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ABSTRACT
Objective The inflammatory cytokine, tumour necrosis
factor α (TNF-α), exerts deleterious cardiovascular
effects. We wished to determine the effects of TNF-α
antagonism on endothelial function and platelet
activation in patients with acute myocardial infarction.
Design and setting and patients A double-blind,
parallel group, randomised controlled trial performed in
a tertiary referral cardiac centre. 26 patients presenting
with acute myocardial infarction randomised to receive
an intravenous infusion of etanercept (10 mg) or saline
placebo.
Main outcome measures Leucocyte count, plasma
cytokine concentrations, flow cytometric measures of
platelet activation and peripheral vasomotor and
fibrinolytic function were determined before and 24 h
after study intervention.
Results Consistent with effective conjugation of
circulating TNF-α, plasma TNF-α concentrations
increased in all patients following etanercept
(254±15 vs 0.12±0.02 pg/ml; p<0.0001), but not
saline infusion. Etanercept treatment reduced neutrophil
(7.4±0.6 vs 8.8±0.6×109 cells/l; p=0.03) and plasma
interleukin-6 concentrations (5.8±2.0 vs 10.6±4.0 pg/ml;
p=0.012) at 24 h but increased platelet–monocyte
aggregation (30±5 vs 20±3%; p=0.02).
Vasodilatation in response to substance P, acetylcholine
and sodium nitroprusside, and acute tissue plasminogen
activator release were unaffected by either treatment
(p>0.1 for all).
Conclusions Following acute myocardial infarction,
etanercept reduces systemic inflammation but increases
platelet activation without affecting peripheral vasomotor
or fibrinolytic function. We conclude that TNF-α
antagonism is unlikely to be a beneficial therapeutic
strategy in patients with acute myocardial infarction.

INTRODUCTION
The relationship between inflammatory disorders
and atherosclerosis has been recognised for over a
century, and there now exists clear evidence to
support the concept that immune responses are
critical in the initiation, progression and destabilisa-
tion of atherosclerosis. T lymphocytes and mono-
cytes are present within stable and unstable
atherosclerotic plaques, and act to mediate
both atherogenesis and plaque destabilisation.1

The inflammatory nature of atherosclerosis is

exemplified by the high incidence of cardiovascular
disease in patients with chronic inflammatory con-
ditions, such as rheumatoid arthritis2 and systemic
lupus erythematosis,3 independent of traditional
cardiovascular risk factors. Similarly, acute inflam-
mation, such as that occurring in the context of
infections of the respiratory and urinary tract, is
temporally associated with an increased incidence
of adverse cardiovascular events such as myocardial
infarction and stroke.4 Elevated concentrations of
inflammatory mediators predict the occurrence of
adverse cardiovascular events, even in apparently
healthy low risk individuals without overt cardio-
vascular disease.5 Despite the longstanding recogni-
tion of the importance of inflammation in the
development of atherosclerosis and the precipita-
tion of thrombotic events, anti-inflammatory
therapy for the treatment of atherosclerosis has
received little attention. However, targeted anti-
inflammatory therapy is a highly attractive concept,
particularly for the treatment of acute vascular
inflammation, as this is a universal component of
the development of acute coronary syndromes.
Tumour necrosis factor α (TNF-α) is a

pro-inflammatory cytokine secreted by activated
macrophages and T cells, and is instrumental in the
mediation of vascular inflammation. TNF-α recep-
tors are expressed on all critical cellular effectors of
atherogenesis, namely, vascular endothelial and
smooth muscle cells, and activated leucocytes such
as T lymphocytes and macrophages.6 TNF-α pro-
duction is deleterious to vascular homeostasis
through the induction of endothelial surface adhe-
sion molecule expression mediating platelet–leuco-
cyte interactions, cellular aggregation and thrombus
formation.7 TNF-α production is increased in
unstable atherosclerotic plaques8 and is detectable
in increased concentrations in patients with acute
myocardial infarction (AMI).9 Furthermore, plasma
TNF-α concentrations are predictive of death and
recurrent ischaemic events following AMI.10 We
have previously demonstrated that TNF-α mediates
vascular inflammation with potentially beneficial
pro-fibrinolytic effects; however, it is associated
with adverse inhibitory effects on endothelium-
dependent vasodilatation.11 Consistent with these
deleterious effects, antagonism of the TNF-α recep-
tor has been demonstrated to improve
endothelium-dependent vasodilatation in a variety
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of clinical settings such as congestive cardiac failure,12 acute sys-
temic vasculitis13 and rheumatoid arthritis.14 The positive vascu-
lar effects of TNF-α antagonism may therefore be beneficial in
the management of acute coronary syndromes, which are
strongly associated with endothelial dysfunction. We therefore
studied the effects of the TNF-α receptor antagonist, etanercept,
on peripheral vasomotor and fibrinolytic function, and platelet
activation in patients presenting with recent AMI.

METHODS
Subjects
The study was performed with the approval of the local
research ethics committee in accordance with the Declaration of
Helsinki and with the written informed consent of all partici-
pants. Inclusion criteria were a typical history of myocardial
ischaemia lasting more than 20 min within 24 h of hospitalisa-
tion with ischaemic electrocardiographic changes and an ele-
vated troponin-I concentration (>0.2 mg/l). Patients were
excluded in the event of significant comorbidity, including active
systemic inflammatory disorders, insulin-dependent diabetes
mellitus and the use of anti-inflammatory drugs other than
aspirin. Given the immunosuppressive effects of etanercept,
exclusion criteria also included any history of recent or recur-
rent infection, tuberculosis or any opportunistic infection within
the previous 6 months.

Study design
In a randomised, double-blind, parallel group design, patients
were evaluated on two occasions: before and 24 h after intra-
venous administration of the TNF-α antagonist, etanercept
(10 mg), or saline placebo. A single subcutaneous 25 mg dose of
etanercept improves endothelium-dependent vasodilatation
within 6 h of administration in patients with heart failure.12 In
order to achieve a rapid onset of action, we elected to use the
intravenous route, and single intravenous doses of up to 10 mg/m2

have been used safely in patients with heart failure.15

Subcutaneous etanercept has 23% bioavailability and achieves
peak plasma concentrations of 0.43 mg/ml at 66 h.16 In contrast, a
single intravenous dose of 10 mg etanercept achieves a maximum
concentration of 2.32 mg/ml at 50 min.16 Given a plasma half-life
of approximately 70 h,16 we judged that 24 h would be an appro-
priate time point to capture any potential beneficial cardiovascular
effects of intravenous etanercept. Randomisation was performed
by a computer generated sequence to ensure concealment of treat-
ment allocation and following minimisation for age, sex, time to
randomisation, peak troponin, serum cholesterol and cardiovascu-
lar risk factors including diabetes mellitus, hypertension and
smoking.17 Study procedures were all completed prior to invasive
angiography or percutaneous coronary intervention.

Venous sampling and cytokine analysis
Patients abstained from food and caffeine containing drinks for
4 h, and 24 h from ingestion of alcohol prior to phlebotomy.
Blood samples were obtained through a 17-gauge cannula with
careful attention to ensure smooth extraction of blood to
avoid artefactual platelet activation ex vivo, and anticoagulated
with D-phenylalanyl-L-propyl-L-arginine chloromethyl-ketone
(PPACK). During vasomotor assessments, venous blood was
withdrawn simultaneously from each arm and collected into
tubes containing acidified buffered citrate (for t-PA assays), triso-
dium citrate (for plasminogen activator inhibitor type 1 (PAI-1)
assays) and potassium EDTA (for cytokine assays). Citrate and
acidified buffered citrate samples were centrifuged at 2000 g for
30 min at 4°C and EDTA samples at 1000 g for 10 min at 20°C.

Platelet-free plasma was decanted and stored at -80°C before
assay. Plasma TNF-α and IL-6 concentrations were determined
as described previously18 using ELISA (Quantikine human TNF
and IL-6 immunoassays, R&D Systems; and Dako A/S, respect-
ively) and fibrinolytic activities using a photometric method
(Coatest t-PA and PAI-1, Chomogenix AB). Haematocrit and
white cell count were determined using an automated Coulter
counter (Beckman-Coulter).

Vasomotor assessment
Assessment of vasomotor function in response to intra-arterial
vasodilators was performed as described previously.19 Briefly,
studies were performed in a quiet, temperature-controlled envir-
onment with the patient in the supine position throughout.
Venous 17-gauge cannulae were inserted into each forearm for
blood sampling and a 27-standard wire gauge steel needle
placed in the brachial artery of the non-dominant forearm for
vasodilator infusions. A baseline 30 min intra-arterial infusion
of saline was followed by intra-arterial infusion of substance P at
2, 4 and 8 pmol/min; then acetylcholine at 5, 10 and 20 mg/
min; and finally sodium nitroprusside at 2, 4 and 8 μg/min,
infused for 10 min at each dose with each agonist separated by a
20 min saline infusion. Forearm blood flow was measured in
both arms by venous occlusion plethysmography with the use of
mercury-in-silastic strain gauges. Heart rate and blood pressure
in the non-infused arm were monitored at intervals throughout
with the use of a semiautomated, non-invasive oscillometric
sphygmomanometer.

Immunostaining and flow cytometry
All reagents were obtained from AbD Serotec (Oxford, UK)
unless otherwise stated. The following antibodies were used:
IgG1-FITC, CD14-PE, CD42a-FITC, IgG2a-PE, CD62P-PE,
IgG1-PE (eBioscience Ltd. UK) and CD14-RPE and IgG1-RPE
(DakoCytomation, Denmark). All antibodies were diluted 1:20
with flow buffer. FACS-Lyse was obtained from Becton-
Dickinson (Cowley, UK). Blood anticoagulated with PPACK was
labelled with the appropriate antibodies exactly 5 min from col-
lection and incubated in the dark for 20 min at room tempera-
ture. Immunolabelling was performed on whole blood to avoid
artefactual platelet activation caused by purification procedures.
Samples were then fixed and run through a FACSCalibur
(Becton-Dickinson) flow cytometer within 2 h of fixing using an
established flow protocol.20 For determination of PMA a total
of 3000 events were collected in the CD14 monocyte gate. For
platelet expression of P-selectin 7500 events were collected in
the platelet gate.

Data and statistical analysis
Cytometric data analysis was performed with FlowJo V.7.2.5
(Flow Cytometry Analysis Software). Plethysmographic data and
net t-PA release were determined as described previously,19 21 as
the product of the infused forearm plasma flow (based on the
mean haematocrit and the infused FBF) and the concentration
difference between the infused ([t-PA] inf) and non-infused
([t-PA] non-inf) arms: estimated net t-PA release=FBF×(1−Hct)×
([tPA]inf−[tPA]non-inf ). Continuous variables are reported as
means±SEM. Analysis of variance with repeated measures and a
two-tailed Student t test were performed as appropriate with
the use of GraphPad Prism software. The primary outcome
measure was PMA. On the basis of previous work examining
the effect of clopidogrel on PMA22 we estimated that a 5%
absolute change in PMA would be of clinical significance and
that at least 12 paired samples would provide an 80% power to
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detect a 10% absolute difference in PMA from baseline at a sig-
nificance level of 5%.

RESULTS
26 patients hospitalised with type 1 acute non-STelevation myo-
cardial infarction were recruited into the study. Patients were
well matched with respect to all relevant baseline characteristics
(table 1). No additional medical therapy was instituted during
the study period. No serious adverse events occurred during the
study.

Inflammatory response and cytokine analyses
Consistent with effective conjugation of circulating TNF-α,
plasma TNF-α concentrations increased in all patients following
etanercept infusion (254±15 vs 0.12±0.02 pg/ml; p<0.0001).
At 24 h, treatment with etanercept was associated with a
reduced neutrophil count (8.8±0.6 vs 7.4±0.5 cells 109/l;
p=0.02), and a rise in the lymphocyte count (2.3±0.2 vs 2.7
±0.26; p=0.001), with a reduction in the neutrophil to
lymphocyte ratio following etanercept compared with placebo
(−1.3±0.4 vs 0.17±0.2; p=0.001). Plasma interleukin-6 con-
centrations were similarly reduced (10.6±4.0 vs 5.8±2.0 pg/ml;
p=0.01). No significant differences were observed at 24 h com-
pared with baseline in those patients randomised to placebo
(p>0.05 for all; table 2).

Platelet activation
PMA and platelet P-selectin expression were similar between the
groups at baseline. Following etanercept infusion, there was a
50% relative increase in PMA (30±5 vs 20±3%; p=0.02) com-
pared with baseline. PMA was however unaffected by saline
placebo infusion (28±5 vs 33±6%; p=0.23). Platelet P-selectin
expression was not affected by either treatment (p>0.05 for
both; table 2).

Vasomotor response
Of the 26 patients enrolled, 15 underwent vascular assessment
(eight randomised to receive etanercept). Heart rate and sys-
temic blood pressure were similar in both groups and were
unaffected by either treatment (data not shown). Baseline
forearm blood flow in the non-infused arm was similar and was
unaffected by either treatment. There was a dose-dependent
increase in forearm blood flow with all intra-arterial vasodila-
tors: substance P, acetylcholine and sodium nitroprusside
(p<0.001). However, there were no differences in the dose–
response curves between etanercept and placebo (p>0.1 for all;
figure 1).

Fibrinolytic response
Plasma t-PA activity concentrations were similar between groups
at baseline and were unaffected by saline placebo (p=1.0).
Following etanercept, plasma t-PA activity concentrations were

Table 1 Baseline demographics and medical therapy of study
population

Baseline characteristic
Total
N=26

Placebo
N=13

Etanercept
N=13 p Value

Age, years 62±2 63±3 61±4 0.63
Male, n (%) 19 (73) 10 (77) 9 (69) 0.66
Time to randomisation (h)* 67.9±7.8 70.5±8.1 64.7±14.5 0.32
Peak troponin (ng/ml) 8.3±2.3 8.9±3.8 7.7±2.5 0.79
Cholesterol (mg/l) 5.5±0.3 5.5±0.3 5.5±0.4 0.98
Blood pressure (mm Hg) 135/75±5/3 137/79±6/4 132/73±7/3 >0.3
Current smoker, n (%) 6 (23) 4 (31) 2 (15) 0.87
Diabetes mellitus, n (%) 2 (8) 2 (15) 0 (0) 0.14
Prior AMI, n (%) 9 (35) 5 (40) 4 (35) 0.68
Hypertension, n (%) 9 (35) 5 (38) 4 (31) 0.68
Hypercholesterolaemia, n (%) 8 (31) 5 (38) 3 (23) 0.40
Aspirin, n (%) 26 (100) 13 (100) 13 (100) 1.0
Clopidogrel, n (%) 26 (100) 13 (100) 13 (100) 1.0
LMWH, n (%) 22 (85) 11 (85) 11 (85) 1.0
ACE inhibitor, n (%) 10 (42) 7 (54) 4 (31) 0.43
β Blocker, n (%) 21 (88) 9 (69) 12 (92) 0.14
Statin, n (%) 22 (85) 10 (77) 12 (92) 0.28
Ca channel antagonist, n (%) 2 (8) 0 (0) 2 (15) 0.14

Data expressed are means±SEM or the number of cases and percentage of the group.
Groups are compared by a χ2 test or student t test for categorical and continuous
data, respectively.
*Time to randomisation describes the interval between the onset of ischaemic
symptoms and the first study blood sample.
AMI, acute myocardial infarction; LMWH, low molecular weight heparin.

Table 2 Inflammatory response, indices of platelet activation and fibrinolytic function

Placebo Etanercept

Pre Post p Value Pre Post p Value

Cellular response
Neutrophils×109 cells/l 7.7±0.6 7.2±0.5 0.16 8.8±0.5 7.4±0.5* 0.02

Lymphocytes×109 cells/l 2.0±0.1 1.9±0.1 0.19 2.3±0.2 2.7±0.26* 0.001
Monocytes×109 cells/l 0.7±0.1 0.6±0.1 0.29 0.7±0.1 0.7±0.1 0.16

Cytokines
Interleukin-6 (pg/ml) 7.5±1.9 5.0±1.3 0.13 10.6±4.0 5.8±2.0* 0.01
TNF-α (pg/ml) <0.1 <0.1 - 0.12±0.02 254±14* <0.0001

Platelet activation
Platelet monocyte aggregates (%) 27.7±4.9 33±5.8 0.23 20.3±2.9 30.2±5.2* 0.02
Platelet surface P-selectin+ (%) 6.7±0.5 6.5±0.7 0.76 6.2±1.3 5.0±0.7 0.15

Fibrinolytic function
t-PA activity (IU/ml) 0.45±0.14 0.45±0.10 1.00 0.77±0.09 0.52±0.09* 0.001
PAI-1 activity (IU/ml) 1.5 (0.8–2.7) 0.9 (0.6–2.4) 0.13 0.5 (0.4–0.9) 1.1 (0.3–1.5) 0.17

Data are expressed as the mean±SE or median (IQR) where appropriate. Statistical analyses compare 24 h with baseline using a paired t test or Mann–Whitney where appropriate.
*p<0.05.
PAI-1, plasminogen activator inhibitor type 1; TNF-α, tumour necrosis factor α.
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reduced at 24 h (0.8±0.1 vs 0.5±0.1 IU/ml; p=0.001).
Compared with the non-infused arm, substance P caused dose-
dependent increases in plasma t-PA activity (ANOVA: p=0.001).
However, dose–response curves were similar at 24 h and were
unaffected by either treatment (p>0.1 for all; table 2; figure 2).
Plasma PAI-1 antigen concentrations were similar between the
groups at baseline and did not differ following either treatment
(p>0.1).

DISCUSSION
This is the first study to evaluate the effect of TNF-α antagon-
ism in patients with AMI. We demonstrate that although provid-
ing a modest anti-inflammatory effect, treatment with
etanercept was not associated with any improvement in periph-
eral vasomotor or fibrinolytic function. Of potential concern,
we identified an increase in platelet monocytes aggregation sig-
nalling a potentially adverse pro-thrombotic effect. We conclude
that TNF-α antagonism does not appear to provide beneficial

cardiovascular effects in patients with AMI and is unlikely to be
a beneficial novel therapy in this setting.

Etanercept is a dimeric fusion protein that consists of the
extracellular ligand-binding domain of the human TNF recep-
tor, linked to the Fc portion of human IgG1. Etanercept inacti-
vates circulating TNF-α by binding to it, thereby preventing
activation of endogenous TNF-α receptors. Consistent with pre-
vious reports,23 we observed a dramatic increase in plasma
TNF-α concentrations following treatment with etanercept.
Etanercept paradoxically increases the immunoreactivity and sta-
bility of circulating TNF-α, probably as a consequence of its
dimeric structure, which can cause an increase in the relative
quantities of circulating homotrimeric, as opposed to mono-
meric or dimeric, TNF-α.24 This paradoxical effect of TNF-α
antagonism can lead to an effective increase in TNF-α mediated
cytotoxicity, and this effect appears to be particularly pro-
nounced where there is a marked molar excess of TNF-α rela-
tive to etanercept. Although we did not observe any direct
vascular effects associated with the increase in plasma TNF-α
concentrations, we did observe a 50% relative increase in PMA,
a measure of platelet activation. We have previously observed an
approximate 20% fall in PMA following treatment with clopi-
dogrel,22 suggesting that the increase associated with treatment
with etanercept is clinically relevant. These findings are consist-
ent with previous in vitro studies showing that TNF-α can cause
an increase in platelet aggregation in patients with heart failure,
probably through activation of the arachadonic acid
pathway.25 26 Enhanced platelet activation through this mechan-
ism may in part explain the thrombotic tendency associated
with disorders characterised by high plasma concentrations of
TNF-α.7 However, we did not detect a difference in P-selectin
expression, an alternate measure of platelet activation. P-selectin
expression is generally very transient with low levels of expres-
sion, making this a less reliable in vivo marker of platelet activa-
tion.27 Although this may explain our discrepant findings, we
would suggest caution in interpreting the significance of our
findings with PMA given that this was a single measure of plate-
let activation.

The recognition that heart failure is characterised by high
plasma concentrations of TNF-α has stimulated intensive
research of TNF-α antagonism in these patients. Interestingly,
although it has been established that antagonism of TNF-α in
the setting of congestive heart failure can ameliorate endothelial
dysfunction,12 and improve left ventricular systolic dysfunc-
tion,28 several large clinical trials of TNF-α antagonists in
patients with congestive heart failure have failed to demonstrate
any clinical benefits associated with this form of treatment.29

Figure 1 Peripheral vasomotor assessment. Forearm blood flow in response to incremental doses of sodium nitroprusside, substance P and
acetylcholine in patients with acute myocardial infarction 24 h following etanercept compared with placebo. Forearm blood flow increases in
response to vasoactive infusion (ANOVA<0.0001 for all); however, there was no difference between treatments (ANOVA≥0.2; ≥0.7 for interaction
for all) or at 24 h compared with baseline (ANOVA>0.1).

Figure 2 Net t-PA activity in response to infusion of substance P.
Net t-PA is calculated as the difference between the infused and
non-infused arm corrected for haematocrit. Net t-PA activity increased
in response to t-PA infusion (ANOVA<0.01); however, there were no
differences between treatments (ANOVA>0.05 for all) or at 24 h
compared with baseline (ANOVA>0.1).
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Furthermore, there is concern over the safety of TNF-α antag-
onism in these patients, as these trials suggest that there may be
an increased risk of the development of worsening heart failure
in those patients receiving higher doses of TNF-α antagonists.30

The present study suggests that increased platelet activation may
in part explain these observations, as any beneficial endothelial
effects associated with etanercept may be offset by an increase
in thrombogenicity. Patients with coronary artery disease gener-
ally have lower plasma concentrations of TNF-α than patients
who have progressed to develop heart failure, limiting extrapo-
lation between these two patient populations.

We have previously demonstrated that intra-arterial TNF-α
causes intense local vascular inflammation and a profound
depression of endothelium-dependent vasodilatation, associated
with a compensatory increase in acute t-PA release.31 We there-
fore expected that antagonism of TNF-α would ameliorate vas-
cular inflammation, and lead to an improvement in vasomotor
function commensurate with a fall in plasma t-PA concentra-
tions. Consistent with this hypothesis, we found that basal t-PA
activity concentrations were diminished following etanercept.
We have previously hypothesised that t-PA concentrations are
increased in response to vascular inflammation as a compensa-
tory mechanism.31 The reduction in basal t-PA activity following
etanercept may therefore reflect a fall in basal t-PA release
through amelioration of the systemic inflammatory response
associated with AMI. However, neither PAI-1 activity nor net
t-PA release in response to substance P were affected by etaner-
cept infusion, suggesting that the magnitude of this effect was
modest. Furthermore, we saw no effect on vasomotor function.
We suggest that the lack of effect on the vasomotor response
may have been due to the relatively low plasma concentrations
of TNF-α in this cohort of patients. Although concentrations
are increased in patients with AMI,8 9 patients in the present
study had low plasma TNF-α concentrations. The reason for
this is unclear; however, it may be explained by the timing of
patient recruitment into the study (on average 3 days following
presentation) as TNF-α plasma concentrations are maximal
within the first 24 h following AMI, falling off markedly there-
after, particularly in the absence of heart failure.32 Selection of
patients with relatively higher plasma concentrations of TNF-α
may have increased the likelihood of observing improvements in
vascular function.

STUDY LIMITATIONS
Although appropriately powered for platelet monocyte aggrega-
tion, confounding factors such as those related to pharmacoki-
netic and pharmacodynamic variation between subjects and the
effects of concurrent medical therapy are challenging to stand-
ardise. To corroborate the observed increase in PMA associated
with etanercept, further measures of platelet function such as
platelet aggregation would be useful.

We cannot exclude the possibility that more rapid treatment
(within the first 24 h) and higher doses of etanercept may have
produced different results. However, the marked increase in cir-
culating TNF-α, commensurate with a reduction in systemic
inflammation following administration of etanercept, gives us
reassurance that we exerted a meaningful biological effect, and
that the absence of any alteration in vascular function following
treatment was not as a result of a type-2 error.

CONCLUSIONS
The administration of a single dose of etanercept following AMI
provides a modest anti-inflammatory effect associated with a
mild reduction in basal plasma t-PA activity. However, this does

not translate into improvements in peripheral vasomotor func-
tion or acute t-PA release. Of concern, etanercept potentiates
platelet–monocyte aggregation, suggesting an adverse effect of
TNF-α antagonism in patients with acute coronary syndromes
through enhanced platelet activation. Further research is
required to explore the effects of etanercept on platelet activa-
tion and function as such effects may in part explain the pos-
sible deleterious effects observed in clinical trials of TNF-α
antagonism in other cardiovascular disorders.

Acknowledgements All authors contributed significantly to the work. The
research was devised by SAH, SC and DEN, and conducted by GJP, JND, AJL,
NLMC, SDR, NLM and EK. GJP analysed the data and wrote the manuscript with
input from the coauthors. GJP takes overall responsibility for the manuscript.

Funding The research was funded through the University of Edinburgh with
additional support from the British Heart Foundation (PG/2001068) who also
supported Dr Padfield (SS/CH/92010 and PG/07/ 012) and Professor Newby (CH/09/
002) to undertake the work. The Wellcome Trust Clinical Research Facility is
supported by NHS Research Scotland through NHS Lothian. All authors have read
and approved the manuscript for submission. The paper is not under consideration
elsewhere, none of the paper’s contents have been previously published. Technical
appendix, statistical code and dataset are available on request.

Competing interests None.

Ethics approval LREC/2001/4/18.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an Open Access article distributed in accordance with the
Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which
permits others to distribute, remix, adapt, build upon this work non-commercially,
and license their derivative works on different terms, provided the original work is
properly cited and the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/3.0/

REFERENCES
1 Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med

1999;340:115–26.
2 del Rincon ID, Williams K, Stern MP, et al. High incidence of cardiovascular events

in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors.
Arthritis Rheum 2001;44:2737–45.

3 Svenungsson E, Jensen-Urstad K, Heimburger M, et al. Risk factors for
cardiovascular disease in systemic lupus erythematosus. Circulation
2001;104:1887–93.

4 Smeeth L, Thomas SL, Hall AJ, et al. Risk of myocardial infarction and stroke after
acute infection or vaccination. N Engl J Med 2004;351:2611–18.

5 Ridker PM, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of
inflammation in the prediction of cardiovascular disease in women. N Engl J Med
2000;342:836–43.

6 Schonbeck U, Libby P. CD40 signaling and plaque instability. Circ Res
2001;89:1092–103.

7 Pignatelli P, De Biase L, Lenti L, et al. Tumor necrosis factor as trigger of platelet
activation in patients with heart failure. Blood 2005;106:1992–4.

8 Satoh M, Ishikawa Y, Itoh T, et al. The expression of TNF-alpha converting enzyme
at the site of ruptured plaques in patients with acute myocardial infarction. Eur J
Clin Invest 2008;38:97–105.

9 Valgimigli M, Ceconi C, Malagutti P, et al. Tumor necrosis factor-alpha receptor 1 is
a major predictor of mortality and new-onset heart failure in patients with acute
myocardial infarction: the Cytokine-Activation and Long-Term Prognosis in
Myocardial Infarction (C-ALPHA) study. Circulation 2005;111:863–70.

10 Ridker PM, Rifai N, Pfeffer M, et al. Elevation of tumor necrosis factor-alpha and
increased risk of recurrent coronary events after myocardial infarction. Circulation
2000;101:2149–53.

11 Chia S, Qadan M, Newton R, et al. Intra-arterial tumor necrosis factor-alpha impairs
endothelium-dependent vasodilatation and stimulates local tissue plasminogen
activator release in humans. Arterioscler Thromb Vasc Biol 2003;23:695–701.

12 Fichtlscherer S, Rossig L, Breuer S, et al. Tumor necrosis factor antagonism with
etanercept improves systemic endothelial vasoreactivity in patients with advanced
heart failure. Circulation 2001;104:3023–5.

13 Booth AD, Jayne DR, Kharbanda RK, et al. Infliximab improves endothelial
dysfunction in systemic vasculitis: a model of vascular inflammation. Circulation
2004;109:1718–23.

14 Hurlimann D, Forster A, Noll G, et al. Anti-tumor necrosis factor-alpha treatment
improves endothelial function in patients with rheumatoid arthritis. Circulation
2002;106:2184–7.

1334 Padfield GJ, et al. Heart 2013;99:1330–1335. doi:10.1136/heartjnl-2013-303648

Acute coronary syndromes

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/


15 Deswal A, Bozkurt B, Seta Y, et al. Safety and efficacy of a soluble P75 tumor
necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure.
Circulation 1999;99:3224–6.

16 Lebsack ME, Hanna RK, Lange MA, et al. Absolute bioavailability of TNF receptor
fusion protein following subcutaneous injection in healthy volunteers.
Pharmacotherapy 1997;17:1118.

17 Treasure T, MacRae KD. Minimisation: the platinum standard for trials?
Randomisation doesn’t guarantee similarity of groups; minimisation does. BMJ
1998;317:362–3.

18 Robinson SD, Dawson P, Ludlam CA, et al. Vascular and fibrinolytic effects of
intra-arterial tumour necrosis factor-alpha in patients with coronary heart disease.
Clin Sci (Lond) 2006;110:353–60.

19 Newby DE, Wright RA, Labinjoh C, et al. Endothelial dysfunction, impaired
endogenous fibrinolysis, and cigarette smoking: a mechanism for arterial thrombosis
and myocardial infarction. Circulation 1999;99:1411–15.

20 Harding SA, Din JN, Sarma J, et al. Flow cytometric analysis of circulating
platelet-monocyte aggregates in whole blood: methodological considerations.
Thromb Haemost 2007;98:451–6.

21 Witherow FN, Dawson P, Ludlam CA, et al. Marked bradykinin-induced tissue
plasminogen activator release in patients with heart failure maintained on
long-term angiotensin-converting enzyme inhibitor therapy. J Am Coll Cardiol
2002;40:961–6.

22 Harding SA, Sarma J, Din JN, et al. Clopidogrel reduces platelet-leucocyte
aggregation, monocyte activation and RANTES secretion in type 2 diabetes mellitus.
Heart 2006;92:1335–7.

23 Utz JP, Limper AH, Kalra S, et al. Etanercept for the treatment of stage II and III
progressive pulmonary sarcoidosis. Chest 2003;124:177–85.

24 Mann DL, Bozkurt B, Torre-Amione G, et al. Effect of the soluble TNF-antagonist
etanercept on tumor necrosis factor bioactivity and stability. Clin Transl Sci
2008;1:142–5.

25 Bar J, Zosmer A, Hod M, et al. Changes in the effects of interleukin-1beta and
tumor necrosis factor-alpha on platelet activation in early pregnancy. Platelets
2001;12:453–5.

26 Soslau G, Morgan DA, Jaffe JS, et al. Cytokine mRNA expression in human platelets
and a megakaryocytic cell line and cytokine modulation of platelet function.
Cytokine 1997;9:405–11.

27 Michelson AD, Barnard MR, Krueger LA, et al. Circulating monocyte-platelet
aggregates are a more sensitive marker of in vivo platelet activation than platelet
surface P-selectin: studies in baboons, human coronary intervention, and human
acute myocardial infarction. Circulation 2001;104:1533–7.

28 Bozkurt B, Torre-Amione G, Warren MS, et al. Results of targeted anti-tumor
necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart
failure. Circulation 2001;103:1044–7.

29 Mann DL, McMurray JJ, Packer M, et al. Targeted anticytokine therapy in patients
with chronic heart failure: results of the Randomized Etanercept Worldwide
Evaluation (RENEWAL). Circulation 2004;109:1594–602.

30 Chung ES, Packer M, Lo KH, et al. Randomized, double-blind, placebo-controlled, pilot
trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in
patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against
Congestive Heart Failure (ATTACH) trial. Circulation 2003;107:3133–40.

31 Wang P, Ba ZF, Chaudry IH. Administration of tumor necrosis factor-alpha in vivo
depresses endothelium-dependent relaxation. Am J Physiol 1994;266:H2535–41.

32 Fahim MR, Halim SM, Kamel I. Tumor necrosis factor alpha in patients with acute
myocardial infarction. Egypt J Immunol 2004;11:31–7.

Padfield GJ, et al. Heart 2013;99:1330–1335. doi:10.1136/heartjnl-2013-303648 1335

Acute coronary syndromes


