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Although it is well established that transgenic manipulation of mammalian neural crest–
related gene expression and microsurgical removal of premigratory chicken and 
Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both 
structural and functional congenital heart defects, the actual functional mechanism of 
the cardiac neural crest cells within the heart is poorly understood. Neural crest cell 
migration and appropriate colonization of the pharyngeal arches and outflow tract 
septum is thought to be highly dependent on genes that regulate cell-autonomous 
polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway 
regulators). Once the migratory cardiac neural crest subpopulation finally reaches the 
heart, they have traditionally been thought to participate in septation of the common 
outflow tract into separate aortic and pulmonary arteries. However, several studies have 
suggested these colonizing neural crest cells may also play additional unexpected roles 
during cardiovascular development and may even contribute to a crest-derived stem cell 
population. Studies in both mice and chick suggest they can also enter the heart from 
the venous inflow as well as the usual arterial outflow region, and may contribute to the 
adult semilunar and atrioventricular valves as well as part of the cardiac conduction 
system. Furthermore, although they are not usually thought to give rise to the 
cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to 
the myocardium and may have different functions in a species-dependent context. 
Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a 
transgenic deletion of mouse neural crest cell migration or disruption of the normal 
mammalian neural crest gene expression profiles, disrupts ventral myocardial function 
and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac 
neural crest secrete factor/s that regulate myocardial proliferation, can signal to the 
epicardium to subsequently secrete a growth factor/s, or may even contribute directly to 
the heart. Although there are species differences between mouse, chick, and Xenopus 
during cardiac neural crest cell morphogenesis, recent data suggest mouse and chick 
are more similar to each other than to the zebrafish neural crest cell lineage. Several 
groups have used the genetically defined Pax3 (splotch) mutant mice model to address 
the role of the cardiac neural crest lineage. Here we review the current literature, the 
neural crest–related role of the Pax3 transcription factor, and discuss potential function/s 
of cardiac neural crest–derived cells during cardiovascular developmental remodeling. 
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INTRODUCTION 

Neural crest cells (NC) are a multipotent and transient migratory embryonic lineage that ultimately gives 

rise to an enormous array of different cell types, tissues, and organs[1]. The NC are required at different 

developmental stages for normal development of diverse organ systems, such as the peripheral and enteric 

nervous systems, facial skeleton, melanocytes, and cardiac outflow tract (OFT) septum. NC induction 

occurs in the neural folds at the dorsal aspect of the developing spinal cord (initially referred to as the 

neural tube). In response to interaction between the surface ectoderm and neural plate (which 

subsequently forms the neural tube), NC undergo epithelial-mesenchymal transformation (EMT), and 

then migrate (over and through non-NC lineages) and ultimately undergo differentiation along various 

specific developmental pathways at their sites of colonization[2]. Multiple local signals are thought to 

regulate the fate and function of these cells as they migrate to their terminal locations[3] (see Table 1). 

Different regions (loosely based on rostral-caudal neural tube variations) express different molecular 

expression profiles and can give rise to diverse NC-derived cell types. Due to the wide range of migration 

and the multistep process of NC morphogenesis in the embryo, they are especially vulnerable to both 

environmental and genetic disorders. Many congenital birth defects are thought to be due to aberrant NC 

morphogenesis[4].  

CNC SPECIFICATION, EMT, AND MIGRATION TOWARDS THE HEART 

Specification 

Cardiac NC (CNC), which are a subpopulation of the NC, originate from the lower hindbrain between the 

otic placode and fourth somite[4,5,6], and undergo EMT and migrate towards the heart via the third, 

fourth, and sixth pharyngeal arches[7]. They are called CNC because this region of the neural tube 

provides mesenchymal cells to the heart and the great arteries. The NC-derived mesenchymal cells are 

often referred to as ectomesenchyme to discriminate them from “normal” mesenchymal cells that are 

derived from existing mesoderm, suggesting they are intrinsically different[8,9,10,11,12].  

Although temporally defined via quail-chick chimeric analysis[13,14,15], chick microsurgical 

ablation of premigratory neural folds[4,16], and mouse Cre/loxP transgenic lineage mapping data in 

embryos that have their NC lineages permanently marked with a ß-galactosidase reporter[17,18,19] (see 

Fig. 1), identification of a CNC-specific inducing factor within the early neural tube has remained elusive. 

Surprisingly, despite the exquisite anterior-posterior patterning via overlapping homeobox gene 

expression in the neural tube, relatively few cardiovascular abnormalities have resulted from altered Hox 

gene expression[20]. To date, there is no CNC-restricted Cre lineage marker mouse line, thus all 

published lineage mapping data are the result of the simultaneous permanent marking of cranial, cardiac, 

and trunk NC progenitors. Most commonly used are the P0-Cre, Wnt1-Cre, and Pax3-Cre transgenic 

lines[17,18,19]. Wnt1-Cre is the earliest NC-restricted Cre line and provides both a useful lineage marker 

system (Fig. 1) and a means with which to target NC-related genes conditionally.  

Although not restricted to the CNC-containing region of the neural tube, mutation of the Pax3 

(splotch) transcription factor results in various CNC-related aortic arch and OFT defects[4,19,21]. As this 

model is 100% penetrant, it provides a useful genetically defined mouse model in which to study CNC 

cell morphogenesis. There are five splotch alleles with different mutations of the Pax3 transcription 

factor: two of these alleles (sp and sp2H) have provided a robust and morphologically well-characterized  
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FIGURE 1. Specificity and efficiency of NC marking using the Wnt1-Cre[11] and R26R reporter Cre/loxP system. (A) Whole-mount 

staining of an E8.0 embryo. Labeling is seen in the dorsal neural tube, first and second pharyngeal arches (numbered), and migratory 

CNC (arrow). Location of CNC progenitors is indicated by red line. The OFT of the heart (h) is unlabeled, but is in obvious proximity 

to the pharyngeal arches. (B) Staining in an E11.0 embryo. Extensive labeling is seen in the head, dorsal neural tube, NC-derived 

dorsal root ganglia (drgs), all the pharyngeal arches (fourth and sixth numbered), and in CNC colonizing the OFT of the heart (arrow). 

(C) Isolated E11.0 heart. LcZ labeling can be seen in the aortic arch arteries (white arrows) and the truncus (t) of the OFT cushions 

(large arrowhead), but not in the conus (c). (D) E14 mature septated heart. Note robust lacZ reporter staining is present in the 

condensed mesenchyme of the OFT conus (arrow) and the anterior divided truncus, but is absent from the ventricles and atria. 

Abbreviations: rv, right ventricle; lv, left ventricle; ra, right atria; la, left atria. 

model of aortic arch and OFT defects[21,22,23,24]. The sp2H homozygotes[25,26] die in utero and exhibit 

conotruncal septation defects: persistent truncus arteriosus (PTA) with obligatory perimembranous 

interventricular septal defect (VSD). The pathogenesis of the defect is due to the failure of the left sixth 

arch artery to persist, which usually gives rise to the pulmonary trunk (see Fig. 2). In addition, sp2H 

embryos exhibit defects within neural tube closure (spina bifida and excencephaly), melanocytes, and 

lack of limb musculature[27,28]. Significantly, Pax3 mRNA is expressed within the neural tube, 

migratory NC cells and their derivatives (such as the thymus, thyroid, and dorsal root ganglia), somites, 

and melanocytes[29]; all structures are abnormal in sp2H homozygotes. In humans, haploin-sufficient 

PAX3 mutations lead to Waardenburg syndrome, an autosomal-dominant disorder that consists of defects 

in NC-derived tissues and is characterized by pigmentation, hearing, and facioskeletal anomalies[30]. 

Cardiac defects have also been reported in some Waardenburg children[31,32].  

Using the sp2H allele (Pax3 homeodomain deleted), we have shown that expression of the NC marker 

Ap2α revealed extensive reduction in sp2H migratory CNC lineage. However, the rates of cell 

proliferation and apoptosis were unaffected and thus do not account for the observed sp2H CNC-associated 

heart defects[21]. Significantly, expression analysis revealed Wnt1, but not Wnt3a, is expressed at 

decreased levels within sp2H and the CNC fail to undergo normal NC progenitor proliferative expansion 

prior to migration while still in the neural folds. These data suggest the sp2H defect is intrinsic to the NC 

progenitors themselves and there is a decrease in the number of premigratory CNC that form. It appears 

this decrease in NC numbers is the primary defect that ultimately leads to a lack of a CNC-derived sp2H 

OFT septum. Both the Wnt1 and Wnt3a cystein-rich secreted signaling molecules are expressed by NC 

precursors around the time of neural fold closure[33] and are thought to be essential for initial expansion 

of NC in the neural tube[34,35]. Double homozygous null Wnt1/Wnt3a mutant embryos have a significant 

reduction within NC-derived structures that do not seem to result from abnormalities within NC  
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FIGURE 2. Schematic representation of the sequential changes that occur during remodeling of aortic (pharyngeal) arch 

arteries. Following ink injection analysis[58] of both age-matched wild-type and sp2H mutant littermate embryos, representative 

vascular casts were schematized. Upper panel indicates the normal pattern of regression and lower panel indicate the anomalous 

remodeling occurring within the sp2H mutant mouse. Normal remodeling. Note that there are initially six symmetrical arteries 

attached to the paired dorsal aorta (da) that are remodeled to give rise to a separate ascending aorta (aao; partly derived from the 

left fourth artery) and pulmonary trunk (p; derived from the left sixth artery) with two pulmonary arteries attached. Elements of 

the brachiocephalic artery (bca) are derived from the right fourth/sixth arteries, the left common carotid artery (lcca) is derived 

from the left third artery, and the left subclavian (lsa) is derived from the seventh intersegmental artery. Sp2H remodeling. Note 

there are initially six symmetrical arteries, but that the left sixth (which normally gives rise to the pulmonary trunk) abnormally 

regresses, resulting in only a single OFT vessel and PTA. 

emigration, migration, survival, or differentiation, but rather a lack of NC expansion in the neural 

tube[34]. Significantly, the sp cardiac phenotype can be rescued by transgenic overexpression of Pax3 

under the control of a 1.6-kb neural tube and early NC-specific Pax3 promoter that is not expressed within 

somites[36]. Transgenically rescued sp homozygotes survive until birth, at which time they succumb to 

respiratory failure secondary to absence of a muscular diaphragm. Pax3-deficient somites are capable of 

supporting proper CNC migration and function, indicating a cell autonomous role for Pax3 during NC 

morphogenesis. The critical role of Pax3 in NC progenitor expansion is supported by data that sp 

homozygote heart defects can also be genetically “rescued” by crossing the sp mutants with the viable 

Msx2 homeobox-containing null mice[37]. Double Pax3-Msx2 survive until birth and then die due to 

respiratory failure. These transgenic rescue experiments elegantly demonstrate that Pax3 is required for 

the repression of Msx2 expression within the dorsal neural tube, and that appropriate specification of CNC 

progenitors is a critical first step. Given that Msx2 is a well-documented regulator of Bmp signaling, it 

will be interesting to determine what role the TGFβ superfamily plays during CNC specification.  
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EMT 

Although little is known about CNC specification, even less is known about CNC-specific EMT, although 

the zinc finger genes, Slug, Snail, Id2, and Pinch-1, seem to be involved in specifying EMT 

competence[5,38,39,40,41]. The details, especially the temporal order of events in NC EMT, vary 

between different species and between different axial levels, but several important features have 

emerged[38]. EMT is strongly associated with a decrease in cell-cell adhesion, particularly with loss of 

N-cadherin on the surface of NC cells at the time of onset of emigration[42]. Similarly, N-Cam adhesion 

molecule also declines on NC cells. The surrounding extracellular matrix is also important, as EMT-

related changes have been found in several matrix receptors (i.e., integrins), while the nature of the matrix 

itself is also modified. Changes in Rho family GTP-binding proteins (RhoB), cell shape, and in cell 

motility also occur at the time of EMT, consistent with changes in the cytoskeleton[43], and these 

concerted changes can be triggered by TGFβ superfamily growth factors. Given the exciting identification 

of Sox9 transcription factor as a master regulator of trunk NC induction, survival, and delamination, and 

the role of the winged-helix transcription factor FoxD3 as a regulator of cell-cell adhesion molecules 

required for subsequent trunk NC migration[44], it will be interesting to see if a similar mechanism can be 

identified for the CNC lineage.  

Migration 

CNC migration and homing to the third, fourth, and sixth pharyngeal arches and cardiac OFT niches 

occurs during a well-defined developmental time window and along characteristic circumpharyngeal 

migration pathways[15,16,19,45]. Adhesion molecules, such as integrins, are involved in the interaction 

of CNC with the extracellular matrix, while cadherins and gap junctions allow CNC to interact with each 

other during their migration. Migration of CNC to the heart has been shown to be modulated by 

interactions mediated by connexin43 (Cx43α1) gap junction membrane channels between cells. CNC 

express Cx43α1, are functionally-coupled[46], and Cx43α1 knockout mice die at birth with conotruncal 

heart malformations, outflow obstructions, and coronary anomalies[47,48]. CNC motility is dependent on 

the level of Cx43α1 function, as loss of Cx43a1 inhibits NC cell migration, while overexpression 

enhances migration. Recent chick and mouse studies suggest that Cx43α1 may modulate cell motility, via 

mediating cross-talk with cell signaling pathways (vinculin and other actin-binding proteins) that regulate 

polarized cell movement essential for the directional migration of CNC[49]. In parallel, gap junction 

formation has been shown to be dependent on cadherin-mediated cell–cell adhesion[50] and a NC-

restricted knockout of N-cadherin has recently been shown to result in CNC-related mouse embryonic 

OFT defects[51]. Significantly, using N-cadherin null mouse NC cells, it has been demonstrated that N-

cadherin can modulate NC cell motility by engaging in dynamic cross-talk with the cells’ locomotory 

apparatus via p120 catenin signaling[50]. In Xenopus, the canonical (β-catenin dependant) Wnt signaling 

pathway is thought to be important for NC cell induction, while the noncanonical (planer cell polarity) 

signaling is thought to regulate NC migration[52]. Using time-lapse analysis on cultured NC cells (either 

control or cells injected with the dominant negative form of Wnt11 mRNA), it was shown that the 

noncanonical pathway controls migration by directing the stabilization of cell protrusions necessary for 

locomotion. When the Wnt noncanonical pathway is disrupted, more CNC cells have filopadia 

protrusions, but they are significantly less polarized. Thus, Wnt11 is thought to be the activating ligand of 

the Wnt noncanonical pathway and is expressed adjacent to the CNC prior to migration. This link is 

further strengthened as it was also shown that the Wnt11 receptor (Frizzled) is expressed in a 

subpopulation of both premigratory and migratory Xenopus NC cells[52].   
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AORTIC ARCH ARTERY REMODELING DEFECTS ASSOCIATED WITH LACK OF 
NC 

Aortic Arch Artery Remodeling 

During normal cardiovascular development, the early OFT is a single vessel that branches at the aortic sac 

into the bilaterally symmetric third, fourth, and sixth aortic arch arteries present within the pharyngeal 

arches. Remodeling of these transient symmetrical arch arteries into the definitive adult left-sided aortic 

arch vascular pattern involves the asymmetrically programmed regression and persistence of specific arch 

arteries (see Fig. 2). The third arch arteries give rise to common carotid arteries, fourth arch arteries 

contribute to the formation of the distal part of the aortic arch, the brachiocephalic artery and a proximal 

part of the right subclavian artery, while the sixth arch arteries contribute to the ductus arteriosus and the 

proximal parts of the pulmonary arteries. The final arrangement and morphology of these great vessels 

requires reciprocal signaling between the endothelial cells lining the pharyngeal arch arteries[53], the 

surrounding NC-derived smooth muscle and mesenchyme[54,55], and the endoderm[56,57]. Anomalous 

remodeling underlies a wide variety of congenital heart defects including: PTA, coarctation and 

interruption of the aortic arch, double aortic arch, right aortic arch, and abnormal origin of the right 

subclavian (pathogenesis of these defects reviewed in Conway et al.[58]). PTA arises when the arterial 

trunk fails to be divided to form a separate pulmonary artery and aorta. Despite the presence of many 

different mouse mutant models of anomalous aortic arch artery development (several within the DiGeorge 

region), the precise role of the CNC during aortic arch artery morphogenesis is not well 

understood[7,22,59]. 

Colonization of Pharyngeal Arches 

The pharyngeal arches are initially composed of mesenchyme (mesodermally derived), which is 

surrounded externally by ectoderm and internally by endoderm. Subsequent to CNC colonization, most of 

the mesenchyme is CNC derived, apart from the original mesodermal core that lies adjacent to the aortic 

arch arteries[18]. In addition to a variety of complex gene expression profiles[6], the mesenchyme of both 

the anterior and posterior pharyngeal arches contain different partially restricted intermediate cell types 

derived from the NC[60], suggesting that the pharyngeal arches are segmentally patterned. CNC-derived 

mesenchyme subsequently condense and differentiate into fibrous connective tissue that contributes to 

vascular stabilization of the great arteries[7], while other NC populate the cardiac ganglia[15]. A 

substantial population of CNC-derived cells in the pharyngeal arches remains associated with the 

pharyngeal arch arteries, and constitutes the smooth muscle layer that surrounds these vessels as they 

become reorganized into the arch of the aorta, the ductus arteriosus, and the proximal segments of the 

carotid arteries[18,61]. Comparison of chick and mouse CNC migration patterns using a combined Cx43-

lacZ mouse transgenic marker and quail-chick chimeras clearly demonstrated that CNC migration is 

similar within the pharyngeal region[15]. The similarities include the formation of a sheath around the 

aortic arch arteries and population of the cardiac ganglia. However, it is still unclear what role the CNC 

play during asymmetric remodeling and whether they play an instructive role or secondarily respond to 

other stimuli (for instance differential blood flow patterns and/or neural innervation). Migration of a 

subpopulation of CNC continues on into the cardiac OFT where they populate the conotruncal 

cushions[4,23,24] and, by currently unknown mechanisms, they participate in OFT septation[62]. NC 

from this same region of the mouse neural tube also give rise to cells of the thymus, thyroid, and 

parathyroid glands[18,19]. There is extensive experimental evidence (little of which is genetic) suggesting 

that the various steps in NC morphogenesis and cell fate are influenced by cell-cell and cell-matrix 

adhesions[63,64] and the environment through which they migrate[3]. Consequently, the pharynx is a 

likely source of important instructive signals for the migrating CNC. In fact, the primary fate of the CNC 

lineage is to differentiate into the smooth muscle of the aortic arch arteries and cardiac OFT[1,18,61], and 
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require NC autonomous expression of Pdgf receptor α[65], Alk2 receptor[66], and Alk5 receptor  

expression[67]. 

Although our understanding of the role of the CNC remains mostly descriptive, some insights into the 

cellular processes have come from experimental manipulation of chick embryos[4,11] and the genetic 

processes from mouse, zebrafish, and Xenopus mutants[68]. In chick embryos, neural fold/NC 

ablation[4], Hox antisense experiments[20], teratogenic retinoic acid exposure[69], and hemodynamic 

perturbations[70] have all caused fourth and sixth pharyngeal arch abnormalities. Similarly in mouse, 

teratogenic exposure to haloacetic acids[71], ethanol[72], and retinoic acid gives rise to arch 

abnormalities. Related or analogous pathological defects of the mouse fourth and sixth pharyngeal arches 

and OFT are also seen when a large number of genes have been transgenically altered[73,74]. For 

instance, the sp2H homozygotes[23,24,25,26] die in utero and exhibit PTA with obligatory 

perimembranous VSD due to the failure of the left sixth arch artery (which would normally form the main 

pulmonary artery segment) to persist. Using ink injection casts to assess third, fourth, and sixth 

pharyngeal arch artery remodeling, we found that all three pairs of arch arteries were formed, but that 

both the left and right sixth arch arteries underwent vascularization and disappear in sp2H homozygotes 

when compared to wild-type littermates (see Fig. 2). This suggests that pulmonary atresia underlies the 

OFT defects and that only one vessel remains that exits the heart. We have also shown that presumptive 

sp2H homozygote CNC stem cells fail to undergo normal progenitor expansion within the neural tube and 

consequently insufficient CNC colonize the pharyngeal arches and OFT[21]. This suggests that normal 

aortic arch artery remodeling is partly dependent on a particular threshold number requirement of 

colonizing NC. Similarly, when any of the aforementioned manipulations result in elevated CNC 

apoptosis and/or suppressed NC proliferation, anomalous remodeling of the aortic arch arteries and/or 

vascular regression is often a downstream consequence[73,74].   

Coordinated CNC-Derived Mesenchyme Differentiation is Required for 
Remodeling of the Arterial Tree 

Mutational analysis has identified a large number of genes required for morphogenetic and inductive 

processes involving the mouse CNC[4,22,68]. These genes appear to involve several different pathways 

acting in parallel or in series with one another, but there is currently no simple pathway that unifies all the 

available data. Some genes, including Pax3 and Ap2α, are expressed in the migrating CNC as they 

relocate to their positions around the great vessels and OFT[21,23]. More recent evidence suggests that 

these interactions, and the programming of the CNC, are mediated by transcription factors including 

Foxc1/Foxc2, Hand1/Hand2, and Tbx1 and other genes on human chromosome 22q11[68,75,76,77]. 

Another set of genes is expressed within the developing vasculature itself, and may play a role in vessel 

formation, stabilization, and remodeling (Vegf-A[78]; neuropilin-1[79], or within the interacting 

mesenchymal cells (Mef2c[80]; Tissue factor[81]). This has led to the idea that the control over vascular 

assembly resides within the connective tissue–forming NC-derived mesenchyme. In support of these 

reciprocal interactions, Noden[82] found similar results using quail-chick transplantation. Finally, there is 

still another set of genes that is expressed in the pharyngeal arches themselves, and may play a role in 

mediating interactions between the arch epithelia (ectoderm and endoderm), mesenchyme, and 

endothelial vessels (Endothelin-1[83]; Ece-1[53]; EtA[84]; Semaphorin3c[85]). Interestingly, TBX1, a 

gene associated with DiGeorge syndrome, is not expressed in the CNC, but in the adjacent mesendoderm 

of the pharyngeal arches[86]. Furthermore, expression of the secreted growth factor Fgf8 is diminished in 

Tbx1-expressing cells from Tbx1 mutant mice[57], and mice deficient in Fgf8 exhibit elevated levels of 

CNC cell apoptosis and the typical DiGeorge syndrome interrupted aortic arch phenotype[87,88]. 

However, it is not currently known whether CNC cells are direct targets of Fgf8 or whether its effect is 

indirect. Although down-regulation of Bmp signaling in pharyngeal endoderm seems to be a prerequisite 

for CNC cell survival[86,89,90], NC-restricted deletion of Bmp type I receptor Alk2[61] results in 

abnormal maturation of the aortic arch arteries and PTA. Thus, it is possible that Fgf and TGFβ 
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superfamily signaling pathways converge to control CNC cell fate during both aortic arch artery 

remodeling and cardiac OFT morphogenesis[67].   

Cell fate studies using a transgenic Cre/loxP cell marking technique have demonstrated that the mere 

presence or absence of CNC is not sufficient to cause remodeling, as there do not appear to be any 

differences in the distribution between those arteries that persist vs. those that regress[18]. This suggests 

that different left-right signals required for remodeling must be carried by the colonizing CNC or are 

present within the mesodermal core, endothelial cells lining the arch arteries, or within the pharyngeal 

pouch/cleft endoderm. The origin and identity of these signal/s is currently unknown, but may involve 

retinoic acid levels[91] or differential activity of ion channels (Polycystin-2[92]) giving rise to 

unidirectional transfer through gap junctions, resulting in asymmetric gene expression[93]. Currently, 

Pitx2[94] is the only known gene asymmetrically expressed within the pharyngeal arch mesoderm, and it 

has been shown that an isoform-specific deletion of Pitx2c results in abnormal patterning of the aortic 

arch vessels[94]. Thus, it is well established that CNC can provide structural integrity and may also carry 

instructive signals required for aortic arch remodeling. Disruption of this signaling leads to defects in the 

interactions between postmigratory CNC and the endothelium of the great vessels and OFT. Collectively, 

these results support a model in which epithelia/endothelia of the arches signals to NC-derived 

mesenchyme (possibly via processed Et-1, Semaphorin, and/or Vegf) possibly through gap junctions. 

However, it is unclear exactly what the function of the NC is within the arches and OFT, how they 

differentiate into connective tissue, and which genes respond to the various CNC-mediated differentiation 

signals.  

ROLE OF CNC IN OFT DEVELOPMENT 

OFT Elongation and Septation 

A subpopulation of the CNC continues migration and colonizes the common OFT endocardial cushions. 

Although the CNC cell patterns in the pharyngeal region are similar in mouse and chick embryos, a 

couple of notable differences have been reported as they enter the OFT cushions prior to septation[15]. In 

quail-chick chimeras, the CNC enter by two distinct routes, subendocardially and submyocardially. This 

contrasts with the single subendocardial entry route of Cx43-lacZ marked mouse CNC. Furthermore, 

migration of CNC cells into the mouse OFT extends all the way to the distal conus, whereas they only 

extended into the conus in the chick and do not reach the conotruncal transition. These CNC patterning 

differences between species may be due to innate morphological differences between mammals and birds, 

as well as differences in timing of some of the developmental events in cardiovascular development[15]. 

Elongation of the OFT is a prerequisite for correct looping, complete rotation, and appropriate alignment 

during OFT septation. Both the CNC and anterior heart field (AHF) lineages are required for OFT 

elongation, as the CNC contribute to the existing conal endocardially derived OFT mesenchymal 

cushions, while the AHF cells contribute to the OFT myocardial cuff and most of the right ventricle[95]. 
Following CNC cell colonization of the truncal cushions, the common OFT is divided into a separate 

pulmonary artery and the aorta. This is accomplished by the development of the endocardial cushion 

conotruncal ridges, which grow caudally in a spiral fashion, resulting in posteriolateral realignment of a 

separate aorta and anteriomedial realignment of a separate pulmonary artery. This spiral septum fuses 

with the bulbar ridges, which, together with proliferation of the inferior endocardial cushion, close the 

interventricular septum (failure to do so results in VSD). Chick studies have shown that labeled CNC 

cells can undergo apoptosis on completion of septation[11,96], however, there are limited data as to 

whether this also occurs (and to what extent) during mammalian OFT septation. Martinsen et al. 

discussed the observation that there is an extension of the CNC to the rim of the right ventricular outflow 

tract[98] and that the ultimate fate of these deep CNC cells may be apoptosis[97,98,99]. This would 

explain why there are no NC-derived septal structures below semilunar valve level[97,99]. Furthermore, it 

is hypothesized that as the NC under go apoptosis, they may release or mobilize growth factors[97]. The 
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population of deep migrating cardiac NC, whose fate is cell death, may be marked by Id2, which also 

marks the secondary heart field and ganglia of the anterior parasympathetic plexus[98]. Similarly, mouse 

CNC cells in the OFT colocalize in a knot of TUNEL-positive condensed mesenchyme that transiently 

express a Wnt receptor Frizzled-2[100], suggesting a role in remodeling and patterning during septation. 

However, using transgenic mouse Cre/loxP cell marking techniques, it has been shown that CNC cells 

populate the conotruncal cushions and contribute to cardiac tissue found at later stages of fetal heart 

development and to a lesser extent in the adult heart[17,18,19]. Thus, not all the mouse CNC cells 

undergo apoptosis and a distinct population can be found in the mature heart. Initially, Wnt1-Cre 

permanently labeled mesenchymal cells project from the aortic sac in an unbroken stream through the 

conotruncal region, up to the junction of the conus with the wall of the right ventricle[18]. However, 

during septation and fusion of the spiral septum, the widely distributed CNC become localized within a 

thin subendothelial layer along the seam of fusion. Thus, it appears that the mass of CNC-derived cells 

that constitutes the early aorticopulmonary and conotruncal mesenchyme mostly dies or is overgrown as 

septal formation is completed[18].  

Remodeling of the OFT Septum 

Once in the OFT cushions, it has been suggested the CNC cells are involved in fusion and subsequent 

myocardialization of the proximal OFT, giving rise to the muscular outlet septum of the heart[101]. 

Rather than transformation of endocardial cushion cells (either endothelial or NC derived), it is thought 

that normal myocardialization of the cushions is caused by a redistribution of existing cardiomyocytes and 

regulated by (as yet unknown) secreted factors[102]. Myocardialization is only seen to occur in cushion 

mesenchyme, which is found inside the heart tube, and never in the epicardial mesenchyme, which covers 

the heart at the outside. Thus, the observation that disruption of one of the noncanonical Wnt pathway core 

planer polarity molecules leads to OFT misalignment defects is exciting[103,104], as this suggests 

cytoskeletal changes that affect cell adhesion, motility, and polarity do play a role during OFT septation. 

Similarly, NC-restricted N-cadherin deletion results in OFT remodeling defects and PTA[105]. The N-

cadherin null OFT cushions exhibit misshapen (more rounded) CNC cells with fewer cell-cell contacts 

when compared with wild-type littermates, and undergo elevated levels of apoptosis, indicating that N-

cadherin is required for CNC cell survival in the OFT. However, the precise role of the CNC cells and the 

molecular mechanisms responsible for the normal remodeling of the initial common OFT into two 

asymmetrical OFT vessels is largely unknown. For instance, it is unclear exactly how CNC differentiate 

into connective tissue and what CNC-mediated differentiation signals are expressed during septation. 

Finally, although there are several markers expressed during CNC cell migration into the arches and up to 

the OFT[21,23], there are currently no markers/candidates that are expressed in the CNC cells as they 

enter, undergo differentiation, and/or reside within it. This makes the elucidation of their role and function 

once they reach the heart elusive. This is a particular drawback when considering the ultimate role of the 

OFT mesenchymal cushion cells in OFT morphogenesis and pathogenesis of congenital heart defects. 

Thus, it is critical to find new genetic targets that either continue to be expressed as the CNC cells 

colonize the heart or get turned on by the colonizing CNC cells in the OFT. The field needs a broader 

array of molecular markers to help dissect both the earlier and later steps of CNC cell colonization of 

OFT[6], as well as a better understanding of the signals seen by the CNC cells that are involved in aortic 

arch artery remodeling and formation of OFT septum.  

Unexpected Roles of NC 

Given that the vast majority of CNC molecular markers, both mRNA and protein, are switched off as 

CNC colonize the OFT cushions and our reliance is on only a couple of transgenic marking techniques, 

the ultimate fate of the CNC remains uncertain. While most studies have supported the role of CNC in 
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OFT septation, several mouse and chick lineage marking experiments have also suggested a wider 

unexpected role for the CNC deep within the heart. Using retroviral labeling of the neural tube prior to 

EMT, it has been shown that CNC cells can enter the embryonic chick heart from two areas. First is the 

well-known pathway through the pharyngeal arches and into the arterial pole. The second entry is via the 

venous pole and dorsal mesocardium[106]. The arrival of NC to the venous pole occurs later in 

development than those in the OFT, and they can migrate to the atrioventricular cushions and surround 

the conduction system. Once venous pole cells reach these destinations, they appear to undergo apoptosis 

coincident with physiological function changes in the conduction system. Complimentary Cre/loxP 

mouse lineage mapping studies using Wnt1-Cre have similarly reported that NC cells can enter the heart 

from both venous and arterial poles[107]. The colonizing arterial pole CNC are associated with the 

cardiac conduction system and can contribute to bundle branches, while the venous pole cells contribute 

to the sinoatrial and atrioventricular nodes[107]. Using the same Wnt1-Cre (in parallel with 

complimentary P0-Cre mice), in conjunction with both the β-galactosidase and EGFP Cre/loxP lineage 

mapping system, a recent report demonstrated that a significant number of NC was seen to contribute to 

the adult semilunar and atrioventricular valves[108]. These studies also showed that NC enter from both 

the venous and arterial poles and can contribute to the proximal conduction system at late developmental 

stages. Furthermore, the NC in the atrioventricular valves simultaneously expressed several NC-related 

differentiation markers, suggesting some NC in the embryonic heart are not fully differentiated and may 

remain multipotent[108]. Two possible reasons for these apparent discrepancies with previous reports[11] 

and our own lineage mapping data (Fig. 1) are thought to be mixed vs. inbred genetic background effects 

that might allow CNC to migrate further than has previously been seen by others, and/or differences in 

Cre expression levels and types of indicator mice used (i.e., ROSA26R vs. CAGCAT-EGFP mice). Using 

the NC-restricted P0-Cre lineage marker mice crossed to floxed EGFP indicator line, one group has 

intriguingly shown that a small population of EGFP positive NC in the heart can colocalize with known 

stem cell markers[109]. Retroviral labeling of the chick neural tube was also used by Sohal et al.[110], 

who found that neuroepithelial cells may emigrate from the ventral side of the neural tube (termed VENT 

cells) and can give rise to numerous cell types in the developing cardiovascular system. Based on cell-

labeling studies in the hindbrain of avian embryos using replication-deficient retroviral vectors containing 

LacZ to permanently label their progeny, VENT cell emigration is thought to occur after CNC emigration 

has ceased[110]. However, the colonization of the heart was inferred retrospectively after examining 

numerous embryos harvested at different stages. Given these shortcomings and the lack of any specific 

molecular marker, it is unclear whether there is a contribution of ventral neural tube cells to the 

heart[111,112].  

Surprisingly, identification of these various unexpected roles of NC have all used many of the same 

techniques and reagents that were initially employed to define the traditional role of the CNC lineage 

during OFT septation. Although each of these studies is in agreement as to the fact that the majority of the 

CNC colonize the pharyngeal arches and OFT, the fact that they do all report a lesser (but detectable) 

contribution to the heart is significant. Our own studies with the Wnt1-Cre x R26R reporter system match 

those reported by Jiang et al.[18] and have thus far failed to detect venous pole entry or labeled CNC in 

the valves (unpublished). Intriguingly, Kirby and colleagues have shown that double ablation of the 

nodose placode and the CNC yields more consistently PTA[113]. Thus, nodose placode cells could be a 

population of cells that compensates for the CNC that are not always present in the unexpected 

lineages[113].This suggests that the degree to which these unexpected derivatives are detectable may 

depend on the various genetic backgrounds of the mice lines, as it is unlikely that variable Cre-mediated 

recombination efficiencies could account for these consistent differences. Although these data are 

difficult to reconcile with many of the traditional CNC-related phenotypes seen with various experimental 

and/or genetic NC targeting studies, the known pluripotent nature of NC means that unexpected 

derivatives warrant further investigation. Collectively, these intriguing results suggest that, depending on 

the setting of experimental and/or genetic CNC abnormalities present, and the genetic background used, 

NC can make their way into the rest of the heart, but they do not necessarily do so. Given that these 
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derivatives do not always contribute to these unexpected lineages and are not always present, it remains to 

be seen what role they play when present.   

CNC CELL EFFECTS ON MYOCARDIAL DEVELOPMENT 

Pax3 Mouse Model 

In embryos homozygous for two different splotch alleles (sp and sp2H) that each contain Pax3 mutations, 

all the mutants exhibit PTA (with obligatory VSDs) and die mid-gestation. The presence alone of 

PTA/VSD should not cause in utero lethality[58], as the systemic and pulmonary circulations are not 

required to be separate until birth, thus additional causes of lethality have been investigated. Significantly, 

100% of the sp2H homozygous mutant embryos die ~E14.0 and exhibit edema, pooling of blood in caval 

veins, and engorgement of the fetal liver, which are all suggestive of poor cardiac function[23,24]. 

Deficiencies in myocardial Ca2+ handling further compromise cardiac function, as there is abnormal 

excitation-contraction coupling in the sp2H mutant cardiomyocytes[24]. It has been proposed that this 

myocardial defect is an indirect consequence of the reduced numbers of migrating CNC[37] because they 

are not generally thought to contribute to the myocardium[18]. The sp homozygous embryos also die 

~E14.0 due to cardiac failure, but the sp hearts also present with a thinned myocardium and an absent 

compact zone[36] (see Fig. 3). Using subtractive hybridization to identify mRNA transcripts whose 

expression is enhanced between E10.5–13.5 in normal hearts, it has been shown that p57Kip2 (which 

encodes a cyclin-dependent kinase inhibitor of the p21 family) is up-regulated and ectopically expressed 

in the myocardium of sp embryos[114]. As the sp cardiac OFT and thinned myocardial phenotype can be 

rescued by transgenic overexpression of neural tube/NC-restricted Pax3[36], this suggests that the sp 

myocardial defects are CNC-related. Similarly, Pax3-FKHR knockin heterozygous mice are not viable 

and 100% die ~birth due to presence of VSD and exhibit cardiac insufficiency, and a grossly enlarged 

septum with a dilated OFT[115]. It is currently unclear if the Pax3-FKHR knockin is acting as a 

“dominant-negative” mutation affecting the heart (as Pax3 itself has not been thought to play a role in 

myocardial morphogenesis) or if the Pax3 mutation directly affects the heart (as Pax3 protein is 

detectable within isolated valvular cells in the E16.5 heart). Although not identical, it is interesting to note 

that both the Pax3-FKHR and sp2H mutants lack the C-terminal portion of the homeodomain that 

modulates DNA binding activity and controls specificity of target sequences[116]. As sp2H hearts have an 

intact compact layer, but still die in utero, we assessed trabecular and compact layer-restricted gene 

expression (Fig. 4). In contrast to sp mutants[114], sp2H mutants express normal levels and patterns of 

Anf, Bmp10, p57Kip2 and N-myc, suggesting that lack of normal CNC colonization can affect different 

myocardial maturation signaling pathways that ultimately result in poor cardiac function and lethality. 

Although a direct role for Pax3 during cardiomyocyte morphogenesis remains elusive, Schafer et 

al.[117] have suggested that the Lbx1 homeodomain-containing transcription factor and Pax3 are 

involved in a regulatory feedback loop to repress each other indirectly within the ventricle. A small 

population of Lbx1 expressing NC migrate from the neural tube into the caudal pharyngeal arches and on 

into the OFT. Lbx1 null embryos have cardiac looping defects, alterations in connexin gene expression, 

and hyperplasia of the myocardium[117]. Lbx1 is up-regulated in sp2H mutant ventricles, suggesting that 

Lbx1 null CNC are not programmed correctly and can disrupt heart development, resulting in cardiac 

malformations[117]. Complex embryological defects, including CNC and myocardial dysfunction, can be 

experimentally induced via prenatal exposure to the herbicide nitrofen[118]. Correlating with the 

aforementioned data, Pax3 mRNA is decreased in rat embryo hearts that exhibit CNC-associated nitrofen-

induced defects. As myocardial maturation is known to be regulated by adjacent epicardially derived 

signals[119,120], and as Pax3 is not thought to be normally expressed by cardiomyocytes[121], these data 

suggest that a direct contribution by the CNC to the epicardium is an intriguing possibility. Although Wnt1-

Cre expression has been associated exclusively with the NC and derivatives[18,122], the epicardium of  
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FIGURE 3. Histological analysis of the E13.5 ventricular myocardium in wild-type and pax3 allelic mouse mutants. (A and D) Wild-type, (B 

and E) sp2H, and (C and F) sp embryonic hearts transversely sectioned. Note that both the sp2H and sp homozygous mutants have OFT defects 

(arrowheads) and VSDs (indicated by *), but that only the sp myocardium is abnormally thin. Trabeculation (indicated by bar in right ventricles; 

rv) is still present in sp mutants (although sparse), but the highly proliferative sp compact layer (indicated by red arrow) is severely diminished 

when compared to sp2H and wild-type littermates (arrows in D and E). Abbreviations: ao, aorta; pul, pulmonary artery.    

 

FIGURE 4. Molecular marker analysis of the E12 ventricular myocardium. (Left panel) RT-PCR analysis of trabeculae and 

compact layer-specific marker expression in wild-type and sp2H mouse mutant hearts. Expression levels of the trabecular marker 

genes atrial natriuretic factor (Anf), bone morphogenetic factor 10 (Bmp10), and p57Kip2 are unaffected in homozygous sp2H 

hearts when normalized with GAPDH housekeeping gene expression. Similarly, expression of N-myc, a marker of compact 

myocardium, is normally expressed in mutant hearts. (Right panel) Radioactive in situ hybridization analysis of N-myc expression 

patterns supports the RT-PCR data and reveals that the sp2H compact layer (B) is present and appropriately expresses N-myc in the 

proliferative compact myocardial layer (indicated by arrows). 

some Wnt1-Cre x R26R embryos has been reported to contain a small population of recombined cells[123] 

that could interact with the adjacent myocardium. In order to address these unanswered questions, we 

generated a “tissue-specific” targeted knockout of Pax3, that in conjunction with cardiomyocyte and 

epicardially restricted Cre mice, will enable us to begin testing whether the observed poor sp2H cardiac 

dysfunction is due to either null primary effects of the Pax3 mutation in the cardiomyocytes or secondarily 
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due to earlier CNC and/or epicardial effects. These lineage-restricted knockout approaches will also enable 

us to determine whether abnormal CNC morphogenesis is sufficient to give rise to abnormal aortic arch 

morphogenesis, or whether myocardial dysfunction is additionally required.  

Direct or Indirect Effects on Cardiomyocyte Proliferation? 

Similar to the Pax3 mouse mutants studies, Kirby and colleagues have also shown that premigratory CNC 

ablation in chick consistently results in myocardial dysfunction prior to the arrival of the CNC within the 

heart, and have suggested that these early effects on the heart are due to a prolonged release of secreted 

growth factors (FGFs, etc.) by the pharyngeal endoderm, which are normally involved in the induction of 

cardiac mesoderm[15]. These FGF signals are proposed to suppress chick myocardial development and 

calcium transients/contraction, and alter myocardial proliferation/differentiation in the absence of 

CNC[15,124], but are prevented from disrupting cardiomyocyte morphogenesis when the full 

complement of CNC are present in the pharyngeal arches and OFT septum. These data suggest that the 

endocardium can indirectly have deleterious effects on myocardial maturation, as a consequence of absent 

CNC colonization.  

Genetic evidence also indicates that normal CNC morphogenesis is necessary for normal myocardial 

development and in utero viability. Conditional deletion of Bmp receptor1a specifically in the NC using 

Wnt1-Cre results in defective myocardial formation, as well as a shorter OFT that fails to septate[123]. 

These mutant embryos die ~E12 with acute heart failure and exhibit a notable lack of ventricular 

myocardial proliferation. Lineage-tracing experiments suggested that a small population of permanently 

marked NC might be able to migrate to the epicardium[123]. Similarly, Wnt1-Cre conditional deletion of 

N-cadherin results in embryonic lethality ~E13 and OFT remodeling defects that resulted in PTA in the 

majority of the mutants[105]. N-cadherin NC-specific mutants are thought to die due to a thinned 

ventricular myocardium and detachment of myocardium from adjacent epicardium. Normally, the 

epicardium expands in an epithelial sheet to cover the ventricular surface, from where epicardial cells 

invade the underlying myocardium. Given that a few CNC can populate the epicardium[123], the 

reduction in ventricular wall thickness in both these NC-restricted mutants could be due to either a direct 

effect on the NC-derived epicardial cells that invade the myocardium (like other epicardial cells); or they 

could be secondarily due to loss of epicardial-myocardial signaling or Bmp receptor1a/N-cadherin 

insufficiency in the CNC and their subsequent inability to effectively colonize the OFT. It has been 

suggested that perhaps the CNC produce a factor that stimulates myocardial proliferation, and when 

inappropriately specified, they are unable to respond to OFT-restricted stimuli and consequently 

myocardial proliferation is reduced[123].  

A second cell lineage, the AHF, has also been shown to play a major role during OFT development 

and septation. The AHF in mouse includes the early pharyngeal core arch mesoderm and splanchnic 

mesoderm, which overlie the ventral pharyngeal endoderm and can be identified prior to NC emigration 

within the primary heart field as early as the cardiac-crescent stage[125,126]. As AHF cells contribute to 

definitive OFT myocardium as well as to the right ventricle and some endocardium[127,128], 

inappropriate cardiomyocyte specification of the AHF lineage could subsequently result in compromised 

myocardial development. Given that the AHF and CNC may be interdependent, because surgical ablation 

of either CNC[10] or AHF[129] results in changes in OFT length, myocardial dysfunction could possibly 

result from inappropriate CNC-AHF cross-talk. Similarly, recent lineage-specific deletion of the Shh 

morphogen has elegantly shown that a Shh pharyngeal endodermal signal is directly required by both the 

AHF and CNC for normal OFT morphogenesis[130]. The possibility of AHF and CNC interactions 

suggest that communication and dynamic intracellular signaling among multiple lineages may be crucial 

during CNC colonization of the pharyngeal aortic arches and OFT development and septation.  
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CNC Species-Specific Differences 

In contrast to their mammalian and chick CNC counterparts, zebrafish CNC originate more rostrally 

along the neural tube, and can contribute to the myocardium and may have different functions in a 

species-dependent context[131]. Given the absence of OFT septation in zebrafish, it was unclear whether 

there would be any CNC contribution to the zebrafish heart. However, using three lineage-tracing 

techniques, it has been demonstrated that they contribute to the pharyngeal arches and OFT, but 

additionally they were found to incorporate into the myocardium and differentiate into muscle[131]. 

Given the myocardial contribution, laser ablation of zebrafish CNC more severely affects ventricular 

function when compared with chick/mouse[132]. It is thought that perhaps birds and mammals have 

acquired signals that stop the CNC in the OFT, rather than traveling deeper in the heart, so they are in the 

right location to participate in septation. Evolutionarily, zebrafish heart development occurs without the 

subsequent modifications that CNC contribute to in birds and mammals, and the advancement of divided 

circulation could be the reason CNC switched from a myocardial to mesenchymal phenotype[131]. The 

CNC lineage has also been shown to be important for Xenopus heart development[98]. In Xenopus, NC 

migrate from the neural folds throughout the embryo and give rise to multiple cell types, but rather than 

the highly restricted closely related sheet of NC observed in mouse/chick embryos, the NC in Xenopus 

were much fewer, migrated individually, and were less restricted. When premigratory CNC were ablated 

in Xenopus, expression of a presumptive NC marker (xId2 transcription factor) was reduced in 

pharyngeal arches and absent in the OFT, inflow tract, and myocardium[98].   

CNC STEM CELLS 

At the onset of migration, the NC represent a heterogeneous population of cells with regard to their 

developmental potentials. It has been suggested that they consist of a mixture of stem cells, fate-restricted 

cells, and cells that are committed to the smooth muscle cell lineage[133]. The existence of pluripotent 

progenitors was shown by in vitro clonal analysis[134,135] and by labeling individual NC cells in 

vivo[136]. Both approaches demonstrated that an individual cell can give rise to an array of differentiated 

progeny, including sympathetic neurons, sensory neurons, Schwann cells, melanocytes, smooth muscle 

cells, chondrocytes, fibroblasts, and possibly other cell types[137].  

Two recent mouse Cre/loxP NC lineage mapping studies have similarly suggested some CNC exist in 

the embryonic heart that are not fully differentiated and may be multipotent[108,109]. Using the NC-

restricted P0-Cre lineage marker mice crossed to floxed EGFP indicator line, it was shown that a small 

population of EGFP positive CNC in the heart colocalize with known stem cell markers[108]. 

Multilineage progenitor (side populations) cells in the heart were identified by cell surface marker 

expression, nestin, size, proliferation, ability to form spheres in culture with no serum, and the ability to 

lose multipotency following addition of serum. These P0-Cre marked cells could be expanded in culture 

and differentiated into cardiomyocytes, smooth muscle cells, neurons, and glia[109]. A second group also 

used the P0-Cre (and Wnt1-Cre) lineage marker mice, but this time crossed them to the R26R lacZ 

indicator line and found that a significant number of NC was seen to contribute to the adult semilunar and 

atrioventricular valves. Marked CNC were observed to enter the atrioventricular valves from both the 

venous and arterial poles, and were shown to contribute to the proximal conduction system at late 

developmental stages[108]. Intriguingly, lineage-specific antibody immunohistochemistry indicated that 

some NC-derived cells in the atrioventricular valves expressed melanocyte and neurogenic markers, some 

NC-derived in the cardiac conduction system expressed neurogenic and gliagenic markers, and another 

population of NC-derived cells expressed no differentiation specific markers at all[108]. Thus, it has been 

suggested that multipotent/stem cells with NC origin exist dormant in the neonatal heart and, on receiving 

the right signals, could differentiate into various cell types, thereby offering therapeutic potential.  
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CONCLUSIONS 

The critical requirement of the CNC during cardiovascular development is well documented, as are the 

severe and diverse congenital consequences associated with their removal and/or genetic manipulation 

(see Table 1). Both animal models and human candidate gene-mapping approaches reveal that multiple 

interacting signaling pathways play a role during CNC formation, migration (schematized in Fig. 5), and 

colonization of the heart. Local cell-cell interactions among the endothelium, AHF, pharyngeal endoderm 

and ectoderm, and cardiomyocytes appear critical during subsequent colonization and septation of the 

OFT. The challenge now lies in integrating these data and identifying the common underlying 

mechanisms and relationships between these implicated signaling pathways. Systemic and conditional 

gene deletion and lineage mapping studies have proved tremendously effective, and enabled us to build a 

mechanistic framework that explains some of the molecular mechanisms controlling the coupled 

abnormal CNC morphogenesis and myocardial dysfunction during embryogenesis. An inductive 

interaction between CNC and the epicardium is an attractive concept for integrating the various structural 

and functional defects, but presently there is only limited experimental support[122]. Similarly, a greater 

understanding of the recent proposed dynamic intracellular (possibly reciprocal) signaling between the 

CNC-AHF lineages is likely to be important for complete insight into the actual functional mechanism of 

the CNC within the heart. Reliable and restricted epicardial Cre-expressing mice, in conjunction with 

AHF-restricted Cre mice, in various combinations may be required to determine whether alteration of 

epicardial and/or AHF gene expression and function can be affected by CNC defects. Subsequent 

myocardial defects caused by a lack of appropriate epicardial and/or AHF signals might then account for 

ventricular dysfunction. With the likely future identification of CNC-restricted and postmigratory CNC 

markers, subsequent tissue-restricted and inducible targeting approaches will help to further discriminate 

the primary from the secondary nonspecific cardiovascular effects. The identification of several 

unexpected derivatives of the CNC and the possibility that pluripotent CNC reside within the heart 

chambers all require ongoing investigation.  

 

FIGURE 5. Schematic representation of migration of the CNC to the circumpharyngeal ridge, caudal pharyngeal arches 

(third, fourth, and sixth), and OFT prior to asymmetrical remodeling of the aortic arch arteries. Note that some of the CNC 

migrate in and surround the nascent aortic arch arteries, while others continue to migrate and eventually colonize the 

aorticopulmonary septum. Abbreviations: S1, S2, S3, S4, somites 1–4; Oto, otic vesicle. (From Kirby[170], with 

permission.) 
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TABLE 1 

Critical requirement of Cardiac NC 

Putative 
CNC Role 

Genes Loss and Gain-of-Function Cardiovascular Effects Ref. 

Specification Pax3 Homozygous embryos have PTA and VSD and die ~E14 due to 
myocardial dysfunction. 

23,24 

  Wnt1/Wnt3a Double nulls fail to undergo NC expansion and have CNC cells 
stuck in the NT and die ~E18.5. 

34 

  P0 Useful marker of NC starting ~E9.0. Knockout mice are viable, 
but have abnormal NC-derived Schwann cells. 

17,138 

  Ap2α Expressed in cardiac and cranial NC. Null mice die perinatally 
and exhibit defects in the OFT, NT, craniofacial skeleton, eye, 
and cranial ganglia. 

139 

  Msx2 Knockout mice are viable, but have defects in skull ossification, 
calvarial bones, teeth, and mammary glands. Pax3/Msx2 
double nulls rescue Pax3 mutant OFT defects, but still have 
defects in muscles and NT.  

37,140 

  Msx1/Msx2 Mice homozygous for mutations in both genes die ~E18.0 with 
craniofacial malformations, dysmorphogenesis of pharyngeal 
derivatives, and anomalies in the conotruncal structures of the 
heart. 

141 

EMT Snail (Snai1) Homozygous mutants die ~E8.0 with defects in gastrulation and 
lack mesoderm. Ectopic expression in the chick hindbrain 
increases NC cell production.  

142,143,144 

  Slug (Snai2) Knockout mice are viable, although they exhibit postnatal 
growth deficiency. Conversely, incubation with antisense 
oligonucleotides in chick embryos results in failure of 
presumptive NC to transform into mesenchyme.   

145,146,147 

  Id2 Mutant mice are in utero viable, however, ectopic expression of 
Id2 in chick embryos results in conversion of ectodermal cells 
to NC cells. 

148,149,150 

  Pinch-1 Mull mice die ~E6.5 and overexpression in chick neural fold 
explants halts NC cell migration.  

41,151 

  RhoB Chick neural tube explants treated with C3 exotoxin inhibit 
RhoB activity and prevent NC delamination.  

43 

  Foxd3 Null mice die ~E6.0 with an expansion of the extraembryonic 
ectoderm and loss of pluripotent epiblast. Ectopic expression 
in chick neural tubes induces NC marker expression, 
promotes delamination and NC migration. 

152,153 

  Sox9 Null embryos die ~E11.5 from congestive heart failure due to 
dilated major blood vessels. Null embryos exhibit hypoplasia 
of the branchial arches. Conditional Wnt1-Cre deletion results 
in NC apoptosis just before or just after migration into the 
periphery.    

44,154 

Migration Cx43α1 Knockouts have enlargement of the right ventricle, attenuation 
of ductus arteriosus, abnormal myocardial development in the 
conotruncus, and die ~birth due to pulmonary OFT 
obstruction. 

47 

  N-cadherin Homozygous mutant mice die ~E10.0. Conditional Wnt1-Cre 
deletion results in lethality ~E12.5–13.5 and the mutant mice 
have OFT defects, including PTA and thin ventricular 
myocardium with a detached epicardium.  

155,156 
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TABLE 1 (continued) 

Putative 
CNC Role 

Genes Loss and Gain-of-Function Cardiovascular Effects Ref. 

  Wnt11 Knockouts die ~2 days postpartum most likely due to cardiac 
defects. Following injection of the dominant negative form into 
dorsal blastomeres of Xenopus embryos, there is inhibition in 
the migration of NC. 

52,157 

Aortic arch 
remodeling 

Pdgf receptor α Most null mice die ~E16.5 due to extensive hemorrhaging. 
Conditional Wnt1-Cre studies results in neonatal lethality with 
cleft palate, aortic arch artery defects, VSD, and OFT defects, 
including PTA. 

65,158 

  Alk2 Mutant mice die ~E9.5 and severe disruption of mesoderm 
formation. Conditional Wnt1-Cre analysis revealed that 
mutants have deficiencies in NC cell migration to the OFT, 
lack of NC-derived smooth muscle around the aortic arch 
arteries with abnormal regression of the third and sixth aortic 
arch arteries, and PTA. 

66,159,160 

  Alk5 Deletion of Alk5 in NC cells with Wnt1-Cre causes death in 
mutant mice perinatally. PTA, inappropriate arch artery 
remodeling and aortic sac development, and abnormal 
thymus and parathyroids are present.   

67 

Arterial tree 
remodeling 

Foxc1/Foxc2 Double null mutants die ~E9.5, lack both an OFT and right 
ventricle, exhibit NC apoptosis resulting in a spectrum of NC-
related defects.  

161 

 Hand1  Homozygous embryos die ~E8.5–9.5 and exhibit yolk sac 
abnormalities as a result of mesoderm deficiency and 
undergo abnormal heart looping.   

162 

 Hand2 Null mutants die ~E10.5 due to cardiac failure, lack of aortic 
arch vessels, absent right ventricle, thin myocardium, and an 
absence of trabeculation.  

163 

 Vegf-A Mice lacking Vegf-A die prior to postnatal day 14 and have 
enlarged hearts with irregular heartbeat and weak 
contractions, impaired myocardial angiogenesis, aortic arch 
artery defects, and fatal ischemic cardiomyopathy.   

164 

  Neuropilin-1 Most null mice die ~E13.5 and have transposition of the aortic 
arch arteries, PTA, and disorganized yolk sac. 

165 

  Mef2c Homozygous mutants die ~E9.5 and have a lack of smooth 
muscle cell differentiation, absent right ventricle, and failure of 
vascular remodeling in the yolk sac. 

80,166 

  Tissue factor Null mutants die ~E9.5–10.5, exhibit an abnormal yolk sac 
circulation, and deficiency of smooth muscle cells in vitelline 
vessels. 

81 

  Endothelin-1 Homozygous mutants have aortic arch artery and OFT defects, 
VSD, and enlarged right ventricle. 

83 

  Ece-1 Knockouts have cardiac OFT defects, perimembranous VSD, 
abnormal remodeling/regression of great vessels, and lack 
enteric neurons and epidermal melanocytes. 

53 

  EtA Mutants are cyanotic due to a structural defect in the upper 
airway and die shortly after birth. Mutants have defects in 
aortic arch artery alignment, OFT development, and 
craniofacial structures. 

84 

  Semaphorin3c Mutants die shortly after birth and exhibit PTA and interruption 
of the aortic arch. NC migration into the proximal OFT is 
impaired. 

85 
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TABLE 1 (continued) 

Putative 
CNC Role 

Genes Loss and Gain-of-Function Cardiovascular Effects Ref. 

  Tbx1 Homozygous nulls exhibit hypoplasia of the pharynx, abnormal 
and ectopic NC migration within the aortic arch arteries 
resulting in anomalous pharyngeal arch artery formation, 
VSD, and lack OFT septation. 

57 

  Fgf8 Hypermorphic mutants survive till term, but have small/absent 
thymus, craniofacial abnormalities, and malformations of both 
the aortic arch arteries and OFT. 

87 

  Pitx2 Homozygous mutants die ~E14.0–15.0, and have a failure of 
the ventral body closure, right pulmonary isomerism, swelling 
of the atrioventricular canals, tricuspid and mitral valve 
defects, and double outlet right ventricle. 

167 

Myocardial 
development 

Lbx1 Homozygous nulls defective heart looping and increased 
proliferation resulting in myocardial hyperplasia.  

117 

  p57Kip2 Mutants have umbilical abnormalities, defects in position of 
body wall muscles, cleft palate, gastrointestinal defects, and 
die just after birth. This is a useful marker of ventricular 
trabecular development.  

168,169 
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