insulin-
stimulated capillary recruitment. Consistent with studies in
rats, in deep flexor muscles of the human forearm, local
intraarterial infusion of insulin (arterial plasma levels of
�300 pm) results in a 25% increase in muscle capillary blood
volume (127). Similarly, 1 h after a mixed meal, microvas-
cular volume in human forearm increases by approximately
45% (111). Thus, physiological concentrations of insulin in
both animals and humans rapidly enhance skeletal muscle
capillary recruitment.

2. Limb blood flow. Intravenous infusion of insulin increases
total limb blood flow in a majority (93, 108, 121, 127, 132–150)
but not all (151–156) studies in humans. Increases in bulk
muscle blood flow have been demonstrated at both physi-
ological (108, 132, 134, 135, 137, 140, 143) and supraphysi-
ological (123, 134, 140, 142, 150, 157) concentrations of insu-
lin. Some controversy exists over whether physiological
concentrations of insulin cause significant increases in total
limb flow (147, 158). This may be the result of differences in
subject selection as well as differences in physical fitness,
muscularity, endothelial function, and capillary density of
study subjects. Technical limitations or differences in sensi-
tivity of various experimental approaches for estimating
limb blood flow (e.g., plethysmography, thermodilution,
positron emission tomography, dye dilution, Doppler ultra-
sound, and ultrasound measurements of brachial or femoral
artery diameter) may also contribute to conflicting reports

(140, 159, 160). Nevertheless, the preponderance of experi-
mental evidence in humans suggests that physiological con-
centrations of insulin increase total limb blood flow, albeit
with a slower time course than capillary recruitment. It re-
mains unclear whether changes in capillary recruitment and
total blood flow are independent or functionally coupled.

Insulin-induced vasodilation does not depend on concom-
itant changes in carbohydrate metabolism (108). Scherrer et
al. (139) and Steinberg et al. (107) were among the first to
provide compelling evidence that NO mediates the vasodi-
lator actions of insulin. Coinfusion of L-NMMA (NOS in-
hibitor) during steady-state hyperinsulinemia under eugly-
cemic conditions abrogates insulin-induced increases in
blood flow in the leg (107) and forearm (139). Insulin also
increases NOx (nitrate/nitrite, stable oxidative end-products
of NO) release from the leg (161). Furthermore, a significant
2-fold increase in NOS activity (without significant changes
in NOS protein content) is observed in human skeletal mus-
cle in response to insulin stimulation (determined by biopsy
of vastus lateralis) (162).

B. Vasoconstrictor actions of insulin

In addition to vasodilator actions of insulin discussed
above, opposing hemodynamic actions of insulin include
activation of the sympathetic nervous system and stimula-
tion of secretion of the vasoconstrictor ET-1 from vascular
endothelium.

1. Role of sympathetic nervous system. In humans, the role of the
sympathetic nervous system to mediate vasoconstriction in
the integrated hemodynamic response to insulin has been
reviewed in detail previously (163). In healthy lean individ-
uals, physiological concentrations of insulin increase venous
catecholamine levels and sympathetic nerve activity (135,
156, 164). In addition, insulin infusion augments centrally
mediated sympathetic outflow to skeletal muscle in humans
and rats (163, 165). The classical observation that insulin
decreases arterial pressure in patients with autonomic failure
highlights the role of insulin-induced sympathetic vasocon-
striction in normal individuals (166). Indeed, in people who
have undergone regional sympathectomy, NO-dependent
vasodilation in response to insulin in the denervated limb
occurs more quickly than in the innervated limb (167). This
suggests that heightened sympathetic vasoconstrictor tone
stimulated by insulin opposes the vasodilator actions of in-
sulin mediated by NO. In animal models, the cholinergic
system may also be involved in mediating vasoactive actions
of insulin (168). However, in humans, neither cholinergic nor
�-adrenergic pathways seem to be involved in modulating
vasodilator actions of insulin (138). Under conditions of the
euglycemic hyperinsulinemic glucose clamp, the rise and fall
in peak muscle sympathetic activity temporally lags behind
the rise in plasma insulin concentrations. This may reflect the
time required for insulin to redistribute and cross the blood-
brain barrier as well as the activation/inactivation kinetics of
cellular events that trigger an increase in nerve activity (135).
Of note, in rats, differential hypothalamic activation of PI3K
and MAPK has been demonstrated in the regional sympa-
thetic responses to insulin (165). Insulin-induced release of
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NO may oppose sympathetically mediated vasoconstriction
at the level of the myocyte as well as in the central nervous
system. In proximal and distal arterioles regulating total
blood flow and capillary recruitment, respectively, smaller
vessels are associated with increased sensitivity to insulin-
mediated vasodilation. However, in the face of elevated sym-
pathetic nerve activity, distal arterioles vasodilate in re-
sponse to insulin, whereas proximal arterioles undergo
sustained vasoconstriction (169). Thus, various parts of the
vascular tree have a differential response to insulin (149, 170)
and sympathetic nerve activity (169).

2. Role of ET-1. In addition to production of NO, insulin
regulates synthesis and secretion of ET-1 from vascular en-
dothelium. Consequently, in mice with targeted deletion of
the IR in vascular endothelium [vascular endothelium IR
knockout (VENIRKO) mice], expression of both eNOS and
ET-1 is significantly diminished (171). In humans, the effects
of insulin to change circulating levels of ET-1 are unclear
(172–174). However, because ET-1 is a paracrine factor,
plasma concentrations are less relevant than local concen-
trations and do not predict ET-1 activity in the vascular
milieu (44). Supporting this concept, vasodilator actions of
insulin are potentiated by ET-1 receptor blockade in animals
(175) and humans (176). Consistent with the MAPK depen-
dence of insulin-stimulated secretion of ET-1 in vascular
endothelium, inhibition of MAPK blocks vasoconstrictor ef-
fects of insulin in rat skeletal muscle arterioles (177). A shift
in balance between vasoconstrictor and vasodilator actions
of insulin mediated by pathway-specific impairment in PI3K
signaling may be an important factor in the vascular patho-
physiology of insulin resistance and endothelial dysfunction.

C. Effects of insulin on blood pressure

As discussed above, insulin has opposing vasodilator and
vasoconstrictor actions such that the net hemodynamic effect
of insulin on blood pressure is minimal in healthy humans.
Indeed, short-term insulin infusion under isoglycemic con-
ditions modestly decreases (157) or has no effect on arterial
blood pressure (108, 119, 135, 178–180). In these studies, iv
insulin infusion significantly increases heart rate and cardiac
output and decreases total peripheral resistance. However,
the fall in systemic vascular resistance is modest (�15%)
when compared with the reduction in leg vascular resistance
(�40%), suggesting a differential and specific effect of insulin
to dilate skeletal muscle vasculature (119). By contrast, with
iv insulin infusion, intraarterial infusion of insulin does not
change (150, 155, 176, 181–183) or minimally increases limb
blood flow (123, 146, 184). This is most likely because insulin
simultaneously stimulates both NO production and ET-1
secretion. In the presence of ET-1 receptor blockade, intraar-
terial insulin infusion causes measurable vasodilation (176).

Acute infusion of insulin also promotes sodium retention
by enhancing distal tubular sodium reabsorption in normal
and insulin-resistant individuals (185, 186). However, pro-
longed hyperinsulinemia during euglycemic glucose clamp
conditions results in compensatory natriuresis due to dimin-
ished proximal tubular sodium reabsorption and increases in
renal plasma flow and glomerular filtration rate in healthy

individuals (187, 188). Due to the small effects on sodium
retention and compensatory natriuresis, it is unlikely that
renal actions of insulin play an important role in modulating
blood pressure acutely.

D. Regulation of cardiac function by insulin

Due to high basal oxygen extraction, cardiac oxygen de-
mand is a dominant determinant of myocardial blood flow
(MBF). The coronary microcirculation is a major contributor
to coronary vascular resistance and MBF. In the setting of
increased myocardial oxygen consumption, myocardial hy-
peremia is initially associated with increased capillary blood
flow velocity and followed by capillary recruitment (189). As
previously discussed, insulin action in the endothelium and
the vascular wall modulates hemodynamics through
changes in both flow and capillary recruitment. Consistent
with this, accumulating evidence suggests that insulin en-
hances MBF in the heart (89, 190–195). In addition, insulin
increases cardiac contractility resulting in increased myo-
cardial work and oxygen consumption (93). Because MBF
and myocardial oxygen consumption are tightly coupled and
regulated, it is difficult to evaluate direct actions of insulin
on the coronary vasculature in vivo. One approach used to
address this issue is to evaluate effects of insulin under
conditions in which MBF and oxygen consumption are un-
coupled by simultaneous infusion of adenosine. Under these
circumstances, physiological concentrations of insulin en-
hance adenosine-stimulated MBF and coronary flow reserve
in humans (89, 190, 191). Similarly, physiological hyperin-
sulinemia in healthy subjects increases MBF, specifically in
areas of the myocardium associated with high rates of glu-
cose uptake (192). This suggests coupling between metabolic
and vascular actions of insulin in the heart. As observed in
human skeletal muscle, ingestion of a mixed meal enhances
capillary recruitment in the heart (196). However, meals
evoke a complex neuroendocrine response in addition to
changes in plasma insulin that may independently influence
cardiac hemodynamics. In fact, ingestion of a mixed meal is
associated with an increase in left ventricular ejection frac-
tion and contractility that may augment MBF independent
from the effects of insulin (197). Therefore, meal-induced
increases in MBF cannot be solely attributed to effects of
insulin. Nevertheless, concomitant infusion of insulin along
with a meal further enhances myocardial capillary recruit-
ment, suggesting that insulin does have some direct effects
to increase flow in the myocardial capillary bed (194).

E. Role of insulin to couple hemodynamic and
metabolic physiology

Studies in animals and humans suggest that insulin-stim-
ulated increases in skeletal muscle capillary recruitment and
blood flow play an important physiological role in augment-
ing the delivery of insulin and glucose to skeletal muscle.
Glucose delivery to skeletal muscle is dependent on muscle
blood flow and vascular capillary surface area and perme-
ability. When capillary surface area and permeability are
small, increasing blood flow per se has a minimal effect on net
glucose uptake (198, 199). However, after a mixed meal or an
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oral glucose load, recruitment of capillaries expands the cap-
illary surface area and increases muscle blood flow, which
together substantially increase glucose and insulin delivery
(111, 148). Changes in insulin-mediated capillary recruitment
are positively correlated with changes in insulin-stimulated
glucose disposal (130). The time course for insulin-stimu-
lated capillary recruitment approximates the time course for
insulin-mediated glucose uptake in skeletal muscle (130).
Moreover, inhibitors of NOS that block insulin-mediated
capillary recruitment cause a concomitant 40% reduction in
glucose disposal (129, 130). In human studies, under condi-
tions of high glucose extraction, insulin stimulates parallel
increases in leg glucose disposal and blood flow in a dose-
dependent manner (109, 136, 200, 201). Although the time
course of increases in leg blood flow during physiological
hyperinsulinemia is slower than that for glucose uptake, it
generally follows leg glucose uptake. Infusion of the com-
petitive NOS inhibitor, N (G)-nitro-l-arginine methyl ester,
completely blocks the effect of insulin to increase flow and
partially blocks insulin-stimulated leg glucose uptake (134,
136). Thus, in addition to direct PI3K-dependent metabolic
actions of insulin to promote glucose uptake in skeletal mus-
cle through stimulating translocation of insulin-responsive
GLUTs, the PI3K-dependent vascular actions of insulin to
increase blood flow and capillary recruitment substantially
contribute to promoting glucose disposal under healthy con-
ditions and help to couple metabolic and hemodynamic ho-
meostasis (Figs. 1 and 2).

IV. Reciprocal Relationships between Insulin
Resistance and Endothelial Dysfunction

A. Pathway-selective insulin resistance

A key feature of insulin resistance is that it is characterized
by specific impairment in PI3K-dependent signaling path-
ways, whereas other insulin-signaling branches including
Ras/MAPK-dependent pathways are unaffected (202, 203).
This has important pathophysiological implications because
metabolic insulin resistance is usually accompanied by com-
pensatory hyperinsulinemia to maintain euglycemia (Fig. 3).
In the vasculature and elsewhere, hyperinsulinemia will
overdrive unaffected MAPK-dependent pathways leading to

an imbalance between PI3K- and MAPK-dependent func-
tions of insulin (45). Prohypertensive effects of insulin to
promote secretion of ET-1, activate cation pumps, and in-
crease expression of VCAM-1 and other adhesion molecules
are under the control of MAPK-signaling pathways. In en-
dothelium, decreased PI3K signaling and increased MAPK
signaling in response to insulin may lead to decreased pro-
duction of NO and increased secretion of ET-1 characteristic
of endothelial dysfunction. Thus, antihypertensive effects of
insulin to stimulate production of NO are reduced under
conditions of insulin resistance. At the same time, insulin-
resistant patients have elevated plasma ET-1 levels, and hy-
perinsulinemia increases ET-1 secretion in humans (173).
Pharmacological blockade of ET-1 receptors (ET-A isoform)
improves endothelial function in obese and diabetic patients
but not in lean insulin-sensitive subjects (204, 205).

A recent in vitro model of metabolic insulin resistance with
compensatory hyperinsulinemia provides support for the
concept that pathway-specific insulin resistance contributes
to the pathophysiology of endothelial dysfunction (33). Si-
multaneous treatment of endothelial cells with wortmannin
(PI3K inhibitor) and high insulin levels blunts PI3K-depen-
dent effects of insulin such as induction of eNOS expression
and production of NO. Of note, under these conditions, in-
sulin signaling through Ras/MAPK pathways is substan-
tially enhanced beyond that observed in the absence of wort-
mannin. This leads to increased prenylation of Ras and Rho
proteins via the MAPK pathway and enhanced mitogenic
responsiveness of cells to insulin and VEGF that are known
to contribute to proliferation of vascular smooth muscle cells.
In addition, up-regulation of endothelial cellular adhesion
molecules VCAM-1 and E-selectin and increased rolling in-
teractions of monocytes with endothelial cells is observed.
Thus, compensatory hyperinsulinemia in the presence of
metabolic insulin resistance with pathway-specific impair-
ment of PI3K in endothelium and vascular smooth muscle
cells leads to enhanced mitogenic actions of insulin through
MAPK-dependent pathways that may contribute to key early
events in the pathogenesis of hypertension. As discussed
below, some mechanisms underlying insulin resistance also
contribute independently to endothelial dysfunction. Proin-
flammatory signaling stimulated by glucotoxicity and lipo-
toxicity in dysmetabolic states contributes to shared mech-

ET-1 SNS Activity NO

VasodilationVasoconstriction

Sodium Reabsorption
Cation Pump Activation

Insulin

Compensatory 
Hyperinsulinemia

Insulin Resistance Insulin Resistance

Salt sensitivity

FIG. 3. Pathway-selective insulin resistance in PI3K sig-
naling creates imbalance between prohypertensive and an-
tihypertensive vascular actions of insulin exacerbated by
compensatory hyperinsulinemia. SNS, Sympathetic ner-
vous system.
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anisms of insulin resistance and endothelial dysfunction. The
molecular and cellular mechanisms that mediate insulin re-
sistance and endothelial dysfunction are multiple and reflect
complex interactions between inflammatory and metabolic
pathways (Fig. 4).

B. Lipotoxicity

Insulin-resistant states are characterized by inappropri-
ately high circulating levels of free fatty acids (FFA). Insulin
resistance in adipocytes leads to increased activity of hor-
mone-sensitive lipase resulting in breakdown of triglycer-
ides and release of FFAs that contribute to metabolic insulin
resistance (206–208). Magnetic resonance spectroscopy stud-
ies demonstrate that mitochondrial dysfunction associated
with accumulation of intramyocellular lipids may contribute
to the accompanying insulin resistance in skeletal muscle
(206, 209). Exposure of the vasculature, myocardium, and
skeletal muscle to high levels of FFA initiates multiple cel-
lular processes including impaired insulin signaling (210,

211), oxidative stress (212, 213), alterations in local renin-
angiotensin system (RAS) (214), and enhanced VSMC ad-
renergic sensitivity (215). All of these factors contribute to
cardiac, vascular, and metabolic insulin resistance (208).

1. Impaired insulin signaling. Treatment of vascular endothe-
lial cells with FFA reduces basal and insulin-stimulated
eNOS activity and NO production (211). Moreover, FFA
treatment impairs insulin-stimulated activation of PI3K,
PDK1, Akt, and eNOS (211). These effects of FFA are specific
to insulin because FFA treatment does not alter the ability of
VEGF to stimulate the PI3K/Akt/eNOS pathway. This im-
pairment in insulin signaling in the endothelium caused by
FFA treatment is similar to that observed in skeletal muscle.
Exposure to FFA increases cellular levels of diacylglycerols,
ceramide, and long-chain fatty acyl coenzyme A (CoA).
These lipid metabolites activate serine kinases such as PKC
and inhibitory kB kinase (IKK�) that regulate activation of
nuclear factor-�B (NF-�B), a transcription factor associated
with inflammation (216). Interestingly, activation of PKC�1

FIG. 4. Shared and interacting mechanisms of glucotoxicity, lipotoxicity, and inflammation underlie reciprocal relationships between insulin
resistance and endothelial dysfunction that contribute to linkage between metabolic and cardiovascular diseases. Left, Parallel PI3K-dependent
insulin-signaling pathways in metabolic and vascular tissues synergistically couple metabolic and vascular physiology under healthy conditions.
Right, Parallel impairment in PI3K-dependent insulin-signaling pathways under pathological conditions contributes to synergistic coupling of
insulin resistance and endothelial dysfunction. CHD, Coronary heart disease; DAG, diacylglycerol.
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and -�2 isoforms results in increased serine phosphorylation
of IRS-1 that leads to reduced insulin-stimulated Akt and
eNOS activities (217). Likewise, palmitate activates IKK� and
Jun N-terminal kinase (JNK), which increases serine phos-
phorylation of IRS-1 and decreases insulin-stimulated pro-
duction of NO (218). Inhibitory effects of FFA treatment on
insulin signaling and NO production in endothelial cells can
be blocked by overexpression of a dominant inhibitory mu-
tant of IKK�. Moreover, deleterious effects of FFA treatment
on endothelial cells are recapitulated by overexpression of
wild-type IKK�. Treatment of endothelial cells with FFAs
up-regulates expression of the lipid phosphatase PTEN, a
negative regulator of PI3K-dependent signaling (211). These
same cellular signaling pathways are impacted by FFA in the
heart (219). In cardiomyocytes, FFA treatment is associated
with reduced PI3K/Akt activity, resulting in diminished in-
sulin-stimulated glucose uptake (220), eNOS activation, and
contractile function (92). In addition to effects on insulin
signaling, long-chain acyl-CoA esters directly stimulate
opening of ATP-sensitive potassium (KATP) channels leading
to K� efflux, shortened action potentials, reduced Ca2� in-
flux, and decreased contractile force (221). In coculture stud-
ies of adipocytes and cardiomyocytes, adipocyte-derived fac-
tors directly depress intracellular systolic Ca2� peaks and
cardiac contraction (222). Moreover, intracellular fatty acid
accumulation is associated with local generation of TNF-�,
which is known to inhibit cardiac contraction (219).

2. Oxidative stress. FFAs increase reactive oxygen species
(ROS) production in the vasculature. Two primary sources of
ROS in the vasculature are nicotinamide adenine dinucle-
otide phosphate (NADPH) oxidase (213) and the mitochon-
drial electron transport chain (212). Insulin treatment de-
creases FFA-induced ROS production in a PI3K-dependent
manner. This suggests that specific impairment of PI3K sig-
naling may accentuate FFA-evoked oxidative stress (212).
Reduction in eNOS activity due to FFA is reversed by pre-
venting fatty acid oxidation, uncoupling oxidative phos-
phorylation, or scavenging locally increased superoxide pro-
duction. In addition, FFA-associated ROS production
enhances PKC activity, activates the hexosamine biosyn-
thetic pathway, and increases formation of advanced glyca-
tion end-products (AGEs). All of these mechanisms may
independently contribute to inhibition of insulin-stimulated
NO production in vascular endothelium (212). The increased
mitochondrial superoxide generation was shown to inhibit
PGI2 activity by nitration. Consistent with these in vitro stud-
ies, in vivo exposure to high concentrations of FFA reduced
eNOS and PGI2 activity in the aorta. Administration of an-
tilipolytic agents or ROS scavengers (superoxide dismutase
mimetics) to rodents with PI3K pathway-specific insulin re-
sistance normalized the impaired eNOS and PGI2 activity
(212). In addition, PKC-dependent activation of NADPH ox-
idase has been demonstrated in endothelial and VSMCs ex-
posed to FFA (213). Superoxide may react with NO, gener-
ating peroxynitrite and reducing NO bioavailability.
Peroxynitrite in turn can oxidize tetrahydrobiopterin, “un-
couple” eNOS, nitrate and inhibit PGI2, and alter NO/cGMP
signaling in VSMCs by altering the expression of soluble
guanylyl cyclase (sGC) and by inhibiting the activity of the

sGC and cGKI (223). Furthermore, arterial content of eNOS
dimers is significantly reduced in a rodent model of high-
fat-diet-induced obesity and diabetes (224). This reduction in
eNOS dimerization was associated with an increase in ni-
trotyrosine content, suggesting that oxidative stress may
have contributed to eNOS disruption and endothelial dys-
function. Interestingly, insulin-stimulated eNOS phosphor-
ylation was unaltered and does not appear to contribute to
endothelial dysfunction in this model of diabetes. However,
in a similar rodent model of high-fat-induced diabetes, in-
sulin-mediated vasorelaxation is significantly reduced (225).
Indeed, a high-fat meal is associated with elevated circulat-
ing levels of nitrotyrosine in insulin-resistant individuals
(226). ROS production due to “uncoupled” eNOS in circu-
lating endothelial progenitor cells is significantly increased
in patients with diabetes (227). In summary, impaired phos-
phorylation, activity, expression, and “uncoupling” of eNOS
may all act in concert to mediate FFA-provoked endothelial
dysfunction.

3. Altered sympathetic activity and the RAS. Elevated FFAs sec-
ondary to lipid infusion in healthy individuals are known to
increase sympathetic nerve activity, plasma catecholamine con-
centrations (228, 229), vascular �-adrenergic reactivity (215),
and local RAS activity (214). These changes may counteract
vasodilator actions of insulin and potentiate vasoconstriction,
resulting in enhanced vascular tone in insulin-resistant states.

4. Effects of lipotoxicity on cardiovascular function. FFAs con-
comitantly reduce insulin’s vasodilator and metabolic ef-
fects. Infusion of intralipids in rats raises circulating FFA
levels causing significant impairment in skeletal muscle cap-
illary recruitment with a concomitant 40% decrease in glu-
cose disposal during a glucose clamp procedure with steady-
state plasma insulin levels of approximately 600 pm (230).
Likewise, the effects of insulin on capillary recruitment and
glucose uptake are impaired when FFA levels are increased
in healthy lean women (231). Moreover, when FFA levels are
lowered in obese women, vasodilator actions of insulin are
improved, suggesting that insulin’s microvascular and met-
abolic effects may be coupled during changes in exposure to
FFAs. In fact, changes in capillary recruitment account for
30% of the association between changes in FFA levels and
changes in insulin-mediated glucose uptake (231). Infusion
of a lipid emulsion in conjunction with heparin to elevate
circulating FFA concentrations simultaneously decreases
glucose uptake and attenuates insulin-induced increases in
leg blood flow and NO flux (161, 208), with significant cor-
relations between FFA-induced changes in glucose uptake
and FFA-induced decreases in leg blood flow. Thus, vascular
and metabolic actions of insulin are tightly coupled such that
impairment of the PI3K/Akt pathway by FFAs in the vas-
cular wall contributes to insulin resistance in skeletal muscle.
FFAs also induce cardiac insulin resistance. Six weeks of
high-fat feeding in dogs induces systemic insulin resistance
and decreased coronary hyperemia in response to exercise
(232). This suggests direct lipotoxic effect(s) on cellular mech-
anisms that mediate metabolic coronary vasodilation and
may explain diminished cardiac flow reserve in insulin-re-
sistant individuals with dyslipidemia.
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C. Glucotoxicity

Long-term glycemic control is an important predictor of
both micro- and macrovascular disease (233–236). Hyper-
glycemia impairs both metabolic and vascular actions of
insulin by multiple biochemical and cellular mechanisms
(237–239). These include elevated oxidative stress, increased
flux through polyol and hexosamine biosynthetic pathways,
formation of AGEs, and activation of diacylglycerol and
PKC.

1. Oxidative stress. Hyperglycemia increases the production of
ROS. In endothelial cells exposed to high glucose concen-
trations, insulin-stimulated activation of Akt and eNOS is
significantly reduced (240, 241). Overexpression of uncou-
pling protein-1 or manganese superoxide dismutase pre-
vents these inhibitory effects of glucose and restores vaso-
dilator actions of insulin (240). In addition to impairing
insulin-signaling pathways, ROS decreases NO bioavailabil-
ity, reduces cellular tetrahydrobiopterin levels, and pro-
motes generation of superoxide by eNOS. ROS also activates
PKC-�, PKC-�, and PKC-�, leading to decreased expression
of eNOS and increased expression of ET-1, VEGF, and TGF-�
in endothelial cells (237).

2. Hexosamine biosynthetic pathway. Increased flux through the
hexosamine biosynthetic pathway is another mechanism by
which hyperglycemia may impair both metabolic and vascular
actions of insulin (237, 242). Glutamine:fructose-6-phosphate
amidotransferase (GFAT) is the rate-limiting enzyme for this
pathway. Overexpression of GFAT in transgenic mice causes
insulin resistance (243). The hexosamine biosynthetic pathway
may function as a nutrient sensor that plays a role in insulin
resistance and vascular complications by causing reversible
O-GlcNAc modifications at regulatory serine/threonine phos-
phorylation sites on proteins involved with insulin signaling.
For example, increased O-GlcN acylation of IRS-1 may lead to
reduced insulin-stimulated translocation of GLUT4 and de-
creased glucose uptake (244, 245). In endothelial cells, hyper-
glycemia increases O-GlcN acylation of eNOS at the Akt phos-
phorylation site at Ser1179, resulting in impaired eNOS activity.
These defects are reversed by decreasing GFAT expression
(240).

3. AGEs. AGEs are proteins or lipids that become nonenzy-
matically glycated and oxidized after contact with aldose sug-
ars (246, 247). Enhanced AGE formation associated with hy-
perglycemia and oxidative stress inhibits both vascular and
metabolic actions of insulin (248). Human glycated end-prod-
ucts inhibit insulin-stimulated tyrosine phosphorylation of
IRS-1 and IRS-2 leading to impaired activation of PI3K and Akt
(249). Moreover, AGE produces ROS and increases oxidative
stress by activation of NADPH oxidase through specific recep-
tors for AGE (250). In endothelial cells, AGEs decrease NO
bioavailability and eNOS expression by accelerating eNOS
mRNA degradation (251–254). AGEs also enhance expression
of ET-1 in endothelial cells through the activation of NF-�B
(255). Thus, AGEs alter the balance of NO and ET-1 to favor
vasoconstriction and endothelial dysfunction.

In cardiomyocytes, increased AGE, hexosamine and
polyol flux, oxidative stress, and PKC activation have neg-

ative effects on function by prolonging action potentials,
reducing relaxation kinetics, and altering myofilament Ca2�

sensitivity through changes in expression and function of
various ion channels, receptors (ryanodine receptor, �-ad-
renergic receptor), and ion pumps (SERCA, sodium-pump)
(for review, see Refs. 219 and 220). These changes are pre-
dicted to result in ventricular stiffening and impaired ven-
tricular filling (diastolic dysfunction), characteristics fre-
quently observed in rodent and human models of diabetes.

4. Effects of glucotoxicity on cardiovascular function. In animal
studies, acute hyperglycemia impairs endothelial function in
both macro- and microvascular beds (256, 257). Local hy-
perglycemia achieved by infusing concentrated glucose di-
rectly into the brachial artery of healthy humans diminishes
agonist-induced vasodilation, an effect prevented by anti-
oxidants (258–260). Similarly, moderate hyperglycemia after
an oral glucose load is associated with reduced flow-medi-
ated vasodilation in healthy individuals (261). Acute hyper-
glycemia consistently impairs endothelial function in indi-
viduals with insulin resistance or type 2 diabetes (262, 263).
Glucosamine, a product of the hexosamine biosynthetic
pathway, impairs insulin stimulated glucose uptake in skel-
etal muscle and production of NO in endothelium in vitro
(242, 264). In vivo, acute iv glucosamine administration
causes metabolic insulin resistance (265, 266) and impairs
insulin-mediated increases in femoral arterial blood flow
(266, 267) and capillary recruitment (266). Collectively, these
data suggest that hyperglycemia impairs insulin action in
skeletal and cardiac muscle as well as in vascular
endothelium.

D. Proinflammatory signaling and adipocytokines

Insulin resistance and endothelial dysfunction are patho-
logical states that are both characterized by increased circu-
lating markers of inflammation (268). Visceral fat accumu-
lation may play a key role in development of the systemic
proinflammatory state associated with insulin resistance
(268–270). Adipose tissue (and infiltrated resident macro-
phages) secretes a plethora of peptide hormones including
leptin, adiponectin, TNF-�, IL-6, resistin, angiotensinogen,
and plasminogen activator inhibitor-1 that play crucial roles
in metabolic and vascular homeostasis.

1. Cytokines. A number of potential biochemical mechanisms
may explain the contribution of proinflammatory signaling
to insulin resistance. The most extensively studied proin-
flammatory cytokine implicated in insulin resistance is
TNF-�. FFAs are important determinants of adipose tissue
TNF-� activity and expression (271). Increased ROS in re-
sponse to FFA activates NF-�B, which further stimulates
production of other proinflammatory cytokines including
TNF-� and IL-6 (272–275). TNF-� activates a variety of serine
kinases including JNK, IKK�, and IL-1� receptor-associated
kinase (276–279) that directly or indirectly increase serine
phosphorylation of IRS-1/2, leading to decreased binding
and activity of PI3K in response to insulin stimulation. For
example, TNF-�-activates JNK, resulting in increased phos-
phorylation of IRS-1 at Ser307 (280). This reduces insulin-
stimulated activation of PI3K/Akt/eNOS in endothelial cells
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(281). In addition to modulating eNOS activity, JNK and
IKK� (through activation of activator protein-1 and NF-�B)
also inhibit insulin-stimulated expression of eNOS (282).
Thus, insulin resistance reduces bioavailability of NO under
basal conditions, and this may be an additional pathogenic
factor in chronic diseases including atherosclerosis, hyper-
tension, and diabetes with inflammatory components. Fur-
thermore, suppressors of cytokine-signaling proteins are in-
duced by treatment of cells with TNF-�, IL-1�, or IL-6.
Increased expression of suppressors of cytokine-signaling
proteins interferes with interaction of the IR and IRS-1 and
enhances proteasomal degradation of IRS-1 in adipose tissue
(283). TNF-� also stimulates expression of other inflamma-
tory proteins including C-reactive protein (CRP) and IL-6.
CRP is an important marker of vascular inflammation whose
plasma levels are correlated with risk of cardiovascular dis-
ease. In addition to being a marker of inflammation, CRP
may have biological actions to inhibit insulin-evoked NO
production in endothelial cells through mechanisms involv-
ing phosphorylation of IRS-1 at Ser307 (mediated by syk,
RhoA, and JNK) (284) and decreased expression of eNOS
(285). In addition, CRP simultaneously increases ET-1 pro-
duction and may directly promote cardiovascular disease by
modulating expression of proinflammatory cytokines (286),
up-regulating angiotensin receptor type 1 expression (287),
and increasing expression of intercellular adhesion molecule,
VCAM, E-selectin, and monocyte chemoattractant protein-1
in vascular endothelium (288, 289).

In animal models, administration of TNF-� induces insu-
lin resistance (290), whereas neutralization of TNF-� im-
proves insulin sensitivity (291). By contrast, neutralization of
circulating TNF-� in patients with type 2 diabetes fails to
alter insulin sensitivity significantly (292). Although this ar-
gues against a systemic role for TNF-� in mediating insulin
resistance, the autocrine/paracrine nature of TNF-� action
may have important pathophysiological significance. In-
deed, systemic infusion of high doses of TNF-� results in loss
of insulin-induced increases in glucose uptake, limb blood
flow, and capillary recruitment in rat hind limb (293). This
inhibitory action of TNF-� is specific to insulin-mediated, but
not to exercise-mediated, hemodynamic and metabolic
changes (293). TNF-� specifically down-regulates the insu-
lin-dependent PI3K/Akt/eNOS vasodilator pathway while
simultaneously augmenting ET-1-mediated vasoconstriction
in skeletal muscle arterioles (280). In humans, high local
concentrations of TNF-� achieved by intraarterial infusion
simultaneously inhibit both insulin-stimulated glucose up-
take (294) and endothelium-dependent vasodilation in the
forearm (294, 295). Similarly, systemic infusion of TNF-� to
achieve circulating concentrations slightly higher than those
observed in chronic inflammation such as diabetes reduced
glucose disposal in healthy individuals (296). Thus, proin-
flammatory cytokines may contribute to coupling of meta-
bolic and vascular insulin resistance manifested by impaired
insulin signaling and endothelial dysfunction.

2. Adipokines and related peptide hormones. Adipocyte-derived
hormones such as leptin and adiponectin have both meta-
bolic and vascular actions. Leptin, a key regulator of appetite,
body weight, and energy balance in the central nervous

system acts directly on the vasculature. Similar to insulin,
leptin induces endothelium-dependent vasodilation (297,
298) through a PI3K/Akt/eNOS pathway (299). Insulin en-
hances leptin-induced eNOS activation, NO production, and
vasorelaxation suggesting cross-talk between the insulin and
leptin signaling pathways (300). Like insulin, leptin-evoked
vasodilation is opposed by sympathetically induced vaso-
constriction (301). Leptin replacement partially ameliorates
cardiac contractile dysfunction that is present in hypolep-
tinemic (ob/ob) mice (302). Similarly, administration of leptin
improves cardiac dysfunction in transgenic mice with car-
diac-restricted steatosis caused by overexpression of acyl-
CoA synthase (303). This salutary effect of leptin may be
mediated by activation of AMP-activated protein kinase and
may be secondary to mobilization of myocardial lipid. In
contrast to these potentially beneficial actions of leptin, in a
large prospective study, the West of Scotland Coronary Pre-
vention Study (WOSCOPS), leptin was an independent risk
factor for coronary artery disease (304). This suggests that
hyperleptinemia and/or leptin resistance may have delete-
rious vascular and metabolic effects. In support of this con-
cept, leptin enhances cytokine (TNF-� and IL-6) (305) and
ROS production (306), up-regulates expression of angio-
tensinogen and ET-1 (307, 308), and negatively regulates
insulin signaling (309) and glucose uptake by increasing
serine phosphorylation of IRS-1 (310). Interestingly, leptin
also suppresses cardiac contractile function in ventricular
myocytes by an ET-1-dependent pathway (302). Angiotensin
II increases leptin secretion from cultured human fat cells
(311). Leptin may potentiate pressor effects of hyperinsulin-
emia in insulin-resistant states. Therefore, interactions be-
tween angiotensin II and insulin with leptin may have del-
eterious cardiovascular effects in obesity (311). Additionally,
hyperleptinemia is associated with vascular inflammation,
oxidative stress, and vascular smooth muscle hypertrophy
that may contribute to the pathogenesis of hypertension,
atherosclerosis, and left ventricular hypertrophy (312). Con-
sequently hyperleptinemia and/or leptin resistance may al-
ter the balance between the beneficial and harmful effects of
leptin to impact adversely the cardiac, vascular, and meta-
bolic actions of insulin leading to insulin resistance and en-
dothelial and cardiac dysfunction (313, 314). However, hu-
man studies specifically examining the interaction of
cardiovascular actions of insulin and leptin in normal and
pathological states are lacking.

Adiponectin is an antiinflammatory peptide whose circu-
lating levels are positively correlated with insulin sensitivity
and that may serve to link obesity with insulin resistance
(315–317). Adiponectin mimics vascular as well as metabolic
actions of insulin, and the interaction between these two
hormones may play a part in determining the cardiac, vas-
cular, and metabolic phenotype in insulin-resistant states
such as diabetes, obesity, and hypertension. Low circulating
adiponectin levels are associated with insulin resistance, type
2 diabetes, premature vascular disease, and myocardial in-
farction (318, 319). Similar to insulin, adiponectin has vaso-
dilator actions to stimulate NO production in endothelial
cells (320, 321). In addition, adiponectin enhances NO bio-
availability by up-regulating eNOS expression and reducing
ROS production in endothelial cells (322, 323). Consistent
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with these studies, adiponectin-knockout mice develop hy-
pertension on a high-salt diet (324). Adenoviral expression of
adiponectin in obese mice lowers blood pressure (324). In the
heart, adiponectin exerts beneficial actions to protect against
ischemia-reperfusion injury (325). However, the effects of
adiponectin on insulin signaling and function in the heart are
unknown.

Ghrelin is an orexigenic peptide hormone released from
the stomach that has important metabolic and vascular ac-
tions. Circulating ghrelin levels are low in insulin-resistant
conditions (326, 327). Some polymorphisms in the ghrelin
gene are associated with increased prevalence of diabetes,
impaired glucose tolerance, and hypertension (328–330). Gh-
relin acutely stimulates production of NO in endothelium
using a signaling pathway that involves ghrelin receptor
(GHSR-1a), PI3K, Akt, and eNOS (331). In patients with the
metabolic syndrome who have lower circulating ghrelin lev-
els than healthy subjects, intraarterial ghrelin infusion
acutely improves their endothelial dysfunction by increasing
bioavailability of NO (332). Thus, vasodilator actions of gh-
relin that mimic those of insulin may help to oppose the
reciprocal relationships between insulin resistance and en-
dothelial dysfunction.

Resistin is a proinflammatory peptide expressed in human
macrophages, mononuclear leukocytes, and bone marrow
cells that has been implicated in insulin resistance (333, 334).
Recent studies suggest that resistin may adversely impact on
endothelial function and vascular relaxation by stimulating
ET-1 production, inhibiting vasodilator actions of insulin,
and decreasing eNOS expression (335–338). Resistin also up-
regulates cytokine expression (TNF-� and IL-6) and increases
oxidative stress (337). Thus, resistin may participate in the
reciprocal relationships between insulin resistance and en-
dothelial dysfunction.

E. Effects of compensatory hyperinsulinemia on
blood pressure

Insulin resistance is typically accompanied by compensa-
tory hyperinsulinemia that serves to maintain euglycemia.
Pathway-selective impairment in PI3K signaling underlying
metabolic and vascular insulin resistance blunts NO-depen-
dent vasodilator actions of insulin. Under these conditions,
compensatory hyperinsulinemia may contribute to develop-
ment of hypertension through antinatriuretic and sympatho-
excitatory effects as well as activation of the RAS and en-
hanced secretion of ET-1 that are regulated by unimpaired
MAPK-dependent insulin-signaling pathways (45, 339). In-
sulin sensitivity correlates with insulin-induced increases in
glomerular filtration rate and renal plasma flow (188). Insu-
lin-stimulated activation of serum- and glucocorticoid-in-
ducible kinase-1 (SGK1) may mediate distal sodium reab-
sorption (340). In mice, disruption of SGK1 does not affect
basal or salt-induced increases in blood pressure. However,
on a high-fat diet that induces insulin resistance, high-salt
conditions fail to elevate blood pressure in SGK1-deficent
mice (341). Thus, it is possible that SGK1 may play a role in
sodium retention during hyperinsulinemia in the presence
(but not in the absence) of insulin resistance.

V. Insights from Genetics and Therapeutic
Interventions

A. Animal models

Rodent models of insulin resistance provide important
insights into the cardiovascular actions of insulin. In the
vasculature of heterozygous IR knockout mice with meta-
bolic insulin resistance, insulin-stimulated phosphorylation
and activation of eNOS are impaired, resulting in reduced
basal and insulin-stimulated NO release with increased
blood pressure (342). Mice lacking IRs specifically in vascular
endothelium (VENIRKO) have normal metabolic insulin re-
sponsiveness and blood pressure, but reduced expression of
eNOS and ET-1 in endothelium (171). When challenged with
a high-salt diet, VENIRKO mice develop insulin resistance
and elevated blood pressure. This suggests that complex
interactions between insulin action, eNOS, and ET-1 deter-
mine the metabolic and cardiovascular phenotype in these
mice. Tissue-specific knockout of the IR in cardiomyocytes
leads to diminished glucose and fatty acid oxidation in the
heart, decreased cardiac size, contractile dysfunction, and
reduced VEGF expression and capillary density (19, 87, 88,
103, 343). VEGF expression and vascular density are also
significantly lower in myocardium of muscle IR knockout
mice (344). Indeed, impaired myocardial insulin signaling in
cardiomyocyte IR knockout mice predisposes to a rapid de-
velopment of cardiac contractile dysfunction associated with
pressure overload, a condition frequently associated with
hypertension (345). Collectively, these studies suggest that
insulin signaling in the myocardium plays an important role
in the cardiac response to stresses such as dyslipidemia,
hypertension, heightened sympathetic activity, and oxida-
tive stress (87). Highlighting the important role of insulin
signaling in the vasculature, IRS-1 (IRS-1�/�) and IRS-2 (IRS-
2�/�) deficient mice not only exhibit resistance to the met-
abolic actions of insulin, but also demonstrate diminished
endothelial NO activity and elevated blood pressure (346).
The central role of NO in regulating the metabolic actions of
insulin is evident in the presence of insulin resistance and
hypertension in eNOS knockout mice (347, 348). These an-
imals also demonstrate microvascular changes including re-
duced capillary density (rarefaction) (349). Although mice
with partial eNOS deficiency (eNOS�/�) are insulin sensitive
and normotensive, they develop insulin resistance and hy-
pertension when challenged with a high-fat diet (350). Thus,
partial defects in insulin signaling or NO activity are suffi-
cient to cause cardiometabolic abnormalities under patho-
genic conditions (e.g., nutritional stress, inflammation). The
obese Zucker rat carrying a recessive mutation in the gene for
the leptin receptor is a commonly used animal model of
insulin resistance that exhibits many characteristics of the
metabolic syndrome in humans. In particular, insulin-me-
diated attenuation of vascular contractility (351) and in-
creases in limb blood flow and capillary recruitment (352) are
substantially reduced in these animals. Obese Zucker rats
have pathway-selective insulin resistance in PI3K-dependent
signaling (with intact MAPK signaling) in the vasculature
(202) and myocardium (344). This results in impaired NO-
mediated vasodilation and augmented ET-1-mediated vaso-
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constriction in response to insulin as well as enhanced VSMC
calcium sensitivity (353) via RhoA activation (354, 355). Re-
duced NO bioavailability may contribute to capillary rar-
efaction observed in these animals (356). Of note, calorie
restriction in mice increases eNOS expression and NO-de-
pendent mitochondrial biogenesis (357). One functional con-
sequence of this is improved insulin action in both cardio-
vascular and metabolic tissues.

The spontaneously hypertensive rat (SHR) is a genetic
model of hypertension that is also insulin resistant (358).
Defects in vascular responses to insulin can be detected in
SHRs before the onset of hypertension, suggesting that ele-
vated blood pressure per se does not determine insulin re-
sistance in this model (45, 359). When compared with age-
matched normotensive Wistar-Kyoto control rats, SHRs at 12
wk of age are overweight, hypertensive, hyperinsulinemic,
and insulin resistant, with normal fasting glucose. Thus,
SHRs may be an informative model of the human metabolic
syndrome that is useful for evaluating the contribution of
pathway-specific insulin resistance to coupling between in-
sulin resistance and endothelial dysfunction. In the mesen-
teric vascular bed of SHRs, the ex vivo vasodilator response
to acetylcholine is comparable to that in Wistar-Kyoto control
rats. Thus, endothelial function with respect to acetylcholine
appears normal. However, NO-dependent vasodilator re-
sponse to insulin is significantly impaired, consistent with
the concept that impaired insulin signaling leading to insulin
resistance in metabolic tissues also causes endothelial dys-
function with respect to vasodilator actions of insulin. In the
vasculature of SHRs, PI3K-dependent pathways are blunted,
consistent with insulin resistance. Moreover, inhibiting
MAPK-dependent pathways unmasks vasodilator actions of
insulin in the mesenteric vascular bed of SHRs. Similar find-
ings are evident after treatment of vessels with the ET-1
receptor antagonists BQ788 and BQ123. Taken together,
these findings suggest that in SHRs, impaired PI3K pathways
associated with insulin resistance lead to decreased endo-
thelial production of NO, whereas increased insulin signal-
ing through MAPK-dependent pathways leads to elevated
secretion of ET-1. This pathway-specific insulin resistance-
causing imbalance in vasodilator and vasoconstrictor actions
of insulin may be exacerbated by compensatory hyperinsu-
linemia present in insulin-resistant SHRs. Decreased bio-
availability of NO together with increased secretion of ET-1
may conspire to elevate peripheral vascular resistance and
contribute to hypertension and atherosclerosis. Thus, SHRs
as a model of the metabolic syndrome exemplify the concepts
of parallel insulin-signaling pathways in metabolic and vas-
cular tissues helping to couple blood flow and metabolism as
well as pathway-specific insulin resistance leading to vas-
cular pathophysiology (45).

Additional evidence to support the concept of a reciprocal
relationship between insulin resistance and endothelial dys-
function comes from therapeutic interventions in SHRs with
insulin-sensitizers (rosiglitazone), angiotensin-converting
enzyme (ACE) inhibitors (enalapril), or bioactive polyphe-
nols in green tea [epigallocatechin gallate (EGCG)] (47, 360).
Treatment of SHRs with these agents simultaneously lowers
blood pressure, improves insulin sensitivity, decreases in-
sulin levels, decreases ET-1 levels, and improves endothelial

function with normalization of vasodilator responses to in-
sulin. The improvement in metabolic and hemodynamic
phenotypes resulting from therapeutic interventions with
insulin sensitizers and/or antihypertensives in SHR is ac-
companied by a restored balance between PI3K- and MAPK-
dependent branches of insulin-signaling pathways in met-
abolic and vascular tissues (Fig. 5).

B. Human studies

1. Clinical states characterized by insulin resistance and endothe-
lial dysfunction. In humans with metabolic insulin resistance,
there is simultaneous impairment in the ability of insulin to
induce vasodilation. Diminished effects of insulin to stimu-
late blood flow have been demonstrated in obese subjects
(132, 134, 190, 361–363), type 1 diabetes (364–366), type 2
diabetes (89, 367–370), and polycystic ovarian syndrome
(371). Diminished insulin-stimulated blood flow and glucose
uptake are also present in patients with various cardiovas-
cular diseases such as essential hypertension (157, 372–376),
microvascular angina (377), and heart failure (378). Nondi-
abetic offspring of diabetic parents have both insulin resis-
tance and endothelial dysfunction (379). Thus, there may be
similar genetic and acquired contributions to both insulin
resistance and endothelial dysfunction.

It is clear that defects in insulin-stimulated production of
NO are directly related to insulin sensitivity. Baron et al. (120)
examined effects of insulin to stimulate femoral venous NOx
flux in subjects exhibiting a wide range of insulin sensitivity.
Basal NOx flux rates are not different between subject groups
despite 4-fold differences in insulin sensitivity. However,
during insulin stimulation, athletes exhibit a significant in-

FIG. 5. SHRs are an animal model of the metabolic syndrome with
hypertension, hyperinsulinemia, insulin resistance, overweight, ele-
vated ET-1 levels, and decreased adiponectin levels. There is de-
creased vasodilator response to insulin due to decreased PI3K tone
and elevated ET-1 levels due to increased MAPK tone. After treat-
ment of SHRs with rosiglitazone, enalapril, or EGCG for 3 wk, blood
pressure, insulin levels, and ET-1 levels are lower, whereas adiponec-
tin levels and insulin sensitivity are increased. Increased vasodilator
response to insulin is consistent with rebalancing between PI3K and
MAPK branches of insulin signaling.
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crease in NOx production, whereas diabetic subjects fail to
augment NOx production above basal. Insulin-stimulated
capillary recruitment (independent of total blood flow) ac-
counts for more than 50% of insulin-mediated glucose up-
take. It is well recognized that reduced capillary density is
associated with insulin resistance (380). Recently, Clerk et al.
(132) directly measured capillary recruitment using contrast-
enhanced ultrasonography in the forearm flexor muscles of
lean and obese adults before and during a 120-min eugly-
cemic-hyperinsulinemic clamp. When compared with base-
line measurements, insulin significantly increased microvas-
cular blood volume (an index of microvascular recruitment)
in the lean group but not in the obese group. These results
demonstrate impaired insulin-mediated microvascular func-
tion in obesity. Direct measurements of the permeability
surface area of insulin and glucose have been performed
utilizing forearm arteriovenous cannulation in combination
with microdialysis and blood flow measurements. Under
steady-state glucose clamp conditions, the increase in per-
meability surface area to glucose was significantly attenu-
ated in insulin-resistant type 2 diabetic subjects (368). This is
consistent with reduced muscle capillary recruitment in re-
sponse to insulin stimulation in subjects with type 2 diabetes.
In patients with type 2 diabetes, ingestion of a mixed meal
reduces MBF as opposed to a significant increase observed
in normal insulin-sensitive controls (196). With respect to
myocardial capillary recruitment, contrast-enhanced ultra-
sonography demonstrates that insulin can normalize re-
duced MBF in subjects with type 2 diabetes by enhancing
capillary recruitment (194). This suggests that impaired ac-
tions of insulin in the heart are also linked with metabolic
insulin resistance.

In related studies, phosphorylation of Akt, a key metabolic
insulin-signaling molecule, is significantly attenuated in in-
ternal mammary arteries obtained from patients with dia-
betes when compared with vessels from nondiabetics (381).
Similarly, the absolute level of phospho-eNOS (Ser1177) is
also decreased in vascular tissue from diabetic patients.
Taken together, these findings are consistent with the con-
cept that impaired vascular insulin signaling and reduced
NO activity in individuals with type 2 diabetes contributes
to endothelial dysfunction in insulin-resistant states. Genetic
contributions to defective insulin signaling and NO activity
in the vasculature are likely to contribute to diminished
vascular actions of insulin that play a role in the pathogenesis
of insulin resistance and endothelial dysfunction per se in
type 2 diabetes (263) and obesity (382).

2. Genetic polymorphisms. Shared relationships between NO-
dependent endothelial function and metabolic actions of in-
sulin are also evident in clinical studies examining gene
polymorphisms. The most commonly detected polymor-
phism in IRS-1 (glycine to arginine at codon 972) is associated
with an increased risk of type 2 diabetes and insulin resis-
tance as well as endothelial dysfunction (383). In human
endothelial cells carrying the G972R-IRS-1 variant, insulin-
mediated PI3K/Akt/eNOS activation is diminished (39).
Conversely, eNOS gene polymorphisms are associated with
insulin resistance, hyperinsulinemia, and type 2 diabetes
(384, 385).

3. Insulin resistance and increased vasoconstrictor tone. As
previously discussed, in states of metabolic insulin resis-
tance, PI3K-dependent pathways are impaired, whereas
MAPK-dependent pathways are intact. This pathway-spe-
cific insulin resistance results in enhanced effects of in-
sulin to stimulate ET-1 production and promote increased
vasoconstrictor tone. The increased ET-1 activity in par-
allel with diminished NO bioactivity contributes to ab-
normal vascular function. Human studies in overweight
(386), obese (205), hypertensive (387, 388), and diabetic
(205, 389) subjects support this notion. Combined ETA/
ETB receptor blockade in the forearm circulation signifi-
cantly increases endothelium-dependent vasodilatation in
overweight, insulin-resistant subjects or individuals with
hypertension, but not in lean, healthy controls (386, 387).
Similarly, selective ETA receptor blockade in the forearm
significantly increases forearm blood flow in patients with
type 2 diabetes (389). Of particular interest, ETA receptor
blockade not only normalizes endothelium-dependent va-
sodilation, but acutely restores NO bioavailability (205).
This suggests that increased ET-1 action in the vasculature
may be proximal to reductions in NO bioavailability ob-
served in insulin-resistant states, and it is possible that
diminished NO may result in enhanced ET-1 production.
Hyperinsulinemia stimulates ET-1 secretion (176), and ac-
centuated ET-1 activity may cause insulin resistance (390).
Thus, human studies support the idea that increased en-
dogenous activity of ET-1 in the vasculature is a feature of
vascular dysfunction and impaired vascular insulin re-
sponse present in insulin resistance, obesity, hypertension,
and diabetes mellitus.

Vascular smooth muscle dysfunction has also been dem-
onstrated in insulin-resistant states including obesity and
diabetes (381, 391–396). This suggests that impaired vasodi-
latory actions of insulin are not limited simply to reduction
in NO bioavailability. Akt mediates insulin-stimulated va-
sodilation in VSMC as well as in endothelium. Consequently,
reduced Akt activity in the vasculature of diabetic patients
may play a role in the impaired VSMC relaxation. In addi-
tion, superoxide production and NADPH oxidase expression
are significantly higher in internal mammary arteries from
individuals with diabetes when compared with matched
nondiabetic individuals (397). Increases in ROS not only di-
minish NO availability, but also diminish activity and ex-
pression of sGC and the cGKI in VSMC (223). This is con-
sistent with diminished nitroglycerin/SNP-mediated
vasodilation in individuals with insulin resistance (392–394,
396). In addition, altered VSMC cation concentrations (74)
and sensitization to Ca2� through the Rho-kinase pathway
(398) may contribute to elevated vascular tone in obesity and
diabetes.

4. Nonpharmacological lifestyle interventions. Lifestyle modifi-
cations including diet, weight loss, and physical exercise
decrease insulin resistance (378, 396, 399), increase adiponec-
tin levels (400), and improve endothelial dysfunction (396,
401). Calorie restriction not only increases insulin sensitivity
but also improves NO-dependent vasodilation in obese or
hypertensive individuals (401, 402). Parallel to the increase in
NO activity, calorie-restriction also reduces circulating ET-1
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levels in obese individuals (403). Moreover, significant in-
creases in adiponectin levels and reduction in insulin resis-
tance have been observed in diabetic and nondiabetic pa-
tients after 2 months of diet-induced weight loss (400).
Consuming a Mediterranean-style diet significantly reduces
serum concentrations of inflammatory markers, decreases
insulin resistance, and improves endothelial function in pa-
tients with metabolic syndrome (compared with matched
subjects on a controlled diet) (404). Similarly, in a cohort of
obese women, a 2-yr lifestyle intervention consisting of
weight loss, physical exercise, and Mediterranean-style diet
decreases BMI and inflammatory markers while increasing
adiponectin levels (compared with matched controls in a
nonintervention group) (405).

Increased physical activity/exercise enhances insulin sen-
sitivity and NO-dependent vasodilatation in both conduit
and resistance vessels of sedentary individuals characterized
by endothelial dysfunction and insulin resistance (406). Ex-
ercise increases insulin-stimulated blood flow in athletes,
healthy controls, and type 2 diabetic individuals (407, 408).
Physical exercise increases forearm skeletal muscle capillary
recruitment in healthy individuals (111) and may augment
glucose uptake by enhancing nutritive flow. The salutary
effects of exercise on vascular actions of insulin may involve
enhanced insulin signaling, accentuated eNOS activity/ex-
pression, reduced oxidative and inflammatory stress, en-
hanced NO availability, restoration of the imbalance in va-
soconstrictor and vasodilator actions, and increased capillary
density. A combination of diet and exercise significantly
improves NO bioavailability in insulin-resistant hyperten-
sive men and is accompanied by a reduction in levels of
serum insulin and 8-iso-PGF2�, a marker of oxidative stress
(409). After this intervention, there was a significant corre-
lation between decreases in serum insulin and increases in
urinary excretion of NO metabolites. This is consistent with
the idea that exercise and dietary intervention may simul-
taneously enhance metabolic and vascular actions of insulin
by reducing oxidative stress and enhancing NO bioavail-
ability. In related clinical studies, regular exercise training
increases eNOS protein expression and activity via PI3K/
Akt-dependent phosphorylation and reduces NADPH oxi-
dase and angiotensin-II type 1 receptor AT1-R expression in
tissue specimens of the left internal mammary artery har-
vested during coronary bypass surgery (410, 411).

5. Pharmacological therapies targeting insulin resistance and/or
endothelial dysfunction. Insulin resistance, inflammatory and
oxidative stress, activation of the RAS and endothelin sys-
tem, and low plasma adiponectin levels characteristic of met-
abolic disorders play an important role in endothelial dys-
function, whereas endothelial dysfunction contributes to
metabolic insulin resistance. Thus, therapies aimed at im-
proving either insulin resistance or endothelial dysfunction
that raise plasma adiponectin levels, block renin angiotensin
and endothelin systems, and lower oxidative stress are pre-
dicted to have simultaneous beneficial effects on both met-
abolic and cardiovascular function.

Thiazolidinediones [synthetic peroxisome proliferator-ac-
tivated receptor (PPAR)-� ligands] are insulin sensitizers that
also improve the action of insulin in the endothelium in

insulin-resistant individuals (412–415). In individuals with
recently diagnosed type 2 diabetes, rosiglitazone therapy
further enhances the endothelium-dependent vasodilator re-
sponse to insulin (415). This may be one mechanism by which
thiazolidinediones attenuate both macro- (415) and micro-
vascular dysfunction (412) in insulin-resistant individuals.
Thiazolidinediones also have antiatherogenic properties me-
diated by antiinflammatory mechanisms to inhibit vascular
smooth muscle cell proliferation and decrease accumulation
of lipids by macrophages (416). Four-week treatment with
pioglitazone protects against acute endothelial dysfunction
induced by local infusion of TNF-� in individuals with type
2 diabetes (295). Moreover, administration of thiazo-
lidinediones significantly increases adiponectin levels in pa-
tients with insulin resistance or type 2 diabetes without af-
fecting body weight (417). In the PROactive study
(prospective randomized trial in patients with preexisting
cardiovascular disease and type 2 diabetes mellitus), piogli-
tazone significantly reduces a composite endpoint of all-
cause mortality and nonfatal myocardial infarction (418).

Metformin, another agent that improves insulin sensitiv-
ity, also improves endothelium-dependent vasodilation in
patients with insulin resistance (419–421). Metformin treat-
ment results in increased production of NO by increasing
AMP-activated protein kinase-dependent activation of
eNOS (422). In addition to enhancing NO production, met-
formin decreases circulating ET-1 levels in insulin-resistant
women (421). Moreover, therapy with thiazolidinediones or
metformin lowers blood pressure in insulin-resistant pa-
tients who are also hypertensive (423, 424). Taken together,
these studies suggest that drugs that improve insulin sen-
sitivity may have both direct and indirect beneficial effects on
the cardiovascular system.

Some drugs used for treatment of hypertension also have
beneficial metabolic effects. ACE inhibitors reduce circulat-
ing angiotensin II levels, whereas angiotensin-II receptor
blockers (ARBs) block the actions of angiotensin II. These
effects lower blood pressure, improve endothelial function,
and reduce circulating markers of inflammation. In patients
with type 2 diabetes, quinapril treatment increases insulin-
stimulated endothelial function and vascular expression of
adiponectin (369). Moreover, in the Diabetes Reduction As-
sessment with Ramipril and Rosiglitazone Medication
(DREAM) study, ramipril significantly reduced postchal-
lenge glucose levels and increased the likelihood of regres-
sion to normoglycemia in subjects with impaired glucose
tolerance and impaired plasma glucose levels (425). This and
other studies suggest that ACE inhibitors and ARBs may
improve glucose metabolism (426). These beneficial meta-
bolic effects may be mediated, in part, by blocking inhibitory
cross-talk between angiotensin II receptor signaling and IR
signaling at the level of IRS-1 and PI3K (427). ACE inhibitors
and ARBs may also have direct effects (e.g., inducing PPAR-�
activity) that augment insulin-stimulated glucose uptake
(428). Treatment of patients with ACE inhibitors or ARBs
significantly increases adiponectin levels and improves in-
sulin sensitivity without changing BMI (429, 430). Losartan
(ARB) therapy significantly increases plasma adiponectin
levels and insulin sensitivity relative to baseline measure-
ments in hypercholesterolemic hypertensive patients (429).
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Of note, these findings significantly correlate with improve-
ments in endothelial function and inflammatory markers.

ACE inhibition reduces plasma levels of ET-1 and insulin-
stimulated ET-1 secretion in individuals with hypertension
(431). PPAR-� agonists, such as fenofibrate, significantly im-
prove endothelial dysfunction, reduce levels of inflamma-
tory markers, increase adiponectin levels, and enhance in-
sulin sensitivity in hypertriglyceridemic patients (432).
Moreover, fenofibrate therapy significantly lowers blood
pressure in hypertriglyceridemic hypertensive patients
(433). Similarly, 3-hydroxy-3-methylglutaryl-CoA reductase
inhibitors (statins) have also been shown to improve endo-
thelial dysfunction, reduce inflammation, and reduce circu-
lating ET-1 levels in individuals with type 2 diabetes and
insulin resistance (434). However, treatment with simvasta-
tin does not increase adiponectin levels or improve insulin
sensitivity (429, 430). Nevertheless, simvastatin does im-
prove endothelial function and inflammatory markers in an
additive manner when combined with losartan or ramipril.
This suggests that only some mechanisms for improving
endothelial function have a beneficial effect on insulin sen-
sitivity and adiponectin levels.

Sympathetic nervous system activation in states of obesity,
hypertension, diabetes, and heart failure may lower insulin-
stimulated glucose disposal through vasoconstriction (via
�1-adrenergic receptors) and reduced blood flow. Indeed, �1
adrenergic receptor blockade increases insulin sensitivity
(435), whereas unopposed �1-activity during use of conven-
tional �-blocking agents may negatively influence insulin
sensitivity by enhancing vascular tone (436). Nonselective
�-blockers with �1-blocking properties such as carvedilol are
precapillary vasodilators that increase blood flow and im-
prove insulin sensitivity (437, 438). Carvedilol treatment in
patients with heart failure increases glucose oxidation and
improves myocardial energy efficiency (439).

VI. Summary and Conclusions

Cardiovascular actions of insulin play an important phys-
iological role in coupling metabolic and cardiovascular ho-
meostasis under healthy conditions. The balance between
NO-dependent vasodilator actions and ET-1-dependent va-
soconstrictor actions of insulin is regulated by PI3K- and
MAPK-dependent signaling in vascular endothelium, re-
spectively. Under insulin-resistant conditions, pathway-spe-
cific impairment in PI3K-dependent signaling and enhanced
MAPK-dependent signaling in vascular endothelium may
contribute to reciprocal relationships between endothelial
dysfunction and insulin resistance that underlie the close
associations between metabolic and cardiovascular diseases.
Genetic studies and therapeutic interventions in both ani-
mals and humans support these concepts. Pharmacological
and lifestyle modifications may simultaneously improve
both endothelial function and insulin resistance, in part, by
restoring balance between vasodilator and vasoconstrictor
actions of insulin that serve to couple hemodynamic and
metabolic homeostasis.
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