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Abstract

Calcium, magnesium and strontium have all been implicated in both musculoskeletal and cardiovascular health and disease. 
However, despite these three elements being closely chemically related, there is marked heterogeneity of their characteris-
tics in relation to cardiovascular outcomes. In this narrative review, we describe the relevant evidential landscape, focusing 
on clinical trials where possible and incorporating findings from observational and causal analyses, to discern the relative 
roles of these elements in musculoskeletal and cardiovascular health. We conclude that calcium supplementation (for bone 
health) is most appropriately used in combination with vitamin D supplementation and targeted to those who are deficient 
in these nutrients, or in combination with antiosteoporosis medications. Whilst calcium supplementation is associated with 
gastrointestinal side effects and a small increased risk of renal stones, purported links with cardiovascular outcomes remain 
unconvincing. In normal physiology, no mechanism for an association has been elucidated and other considerations such 
as dose response and temporal relationships do not support a causal relationship. There is little evidence to support routine 
magnesium supplementation for musculoskeletal outcomes; greater dietary intake and serum concentrations appear protective 
against cardiovascular events. Strontium ranelate, which is now available again as a generic medication, has clear anti-fracture 
efficacy but is associated with an increased risk of thromboembolic disease. Whilst a signal for increased risk of myocardial 
infarction has been detected in some studies, this is not supported by wider analyses. Strontium ranelate, under its current 
licence, thus provides a useful therapeutic option for severe osteoporosis in those who do not have cardiovascular risk factors.
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Introduction

That the cardiovascular safety of calcium, magnesium and 
strontium is under consideration might indicate concerns 
across this particular section of the periodic table. The real-
ity is that the cardiovascular associations of these three 

elements are markedly heterogeneous, as is their use in 
medicine. Calcium is perhaps the most studied, with evi-
dence for modest efficacy in terms of fracture risk reduction 
when taken with vitamin D supplementation [1]; evidence 
over the last 5 years has suggested associations between cal-
cium or calcium/vitamin D supplementation and increased 
cardiovascular risk [1]. However, the links are far from con-
clusive, with other studies demonstrating no association; 
key considerations such as a potential mechanism remain to 
be delineated [1]. Magnesium has little evidential support 
in terms of fracture prevention, although is often sold as a 
component of bone health nutritional supplements [2, 3]; 
greater dietary intake and serum concentrations appear to be 
protective for cardiovascular outcomes [4–7]. Strontium has 
been used in the form of strontium ranelate as a therapy for 
osteoporosis [8]. Whilst it has efficacy for vertebral and non-
vertebral fractures, initial trials demonstrated an increased 
risk of thromboembolic disease [9, 10]. In post-marketing 
data, a signal for increased risk of myocardial infarction led 
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the European Medicines Agency to change to its indication 
[11], and the drug was subsequently withdrawn from the 
market by the manufacturer, only to reappear as a generic 
more recently. In this narrative review, we explore this het-
erogeneous landscape, focusing principally on the cardio-
vascular safety of calcium supplementation, together with 
newer evidence around potential mechanisms, and appraise 
the evidence for links between magnesium salts or strontium 
ranelate and cardiovascular disease.

Calcium

Background

Whilst dietary calcium intake and endogenous vitamin D 
synthesis are sufficient for most individuals in many popu-
lations, there is evidence that supplemental approaches 
[12–16], particularly targeted to individuals with inadequate 
calcium and vitamin D status, may benefit bone mass and 
reduce fracture risk. In recent years, the role of calcium, 
together with that of concomitant vitamin D supplementa-
tion, has come under close scrutiny as a result of studies sug-
gesting potential adverse cardiovascular effects from calcium 
or calcium and vitamin D supplementation [1].

Calcium, bone health and fracture risk

Although several studies, at least in the short term, have 
indicated positive effects of calcium supplementation on 
bone mineral density [17–20], the key outcome in terms of 
effectiveness is fracture reduction. There have been many 
randomised controlled trials of either calcium alone or cal-
cium in combination with vitamin D for fracture reduction 
and several subsequent meta-analyses seeking to elucidate 
the overall effect of this intervention [21–25]. Furthermore, 
the vast majority of antiosteoporosis treatments have been 
licensed in the context of calcium and vitamin D repletion, 
most usually achieved with supplementation [26]. Taken as 
a whole the evidence base thus supports the use of calcium 
in combination with vitamin D supplementation rather than 
as the sole agent for reduction of fracture risk, but with the 
magnitude of effect being modest. However, efficacy has not 
been demonstrated for all individual fracture types, or for 
calcium supplementation alone. Intervention is probably best 
directed, therefore, at those judged to be at high risk of cal-
cium/ vitamin D deficiency. How this high-risk population 
may be defined is much debated, and the reader is referred 
to the guidance from the US Institute of Medicine [27]. The 
role of routine calcium and vitamin D supplementation as 

a population health strategy for fracture prevention is not 
robustly supported.

Calcium supplementation, renal stones 
and gastrointestinal side effects

Until the BMJ publication by Bolland et al. in 2008 [28], 
the only potential adverse effects associated with calcium 
and vitamin D supplementation had been an increased risk 
of renal calculi and gastrointestinal symptoms. Indeed, a 
2014 Cochrane review has confirmed the modest increase 
in renal stone risk [29], which is mainly informed by data 
from the Women’s Health Initiative, demonstrating that 
the intervention was associated with a 17% increased risk 
of renal stones (HR 95% CI: 1.02, 1.34). It is important to 
note the magnitude of this outcome in the context of the 
WHI study, given that there was no statistically significant 
decrease in hip or other fractures. The WHI investigators 
also examined the risk of renal stones, stratified by use 
of personal calcium and vitamin D supplements at base-
line and adherence to study medication [30]. In the subset 
who did not use personal supplements, the hazard ratio for 
renal stones with calcium and vitamin D supplementation 
was 1.08 (95% CI: 0.88, 1.32); in the subset who did use 
personal supplements, the hazard ratio was 1.23 (95% CI: 
1.01, 1.48), although the interaction term was not statisti-
cally significant. Within the personal supplements group, 
there was no difference in the hazard ratio for renal stones 
by adherence.

Gastrointestinal side effects have been relatively com-
monly noted in trials of calcium supplementation. Symp-
toms include constipation, excessive abdominal cramp-
ing, bloating, and, importantly, upper GI symptoms. Lewis 
et al. [31] reviewed the risk of GI side effects across seven 
studies included in the Bolland et al. 2010 meta-analysis 
[32], and in which myocardial infarction was self-reported. 
Overall, the risk of GI side effects was increased by 43% 
in the calcium/calcium and vitamin D groups [RR: 1.43 
(95% CI: 1.28, 1.59); p < 0.001]. The authors did not iden-
tify any effect of the formulation or dose of the calcium 
supplement, but did find evidence of both upper and lower 
GI events being increased. Using the adjudicated hospital 
admissions for GI complaints derived from hospital dis-
charge summaries in one Australian study, 6.8% of cal-
cium-treated patients experienced a GI complaint (n = 50) 
compared with 3.6% (n = 26) allocated to placebo [RR: 
1.92 (95% CI: 1.21, 3.05); p = 0.006]. Thus it is clear that 
gastrointestinal side effects are an important consideration 
in any strategy predicated on widespread use of calcium 
supplements. Importantly, the authors hypothesised that 
self-reported myocardial infarction may, in some cases, 
represent misclassified gastrointestinal events, an effect 



481Aging Clinical and Experimental Research (2021) 33:479–494 

1 3

demonstrable in the calcium only trials of Bolland et al. 
[28], and Prince et al. [33].

Potential cardiovascular effects of calcium 
supplementation: initial evidence

In their 2008 BMJ paper Bolland et al. reported the adverse 
event follow-up from a New Zealand randomised controlled 
trial of calcium supplementation (without vitamin D) [28]. 
Amongst 1471 postmenopausal women with a mean age of 
74 years, who had been randomised to either 1 g of elemen-
tal calcium citrate or placebo, incident cardiovascular events 
were self-reported, and adjudicated by review of medical 
records. The authors analysed the events in terms of simple 
self-report, adjudicated self-report, and then adjudicated 
events with additional (non-participant reported) events 
from Health Registry data. A further regression analysis 
adjusted for covariates. A more detailed examination of the 
study is presented in [1]. The multiplicity of endpoints pro-
vided heterogeneous results [28], and it was notable that the 
baseline characteristics of the participants appeared to tend 

towards greater cardiovascular risk in the treatment than pla-
cebo group. The message of increased cardiovascular risk 
from calcium supplementation that was widely taken from 
this paper rests very much on the analysis of self-reported 
events, which were not the primary outcomes of the study. 
Indeed the findings were not supported by the further analy-
sis reported in the manuscript, points which seem to be have 
been largely ignored in its interpretation.

Cardiovascular outcomes in meta-analyses 
of calcium/vitamin D supplementation

This initial paper was followed by a meta-analysis of ran-
domised trials of calcium supplementation [32] combin-
ing 8151 persons in a patient level analysis, in which the 
RECORD study provided two-thirds of the cases and two-
thirds of the myocardial infarction events (Fig. 1a). Second, 
the authors undertook a trial level analysis of 11,921 par-
ticipants, the RECORD study providing 44% of the cases 
and 55% of the myocardial infarction events. In the patient 
level analysis, there was weak evidence of an increased risk 

Fig. 1  a Calcium supplemen-
tation and risk of myocardial 
infarction, with outcomes from 
self-report and/or verified 
sources. Reproduced with 
permission from Bolland et al., 
2010 [32]. b Calcium and 
vitamin D supplementation and 
risk of myocardial infarction, 
with the outcome ascertained 
from self-report and/or veri-
fied sources. Reproduced with 
permission from Bolland et al., 
2011 [121]
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of myocardial infarction [HR: 1.31 (95% CI: 1.02, 1.67); 
p = 0.035] but not of stroke or death, or of the composite 
outcome including all three [HR: 1.18 (95% CI: 1.00, 1.39); 
p = 0.057]. There was evidence of an interaction between 
treatment and baseline dietary calcium intake, which 
was only observed for the outcome of myocardial infarc-
tion. Thus the treatment myocardial infarction association 
appeared to be stronger above than below the median cal-
cium intake of 825 mg per day, but there was no similar 
interaction for the other outcomes; there was no consist-
ent increase in the hazard ratio for myocardial infarction 
associated with calcium supplementation by fifths of dietary 
calcium intake. In the trial level analysis, differences were 
similar but even smaller [myocardial infarction, HR: 1.27 
(95% CI: 1.01, 1.59); p = 0.038; and composite end point, 
HR: 1.12 (95% CI: 0.97, 1.30); p = 0.13]. Although all events 
were adjudicated blind by the investigators, the included 
studies recorded cardiovascular outcomes in different ways 
with some using self-report (including RECORD), some 
hospital records and some death certificates.

The suggestion of an interaction between treatment and 
baseline calcium intake is intriguing given findings from a 
re-analysis of the WHI study, undertaken by the same group, 
Bolland et al., in 2011. They also included the WHI study in 
their second meta-analysis, investigating both calcium and 
vitamin D supplementation [34]. In this paper the authors 
used the WHI calcium and vitamin D study public access 
dataset to investigate the effect of calcium and vitamin D 
supplementation versus placebo in 36,282 community dwell-
ing postmenopausal women. The WHI allowed women to 
take personal calcium and vitamin D supplementation in 
addition to the study medication, and the authors reason-
ably hypothesised that this might modify the effect of the 
trial medication. They, therefore, stratified their analysis by 
personal calcium and vitamin D supplementation and found 
that there was evidence of an interaction between personal 
use of supplements and allocation to calcium and vitamin D 
or placebo for cardiovascular events. However, the impor-
tance of this interaction is uncertain, given the lack of any 
clear associations in either stratum, and no real evidence of 
a differential pattern of relationships. There was weak evi-
dence of an association between supplementation and clini-
cal myocardial infarction or re-vascularisation in the group 
who did not use personal calcium supplementation, but 
there was no difference in death from all causes. Amongst 
those who were using personal calcium supplementation, 
death from all causes was actually greater in the placebo 
group, and both stroke and the composite outcome of clini-
cal myocardial infarction or stroke appeared, if anything, 
less frequent in those allocated to calcium and vitamin D 
who were taking personal supplements [calcium and vitamin 
D group 4.8% versus placebo 5.5%, HR 0.88 (95% CI: 0.76, 
1.02); p = 0.006]. Critically, in terms of the requirements to 

establish a casual relationship, there was no evidence of a 
dose effect according to personal calcium supplementation 
ranging from 0 to above 1000 mg per day.

The addition of the WHI data into a trial level meta-
analysis with two other studies of calcium and vitamin D 
demonstrated a 21% increased risk of myocardial infarction 
(Fig. 1b) with calcium and vitamin D supplementation (RR 
95% CI: 1.01, 1.44; p = 0.04) with a similar but borderline 
difference in stroke (p = 0.05) and a statistically significant 
increase for the combination of the two outcomes [RR: 1.16 
(95% CI: 1.02, 1.32); p = 0.02]. Findings from a patient level 
data meta-analysis including 24,869 participants from five 
trials of calcium/ vitamin D supplementation, and the WHI 
calcium and vitamin D study participants who were not 
taking personal supplements at baseline, demonstrated an 
increased risk of myocardial infarction [HR: 1.26 (95% CI: 
1.07, 1.47); p = 0.005] and stroke [HR: 1.19 (95% CI: 1.02, 
1.39); p = 0.03] and the combined outcome, but not for death 
from any cause (p = 0.5) [34].

These two meta-analyses and the original study come 
with a number of concerns, including the heterogeneity of 
event reporting, that cardiovascular events were not the pri-
mary outcome of any included study, that the majority of 
findings demonstrate weak associations at best, that poten-
tially beneficial effects of similar magnitude have not been 
emphasised, and that the issue of correction for multiple test-
ing in the secondary analyses has also not been adequately 
addressed. The lack of dose–response in relation to baseline 
intake in the WHI study, and the suggestion of opposing 
effects of baseline dietary intake in the first meta-analysis 
and personal supplementary intake in WHI are also trou-
bling, as it is difficult to envisage a biological mechanism 
whereby such a difference could occur.

Lewis et al. recently undertook a similar meta-analysis 
to those of Bolland et al., combining trial level data on 
63,563 female participants, obtained from published and 
unpublished results [35], summarised in Fig. 2. The authors 
focused on women as there are insufficient men in the origi-
nal trials to form valid conclusions, and the greater rates 
of cardiovascular events in men than women may lead to 
erroneous conclusions if randomisation to calcium/placebo 
is not balanced by sex. The authors also used only trials 
in which coronary heart disease endpoints were validated 
and used ICD-based definitions which are globally recog-
nised and encompass different components of coronary heart 
disease. Given the risk of gastrointestinal side effects with 
calcium supplements, and that these may be misclassified as 
cardiovascular events (see above) [31], such adjudication is 
essential. Furthermore, previous assessments of the valid-
ity of self-reported cardiovascular events have demonstrated 
that confirmation may only be achieved in 60–70% of cases 
[36, 37]. Bolland et al. also undertook an analysis excluding 
self-reported outcomes (i.e. limiting the analysis to validated 
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myocardial infarction [38]. Although these results were sim-
ilar to those from the 2010 meta-analysis (in which 23% of 
events were ascertained by self-report) [32], it is unclear in 
this secondary analysis, published in a review article, as to 
exactly which trials were included in which analysis. In the 
Lewis study, overall there was no effect of calcium/calcium 
and vitamin D supplementation on myocardial infarction 
[RR: 1.08 (95% CI: 0.93, 1.25)], angina pectoris/acute coro-
nary syndrome [RR: 1.09 (95% CI: 0.95, 1.24)] or chronic 
coronary heart disease [RR: 0.92 (95% CI: 0.73, 1.15)]. In 
sensitivity analyses, the investigators observed no relation-
ship between supplementation with calcium/ calcium and 
vitamin D and coronary heart disease or all-cause mortality. 
However, supplementation with calcium alone was weakly 
positively associated with myocardial infarction [RR: 1.37 
(95% CI: 0.98, 1.92), p = 0.07], but it should be noted that 

the analysis was based on 139 myocardial infarctions in 
6333 participants compared with estimates of the effect of 
calcium with vitamin D based on 1006 events in 45,796 
participants. This meta-analysis, unlike the Bolland meta-
analyses, included a cluster randomised trial by Larsen et al. 
[39] However, further sensitivity analyses demonstrated 
no difference in the findings when cluster randomised tri-
als were excluded. Whilst the authors did not specifically 
test for an interaction with personal calcium and vitamin D 
supplement use in the WHI study, a sensitivity analysis in 
which the WHI participants using personal supplementa-
tion at baseline were excluded yielded very similar results 
overall. This meta-analysis, therefore, does not support the 
finding from Bolland et al. of a specific effect within those 
not taking personal calcium and vitamin D supplementa-
tion. Whilst the findings of the Lewis et al. meta-analysis are 

Fig. 2  Calcium supplementation with or without vitamin D sup-
plementation and risk of (a) myocardial infarction and (b) coronary 
heart disease: random-effects meta-analysis of validated outcomes in 

women. Reproduced with permission from Lewis et  al., 2015 [35]. 
(a) myocardial infarction (b) coronary heart disease
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largely reassuring, the weak association for calcium supple-
mentation alone for myocardial infarction should be noted, 
albeit based on a subgroup with a relatively small number 
of events, and no consistent effect on coronary heart disease 
or mortality. Furthermore, none of the meta-analyses have 
been able to address the associations in men, due to the small 
number of males in the constituent trials.

The WHI study has been analysed by its own investiga-
tors who, in an initial follow-up 8 years from randomi-
sation found no increased risk of myocardial infarction/
coronary death or stroke with hazard ratios near one 
[40]. A comprehensive subgroup analysis demonstrated 
no increases in cardiovascular events with supplementa-
tion [30]. Importantly in this study by Prentice et al., the 
analysis was stratified by use of personal supplementa-
tion. There was no increased risk of myocardial infarction 
with calcium and vitamin D supplementation in either the 
whole trial population [HR: 1.03 (95% CI: 0.90, 1.19)], 
in those who took personal supplements [HR: 0.97 (95% 
CI: 0.80, 1.17)] or in those who took no personal sup-
plementation [HR: 1.11 (95% CI: 0.90, 1.37)], and no 
statistically significant difference in the hazard ratios 
between the strata. Interestingly, the risk of myocardial 
infarction, coronary heart disease and other outcomes was 
analysed by time from randomisation, with no evidence of 
any statistically significant change in the hazard ratio with 
increasing follow-up time. Although the hazard ratios for 
myocardial infarction within the first 2 years after ran-
domisation were greater than unity within all participants 
[HR: 1.19 (95% CI: 0.89, 1.59)] and amongst those who 
did not take personal supplements [HR: 1.30 (95% CI: 
0.86, 1.97)], these were not statistically significant, and 

over years 2–5, the hazard ratios were close to unity [all 
participants HR: 0.97 (95% CI: 0.78, 1.21); no personal 
supplements, HR 1.04 (95% CI: 0.74, 1.47)], with a similar 
null relationships at > 5 years follow-up. Although clearly 
limited by variable adherence to medication over the study 
period, this absence of any time relationship (if anything, 
there was a decreasing risk with time) with myocardial 
infarction or other coronary outcomes seems incompatible 
with any biological mechanism which requires increase in 
coronary atherosclerosis related to raised calcium concen-
trations. A further follow-up at up to 5 years after cessa-
tion of trial medication again provided reassuring results, 
finding no difference in coronary heart disease endpoints 
over 15 years of follow-up in 29,862 women [41], although 
this was not stratified by use of personal supplements.

Several other meta-analyses have been undertaken, but 
since the underlying evidence base is essentially very simi-
lar in all such studies, they remain very much variations 
upon a theme [42–45]. A limitation of the randomised trial 
evidence is the low number of men contributing to the trial 
populations. However, the largest observational study to 
date comprising over 500,000 men and women in the UK 
Biobank cohort (Fig. 3), again demonstrated no associa-
tion between either calcium supplementation, vitamin D 
supplementation or both with incident ischaemic heart 
disease, cardiovascular disease myocardial infarction or 
cardiovascular death [46].

Fig. 3  Calcium and/or vitamin D supplementation and cardiovascular outcomes in UK Biobank. Reproduced with permission from Harvey 
et al., 2018 [46]. IHD ischaemic heart disease, CVD cardiovascular disease
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Calcium (and vitamin D) supplementation 
and risk of death

It would seem intuitively reasonable that if an intervention 
leads to an increased risk of a potentially fatal event such 
as myocardial infarction, then over a reasonable period 
of time in a large cohort, it would also be associated with 
an increased risk of death from that cause. Interestingly, 
to our knowledge, no study has yet demonstrated such an 
association. Whilst the first meta-analysis by Bolland et al. 
[32] suggested a possible 7% increase in mortality with 
calcium supplementation (RR 95% CI: 0.95, 1.19), in their 
WHI analysis [34], the RR amongst the population not 
using personal calcium/ vitamin D supplements was very 
close to unity [RR: 0.99 (95% CI: 0.86, 1.14)]. Amongst 
those using personal calcium supplements, calcium and 
vitamin D supplementation were associated with a reduced 
risk of death [RR: 0.84 (95% CI: 0.73, 0.97)]. In their 
meta-analysis using verified outcomes, Lewis et al. dem-
onstrated no effect of calcium supplementation on mortal-
ity (Fig. 4) [35], a finding similar to that of the DIPART 
investigators [47], who demonstrated no difference in mor-
tality in an individual patient data meta-analysis of eight 
studies including RECORD and WHI, and a trial level 
analysis including a further 16 studies. Again, data from 

the Women’s Health Initiative demonstrated reassuring 
findings with mortality somewhat lower in the calcium 
and vitamin D group compared with placebo [HR: 0.91 
(95% CI: 0.83, 1.01)] and this result was similar when 
examined in those below or above 70 years old. Follow-up 
of the RECORD study of 5292 participants over 70 years 
old, who had previously experienced a low trauma fracture 
[48], demonstrated no effect of calcium supplementation 
on mortality in an intention-to-treat analysis [all-cause 
mortality HR: 1.03 (95% CI: 0.94, 1.13); vascular disease 
mortality HR: 1.07 (95% CI: 0.92, 1.24)]. In a second-
ary analysis adjusting for treatment received (thus with 
a reduced number of participants), calcium supplemen-
tation again was not statistically significantly associated 
with all-cause mortality or vascular death, although the 
hazard ratios were greater than in the ITT analysis [all-
cause mortality HR: 1.21 (95% CI: 0.83, 2.05); vascular 
death HR: 1.43 (95% CI: 0.75, 7.61)]. The trial, therefore, 
does not provide support either way [48]. Given that the 
increased risk of myocardial infarction associated with 
calcium supplementation in the Bolland meta-analyses is 
relatively modest, and that not all myocardial infarctions 
result in death, it is possible that existing studies are sim-
ply not large enough to detect an effect on mortality [38].

Fig. 4  Calcium/vitamin D is supplementation and all-cause mortality compared with no supplementation. Reproduced with permission from 
Lewis et al., 2015 [35]
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Mechanistic considerations

Calcium, phosphate and coronary artery 
calcification

The mechanisms by which calcium supplementation might 
increase cardiovascular risk have been much debated. It is 
notable that in the meta-analyses discussed above, there 
was no evidence for a dose effect or a convincing temporal 
relationship between calcium supplementation and cardio-
vascular disease, both key considerations in establishing a 
causal relationship [49]. A key argument proposed in favour 
of a mechanistic link is that the transient rise in serum cal-
cium concentrations consequent to ingestion of a calcium 
supplement might lead to increased calcium deposition 
within already damaged coronary artery walls [50]. Indeed, 
calcification is a recognised component of atherosclerotic 
disease. However, the increase in serum calcium resulting 
from supplement ingestion is transient and of modest mag-
nitude, and well below concentrations which would lead to 
 CaHPO4 precipitation; at physiological pH and  pCO2 the 
serum is only half saturated [51]. Whilst there is, to our 
knowledge, no direct evidence that such transient increases 
in calcium concentration cause greater coronary calcification 
or ischaemic cardiac events, there is evidence from obser-
vational studies that, at the population level, serum calcium 
and/or phosphorus concentrations are positively related to 
risk of ischaemic cardiac events [52–59]. These studies 
clearly differ markedly in predictor (calcium × phosphate 
product, total calcium, corrected calcium, serum phospho-
rus), outcome (coronary artery calcification, clinical event) 
and study design (cross-sectional, prospective database); the 
possibility of confounding and/ or reverse causation remain 
important considerations in these as in earlier investigations. 
Furthermore, daily recombinant parathyroid hormone injec-
tion, as therapy for osteoporosis, leads to a transient rise 
in serum calcium concentrations with each dose [60], but 
the randomised trial evidence, observational studies and 
post-marketing surveillance data have not demonstrated 
any concerning signals related to myocardial infarction or 
other ischaemic cardiac events [61, 62]. Patients with mild 
hyperparathyroidism (who have a much higher serum cal-
cium concentration than would result from taking calcium 
supplements) do not have an increased risk of soft tissue 
calcification, and their risk of MI has not been shown to be 
increased after adjustment for known CVD risk factors [63]. 
Finally, in a subset of the WHI participants who underwent 
computed tomography examination of coronary artery cal-
cification at a mean of 7 years follow-up (754 women aged 
50–59 years at baseline), there was no difference in coronary 
artery calcification score according to calcium and vitamin 
D treatment versus placebo [64].

Physiology in health and severe chronic kidney 
disease

Importantly, the primary abnormality in the development 
of atherosclerosis is thought to be pathological intimal 
thickening, with atherosclerotic plaques forming at sites 
of endothelial damage, rather than exposure to circulat-
ing calcium. Indeed, calcification of plaques appears to be 
related to macrophage apoptosis leading to microcalcifica-
tions, which may coalesce [65]. If there were a causal link 
between calcium supplementation and atherosclerosis then, 
it could potential be via other cardiovascular risk factors, 
but there is little evidence for this. Where there have been 
associations, such as with blood pressure and lipid profile, 
these have generally been protective [66–70]. Furthermore, 
whilst there is evidence that calcium supplementation (in 
phosphate binders) is associated with increased risk of myo-
cardial infarction and death in end-stage renal failure, it is 
important to appreciate that chronic renal failure leads to 
a highly perturbed metabolic milieu, in which endothelial 
dysfunction is an important component [71]. To illustrate, 
in a study comparing arterial wall calcification in vessels 
from healthy and chronic renal failure patients, exposure to 
raised calcium concentrations had no effect on arterial wall 
calcification in the healthy tissue, but led to increased calci-
fication in the vessels of chronic renal failure patients [72]. 
The degree of renal failure at which calcium supplementa-
tion might become problematic has not been defined. This 
is an important question, because of the large number of 
elderly individuals who have mild to moderate renal impair-
ment. The question of whether cardiovascular risk might 
be raised by calcium supplements specifically in those with 
pre-existing ischaemic cardiovascular disease remains unan-
swered. Further work is clearly needed to investigate these 
mechanistic aspects, but whilst the evidence to date suggests 
calcium supplementation in end-stage renal failure increases 
cardiovascular risk, there is no direct evidence of a causal 
link in healthy individuals.

Mechanistic inference from causal analyses

Recent investigations have made use of advances in genetic 
understanding and the widespread availability of genome-
wide genotyping in large cohorts, to undertake causal 
analyses, exploring associations between genetically deter-
mined calcium concentrations and cardiovascular outcomes. 
Among a sample of 184,305 individuals (60,801 coronary 
artery disease cases [approximately 70% with myocardial 
infarction] and 123,504 controls), 6 SNPs were estimated 
to explain about 0.8% of the variation in serum calcium lev-
els [73]. Using an inverse-variance weighted meta-analysis 
(combining the estimates of the 6 SNPs), the odds ratios per 
0.5 mg/dL increase in genetically predicted serum calcium 
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levels were 1.25 (95% CI: 1.08, 1.45) for coronary artery 
disease and 1.24 (95% CI: 1.05, 1.46) for myocardial infarc-
tion. However, in a study of published genome-wide data, 
amongst 6504 all-cause heart failure cases and 387,652 
non-cases of European ancestry, there was no evidence 
of an association between genetically determined calcium 
concentrations (7 SNPs) and heart failure [74]. A similar 
Mendelian randomisation analysis demonstrated no associa-
tion between genetically determined calcium concentration 
and any ischaemic stroke subtype in the MEGASTROKE 
consortium comprising 34,217 cases and 404,630 controls 
[75]. Again, no convincing association was demonstrated 
between genetically determined calcium concentration and 
atrial fibrillation in a further Mendelian randomisation study 
[76].

Whilst such causal analyses provide weak evidence for 
a causal association with myocardial infarction, there are 
substantial limitations with regard to how they should be 
incorporated into the interpretation of the evidence base as 
a whole. There are key assumptions which must be satis-
fied in a Mendelian randomisation analysis. These may be 
unprovable, such as that the genetic instrument only acts on 
the outcome through the exposure of interest. Furthermore, 
given the very small amount of the variance of the expo-
sure explained by the genetic instrument, large cohorts are 
required to attain statistical power, and the population struc-
ture of the cohort can substantially influence the findings 
[77]. Finally, such studies demonstrate associations between 
an outcome and lifelong genetically determined exposures. 
The relevance of this lifelong exposure to the effect of sup-
plementation, which might lead to regular but very tran-
sient modest changes in serum calcium concentration, over a 
defined period in old age, is completely unknown. The gold 
standard, therefore, remains evidence from randomised, dou-
ble-blinded, placebo-controlled interventional studies which 
have validated cardiovascular outcomes. Recent evidence, 
presented in abstract form, has suggested no effect of cal-
cium supplementation on aortic calcification (assessed from 
DXA vertebral fracture assessment images) [78] or high-
sensitivity troponin [79] (a sensitive marker of myocardial 
compromise) in 1460 women aged > 70 years, randomised in 
a double-blind design to either 1200 mg calcium carbonate 
per day versus matched placebo and followed for 5 years.

Magnesium

Background

Magnesium is the fourth most abundant mineral found in 
the body, with 60% stored in the skeleton [5]. However, con-
sumption of magnesium is variable throughout the world. In 
the United States, the prevalence of inadequate magnesium 

intake for adults is about 64% among males and 67% among 
females, with greater rates of insufficiency at older ages [80]. 
In the UK National Diet and Nutrition Survey, data suggest 
that the reference nutrient intake for magnesium is attained 
in 91.7% adults aged 50 years or over [81].

Bone effects

Magnesium deficiency has been linked with adverse skel-
etal outcomes through several potential mechanisms [82], 
including altered bone mineralization and parathyroid 
hormone/1,25(OH)2-vitamin D physiology; increased bone 
loss by promoting pro-inflammatory cytokines stimulating 
remodeling and osteopenia; and increased endothelial dys-
function [83]. Experimental animal and human studies sug-
gest that magnesium deficiency is associated with reduced 
osteoclastic and osteoblastic activity, osteopenia, and skel-
etal fragility [84, 85]. A severely magnesium deficient diet 
leads to impaired bone growth and exacerbation of loss 
of bone mass in rats [86–88] and mice [89]. Interestingly, 
animal studies and data from human pregnancies where 
high doses of magnesium salts have been used to treat pre-
eclampsia, have suggested the potential for adverse effects 
on bone mineralisation at very high intakes of magnesium 
[90–92].

Magnesium, osteoporosis and fracture risk

Although the findings from animal studies and experimental 
investigations suggest the importance of magnesium in bone 
health, the evidence for a substantial role of magnesium in 
the pathogenesis of osteoporosis or as a predictor of frac-
ture risk is rather mixed. A recent meta-analysis identified 
11 eligible studies involving 2776 postmenopausal women 
in which magnesium concentrations have been measured 
and bone density assessed [82]. Overall, there was evidence 
of a lower concentration of serum magnesium in women 
with osteoporosis compared with normal controls, with 
similar findings for bone mineral density at both the femo-
ral neck and lumbar spine, and when stratified by age, but 
which differed by geographic location. Thus, differences 
were observed in European women but not in those from 
Asia. The findings from this meta-analysis are consistent 
with an earlier systematic review and meta-analysis dem-
onstrating more marginal associations between magnesium 
dietary intake and bone mineral density at the hip. Given 
that circulating concentrations of magnesium are tightly 
regulated, and may not reflect intake closely, it is difficult 
to properly compare studies of dietary intake with those of 
serum concentrations. There are few studies of magnesium 
concentrations or intake with fracture outcomes. Given the 
critical role of magnesium in cardiovascular health, it could 
be hypothesised that perturbations in magnesium physiology 
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might lead to fractures through increased propensity to fall-
ing through cardiovascular arrhythmias, in addition to any 
effect on bone mineral density. In the US Women’s Health 
Initiative Observational Study, total daily magnesium intake 
was estimated from baseline food frequency questionnaires, 
together with intake from supplements [2]. Amongst the 
73,684 postmenopausal women, baseline hip BMD was 3% 
higher and whole body BMD was 2% higher in women who 
consumed > 422.5 mg compared with < 206.5 mg magne-
sium per day. However, the incidence and relative risk of 
hip and total fractures did not differ across fifths of intake. 
In contrast, risk of forearm or wrist fractures increased with 
higher magnesium intake [multivariate-adjusted hazard 
ratios: 1.15 (95% CI: 1.01, 1.32) and 1.23 (95% CI: 1.07, 
1.42) for fifths 4 and 5, respectively, compared with the low-
est fifth], with this finding potentially explained by greater 
physical activity and exposure to falls risk. In a more recent 
meta-analysis, fracture outcomes were ascertained from two 
studies for hip fracture and two for all fractures (both includ-
ing the WHI study) [3]. The findings provided no evidence 
for an association between magnesium intake and fracture 
outcomes, but clearly represent a fairly limited evidence 
base. With the advent of widespread genome-wide genotypic 
data on large cohorts, Mendelian randomisation analyses 
have become possible. A recent such study across various 
cohorts used a genetic instrument for magnesium concen-
tration consisting of 5 single nucleotide polymorphisms in 
a sample of 15,366 individuals, and then tested the associa-
tion in a cohort of 508,253 osteoporotic fracture patients 
and 53,236 participants from the general population (all of 
European ancestry) with osteoporosis status documented 
[93]. The finding that an increase in genetically predicted 
magnesium concentration of 0.16 mmol/L was associated 
with a 0.10 g/cm2 greater BMD suggests a causal association 
between magnesium concentration and BMD. However, as 
described above, the approach relies on several assumptions, 
which may not be testable, and importantly represents a life-
long genetic influence, and indeed a very small proportion of 
the variance in overall magnesium concentrations, so cannot 
really be extrapolated to any effect of dietary intake or sup-
plementation in old age.

Cardiovascular safety of magnesium

Observational and experimental studies have shown that 
magnesium can exert beneficial effects on the cardiovascular 
system by enhancing endothelium-dependent vasodilation, 
improving lipid metabolism, reducing inflammation, and 
inhibiting platelet function [4, 94, 95]. Indeed hypomagne-
semia (e.g. below 0.65 mmol/L) increases risk of cardiac 
arrest [96]. In two small randomised, controlled, crossover 
trials restricted dietary magnesium in healthy postmenopau-
sal women to less than half (101–130 mg) the recommended 

dietary allowance. This led to increased risk of non-malig-
nant cardiac arrhythmias, changes which were reversed by 
magnesium supplementation [4, 97, 98]. Severe reductions 
in dietary magnesium intake may also lead to alterations in 
oxidative metabolism, glucose homeostasis, and electrolyte 
balance [97–99]. Although marked reductions in magnesium 
concentrations or intakes produce adverse effects, whether 
cardiovascular disease (CVD) risk differs across the normal 
physiologic concentration range of circulating magnesium 
or dietary magnesium intake is unclear [4]. A 2005 pooled 
analysis of prospective cohorts found no significant associa-
tion between dietary magnesium and IHD (RR: 0.87; 95% 
CI: 0.67, 1.10) [100].

More recent systematic reviews and meta-analyses, 
together with causal analyses, have consistently suggested 
a protective effect of greater magnesium intake and serum 
concentrations for cardiovascular events within the normal 
population. It is important to appreciate that these findings 
should not be extrapolated to disease states such as extremes 
of serum hypo- or hyper- magnesaemia. An analysis of 
532,979 participants from 19 studies (11 studies on dietary 
magnesium intake, 6 studies on serum magnesium concen-
trations, and two studies on both) included 19,926 CVD 
events [5]. The pooled relative risks of total CVD events 
for the highest versus lowest dietary magnesium intake 
and serum magnesium concentrations were 0.85 (95% CI: 
0.78, 0.92) and 0.77 (95% CI: 0.66, 0.87), respectively. A 
further very similar meta-analysis that same year (reassur-
ingly) reached the same conclusion, but presented the find-
ings perhaps more usefully [4]. Of 2303 articles, 16 studies 
met the eligibility criteria; these studies comprised 313,041 
individuals and 11,995 CVD, 7534 IHD, and 2686 fatal IHD 
events. Greater circulating magnesium concentration was 
associated with a 30% lower risk of CVD [RR: 0.70 (95% 
CI: 0.56, 0.88) per 0.2 mmol/L)] and possible evidence of a 
weaker association with lower risks of IHD [0.83 (95% CI: 
0.75, 1.05)] and fatal IHD [0.61 (95% CI: 0.37, 1.00)]. Con-
sistent with these findings, there were modest associations 
between greater dietary magnesium (per 200 mg/d incre-
ment) and lower risk of IHD [RR: 0.78 (95% CI: 0.67, 0.92)] 
and to a lesser extent CVD [(RR: 0.89 (95% CI: 0.75, 1.05)]. 
The association between dietary magnesium and fatal IHD 
was found to be non-linear, with an inverse association up 
to a threshold of 250 mg/d [RR 0.73 (95% CI: 0.62, 0.86)]. 
Similarly, reassuring protective properties for magnesium 
intake have been demonstrated with regard to cardiovascular 
mortality, which, amongst 449,748 individuals (10,313 car-
diovascular deaths), cardiovascular mortality was 16% lower 
in women and 8% lower in men in the remaining population 
compared with the lowest dietary magnesium intake group 
[6]. Finally, in a Mendelian randomisation study of 60,801 
coronary artery disease cases and 123,504 controls, geneti-
cally determined serum magnesium concentration (based 
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on six SNPs) was inversely associated with coronary artery 
disease [101]. Thus, the odds ratio for coronary artery dis-
ease was 0.88 (95% CI: 0.78, 0.99) per 0.1 mmol/L increase 
in genetically predicted serum magnesium levels, consist-
ent with a causal relationship between lower magnesium 
concentrations and coronary artery disease, albeit with the 
caveats mentioned above. The same group undertook similar 
analyses for genetically determined magnesium serum con-
centration with the outcomes of heart failure (no association) 
[74], stroke (inverse association with cardioembolic stroke) 
[75] and atrial fibrillation (inverse association) [76].

Overall, the evidence suggests that at the level of the 
population, higher magnesium intake and serum concen-
trations are generally associated with better health, both in 
terms of cardiovascular outcomes and, less robustly, with 
bone outcomes. However, there is no convincing evidence 
that supplementation with magnesium is an efficacious 
or practicable route to improving bone mineral density or 
reducing fracture risk. Indeed, evidence for altered miner-
alisation with high intakes of magnesium in animal models 
suggests that care would be needed with such an approach to 
not inadvertently impair bone health. Currently, adherence 
to generally advised nutritional guidelines for the recom-
mended intake of magnesium appears a sensible approach.

Strontium ranelate

Background

Strontium, an element directly below calcium in group 2 
of the periodic table, was first discovered in the eighteenth 
century as a result of lead mining in Scotland [102, 103]. It 
is present in the human diet in small quantities for exam-
ple in leafy greens, grains and seafood [104]. Following 
the observation that strontium was incorporated into the 
skeleton, it was recognised that strontium, as with calcium 
and magnesium, could affect myocardial contractility, influ-
ence parathyroid hormone secretion and influence uterine 
contractions [105, 106]. In the normal human diet, 99% of 
ingested strontium is deposited in bone, which results in 
replacement by strontium of around 0.035% calcium in the 
skeleton [104]. Interestingly, excessive strontium substitu-
tion may cause defective bone mineralisation, reminiscent 
of osteomalacia [104, 107, 108]. Isotopes of strontium have 
been used to treat bone pain patients with metastatic bone 
cancer and as a tool for imaging bone lesions [109, 110].

Bone effects

Strontium lactate and strontium chloride have both been 
studied as potential treatments for osteoporosis in human 
and animal studies [107, 111–113]. In the most recent 

incarnation, strontium is combined with ranelic acid as a 
carrier to form strontium ranelate. It is taken as a single 
daily oral dose. Its mechanism of action remains a subject of 
research, but there is evidence that it increases bone strength 
by altering bone material properties [103]. Administration 
of strontium ranelate leads to a substantial increase in BMD 
at the spine and hip, though part of this increase is artefac-
tual, due to incorporation of strontium (which has a greater 
atomic mass than calcium) into bone. Studies have shown 
a 36% relative risk reduction in hip fracture over 3 years in 
osteoporotic patients [10].

Anti-fracture efficacy

The anti-fracture efficacy of strontium ranelate in post-
menopausal osteoporosis derived originally from two large 
pivotal randomized controlled trials, for which the results 
were reported in 2004 [9] and 2005 [10], and which formed 
basis of its initial clinical indication. The Spinal Osteopo-
rosis Therapeutic Intervention (SOTI) trial included 1442 
women aged > 50 years with postmenopausal osteoporosis 
with at least one prevalent vertebral fracture and a femoral 
neck T score of − 2.8 and a lumbar spine T score of − 3.5 
[9]. Participants were allocated randomly to either 2 g/day 
strontium ranelate or matched placebo. Vertebral fractures 
occurred in 20.9% of women in the strontium ranelate group 
versus 32.8% in the placebo group over the 3 years’ follow-
up. In the second trial (Treatment of Peripheral Osteoporosis 
Trial: TROPOS), 5091 postmenopausal women with osteo-
porosis were randomised to either 2 g/day strontium ranelate 
or matched placebo [10]. Here, 11.2% of strontium ranelate 
patients had at least one osteoporosis-related nonvertebral 
fracture, and 8.7% at least one major osteoporotic fracture 
over the 3 years’ follow-up, compared with 12.9 and 10.4% 
(respectively) participants in the placebo group.

Cardiovascular safety of strontium ranelate

In 2013, the Pharmacovigilance Risk Assessment Com-
mittee (PRAC) of the European Medicines Agency (EMA) 
noted concerns over cardiac safety emerging from annual 
periodic safety update reporting (the mechanism whereby 
manufacturers submit regular safety data to the EMA) and 
subsequently recommended a reappraisal of the overall 
benefit-risk ratio of strontium ranelate [11, 114–116]. 
The pooled analysis in 7572 postmenopausal women 
(3803 strontium ranelate and 3769 placebo) indicated an 
increased risk for myocardial infarction (MI) with stron-
tium ranelate, with estimated annual incidences of 5.7 
cases per 1000 patient years versus 3.6 cases per 1000 
patient years with placebo [11]. The odds ratio for MI 
was 1.60 (95% CI: 1.07, 2.38) for strontium ranelate ver-
sus placebo (incidences of 1.7 versus 1.1%, respectively). 



490 Aging Clinical and Experimental Research (2021) 33:479–494

1 3

Interestingly, among the cases of MI, fatal events were less 
frequent with strontium ranelate (15.6%) than with placebo 
(22.5%). Post-marketing surveillance data covering > 3.4 
million patient years of treatment from September 2004 
to February 2013 did not support an increased risk of MI 
[11, 116]. Subsequent observational studies with very 
large populations have similarly not indicated any adverse 
signal. Thus, a prospective observational cohort study of 
12,076 patients on strontium ranelate did not demonstrate 
increased risk of cardiac events over the 32.0 ± 9.7 months 
of follow-up [11, 116, 117]. In a nested case-control study 
of 112,445 women with treated postmenopausal osteopo-
rosis, of whom 6487 were receiving strontium ranelate, the 
annual incidence rates for first definite MI, MI with hos-
pitalisation and cardiovascular death were 3.24, 6.13, and 
14.66 per 1000 patient years, respectively. As expected, 
in this analysis within the UK Clinical Practice Research 
Datalink (CPRD), obesity, smoking and cardiovascular 
treatments were associated with greater risk of cardiac 
events, but current use or past use of strontium ranelate 
was not associated with increased risk for first definite 
myocardial infarction (compared with patients who had 
never taken strontium ranelate) [OR: 1.05 (95% CI: 0.68, 
1.61) and 1.12 (95% CI: 0.79, 1.58), respectively], hospi-
talisation with myocardial infarction [0.84 (95% CI: 0.54, 
1.30) and 1.17 (95% CI: 0.83, 1.66)], or cardiovascular 
death [0.96 (95% CI: 0.76, 1.21) and 1.16 (95% CI: 0.94, 
1.43)] [118]. The most recent study combined data from 
three multinational multi-database sources to undertake 
case-control studies nested within a cohort of new users 
of strontium ranelate or bisphosphonates [119]. Cases of 
acute myocardial infarction, venous thromboembolism or 
cardiovascular death were matched with up to ten controls 
by sex, year of birth, index date and country. The results 
indicated that there was no apparent excess risk of acute 
myocardial infarction with current strontium ranelate ver-
sus current bisphosphonate use [Odds Ratio: 0.89 (95% CI 
0.70, 1.12)] nor with current versus past strontium ranelate 
use [0.71 (95% CI: 0.56, 0.91)]. There was evidence for an 
increased risk of venous thromboembolism with current 
strontium ranelate compared with current bisphosphonate 
use [1.24 (95% CI: 0.96, 1.61)], and current versus past 
strontium ranelate use [1.30 (95% CI: 1.04, 1.62)]. Cardio-
vascular death was more common with current strontium 
ranelate versus current bisphosphonate use [1.35 (95% CI: 
1.02, 1.80)]. However, when current use was compared 
with past strontium ranelate use (which better controls for 
confounding by indication) a reduced risk of cardiovascu-
lar death was apparent [0.68 (95% CI: 0.48, 0.96)] [119]. 
Importantly, this study was undertaken after the change 
in label and specification of cardiovascular disease as a 
contraindication to strontium and late use. Cessation of 
therapies during end-of-life care and residual confounding 

by indication are suggested by the authors to potentially 
partly explain these apparently discrepant findings [116, 
119].

Summary and conclusions

Whilst calcium, magnesium and strontium have chemical 
similarities, the evidence base surrounding their links with 
bone and cardiovascular health is heterogeneous. Thus, 
calcium combined with vitamin D supplementation leads 
to a modest reduction in fracture risk but calcium supple-
mentation is associated with a small increase risk of renal 
stones, and a more marked increase in risk of gastrointestinal 
symptoms. The purported links between calcium/vitamin D 
and cardiovascular outcomes are not consistently supported 
across the literature and indeed not convincingly apparent 
when validated outcomes are used; a mechanistic explana-
tion in the context of normal renal physiology is still lacking; 
and no dose response or convincing temporal relationship 
between supplementation and cardiovascular outcomes have 
been demonstrated.

Dietary intake and serum concentrations of magnesium 
have been positively associated with bone mineral density 
but links to fracture risk are, as yet, not well characterised; 
reassuringly, greater dietary intake and serum concentrations 
appear to be generally protective from cardiovascular events.

Strontium is a trace element and is considered in the con-
text of the skeleton mainly in terms of treatment for osteo-
porosis, in the form of strontium ranelate. Here, efficacy for 
vertebral and non-verbal fractures has been demonstrated, 
but with convincing evidence of increased risk of thrombo-
embolic disease. However, pooled analysis of randomised 
trial data suggesting an increased risk of myocardial infarc-
tion have not been supported by post-marketing surveillance 
data or analyses of large real-world population datasets.

In conclusion, we suggest that calcium supplementation 
is most appropriately used in combination with vitamin D 
supplementation and targeted at those who are deficient in 
these nutrients, or in combination with antiosteoporosis 
medications [120]. There is little evidence to support rou-
tine magnesium supplementation for bone health. Strontium 
ranelate, which is now available again as a generic medica-
tion, provides a useful therapeutic option for osteoporosis in 
those at high fracture risk who do not have cardiovascular 
risk factors.
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