
CARDS: A DISTRIBUTED SYSTEM FOR

DETECTING COORDINATED ATTACKS

Jiahai Yang, Peng Ning, X. Sean Wang, and Sushi! J ajodia

Center for Secure Information Systems

George Mason University

Faiifax, VA 22030, USA

{yjh, pning, xywang, jajodia}@ise.gmu.edu

Abstract A major research problem in intrusion detection is the efficient Detection of

coordinated attacks over large networks. Issues to be resolved include detennin

ing what data should be collected, which portion of the data should be analyzed,

where the analysis of the data should take place, and how to correlate multi-source

information. This paper proposes the architecture of a Coordinated Attack Re

sponse & Detection System (CARDS). CARDS uses a signature-based model

for resolving these issues. It consists of signature managers, monitors, and direc

tory services. The system collects data in a flexible, distributed manner, and the

detection process is decentralized among various monitors and is event-driven.

The paper also discusses related implementation issues.

Keywords: computer networks, intrusion detection, misuse detection, network security

1. INTRODUCTION

With the rapidly growing connectivity of the Internet, networked computer

systems are fulfilling increasingly vital roles in our modern society. While

the Internet has brought great benefits to this society, it has also made critical

systems vulnerable to malicious attacks [3]. Coordinated attacks are increas

ingly popular among hackers; such attacks are difficult to detect and effectively

defend.

The conventional approach to secure a computer or network system is to build

a protective shield around it (e.g., a firewall). Outsiders who need to access

the system must be identified and authenticated [8]. Since such a preventive

approach is not sufficient to provide sufficient security for a computer system,

intrusion detection techniques are introduced as a second line of defense [2, 8].

Early intrusion detection system (IDS) models were designed to monitor the

activities of a single host. Such models include Haystack [12] and SRI's IDES

[5, 7]. Later models accommodated the monitoring of a number of hosts in-

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000

S. Qing et al. (eds.), Information Security for Global Information Infrastructures

10.1007/978-0-387-35515-3_53

http://dx.doi.org/10.1007/978-0-387-35515-3_53

172 Information Security for Global Information Infrastructures

terconnected via a network. Examples include University of California-Davis'

Network Security Monitor [4] and DIDS [13]. More recent models, such as

UC-Davis' GriDS [14], UC-Santa Barbara's NetSTAT [15], Purdue's AAFID

[1], and SRI's EMERALD [11], pay more attention to intrusion detection for

large-scale distributed networks. An important research problem these sys

tems address is how to detect coordinated attacks over large distributed systems

(e.g., Mitnick attack [10] and Internet worm incident). These systems also ad

dress what data should be collected, where the analysis of these data should be

accomplished, and how to correlate multi-source information.

Although significant progress has been achieved by these new systems, ad

ditional research is needed to develop more practical systems. In this paper, we

propose the architecture of Coordinated Attack Response & Detection System

(CARDS), which focuses on detecting coordinated attacks over large-scale,

distributed systems. CARDS adopts a scalable, high-level, signature-based in

trusion detection approach [9]. The approach uses an audit-independent, struc

tured format to model known attack patterns and represent lower level audit trail

or network traffic information. One advantage of CARDS is that multi-source

information correlation can be achieved more easily. Another advantage is that

the proposed system adopts a decentralized analysis and detection mechanism,

so that the single points of failure can be removed. Section 2 gives a brief

description of our model. More detailed information can be found in [6, 9].

The rest of the paper is organized as follows. In section 3, we describe

the architecture of CARDS. Section 4 describes the approach that CARDS

uses to generate and distribute detection tasks and cooperatively detect attacks.

We discuss implementation issues in section 5 discusses. Section 6 provides

conclusions and addresses future work.

2. SIGNATURE-BASED ATTACK MODEL

DESCRIPTION

In this section, we briefly describe the signature-based attack model presented

in [9]. We formalize the structure of relevant information as a system view. We

model an attack as a pattern (which we call a signature) of events on multiple

system views.

SYSTEM VIEW A system view is an interface between a signature and

the real system, which provides the event and the state information of a target

system. A system view consists of an event schema and a set of (dynamic)

predicate names. The event schema specifies the event attributes, each with

an associated domain of values. The (dynamic) predicate names are proto

types of Boolean functions that represent relationships among some system

entities. For example, we may have a system view (EvtSchema, PredicateSet)

for UNIX hosts, where EvtSchema = { subject,action, object} and Predicate Set

CARDS: A Distributed System for Detecting Coordinated Attacks 173

= { same_object [var_time] (file], file2), same_owner [var_time] (file I, file2) }.

The elements subject, action, and object in EvtSchema are event attributes. The

dynamic predicate same_object is a Boolean function prototype that should re

turn true iffjilel andfile2 represent the same file object at time var_time. The

predicate same_owner is defined similarly.

An event on a system view is a tuple on the event schema with an interval

timestamp [begin_time, end_time], where the tuple consists of the event attribute

values and the timestamp represents the interval during which the event occurs.

A finite set of events on a system view and the Boolean functions that evaluate the

dynamic predicates for the time during which these events occur are collectively

called an event history on the system view.

SIGNATURE Signatures are event patterns representing intrusive activities

that may occur across multiple systems. A signature is specified by a set of

events and the constraints that these events must satisfy.

We model a signature as a labeled directed graph. Each node in the graph

corresponds to an event on a particular system view and each arc is labeled with

a temporal relationship between (the timestamps of) the two nodes (events)

involved in the arc. Events matched to the nodes must satisfy certain conditions,

which are built into the model by associating a timed condition with each node.

Assignments of attributes to variables are used to enhance the specification of

timed conditions. Furthermore, we distinguish two types of nodes: positive and

negative. Positive nodes represent events (which we call positive events) that

are necessary for conducting an attack, while negative nodes represent those

events (which we call negative events) that if they coexist with the positive

events, then the positive events do not constitute an attack.

Figure 1 shows the signature of the Mitnick attack described in [1 0]. Two sys

tem views are involved: DOSAttacks = (EvtSchl, { }) represents the denial-of

service attacks detected by a network monitor, where EvtSchl consists of the at

tributes Attack, Protocol, VictimlP, and VictimPort; TCPConn View= (EvtSch2,

{ LocalJP [var _time](var JP), Trust[var _time](var _host)}) represents the TCP

connections on a host, where EvtSch2 = {Src/P, SrcPort, Dst!P, DstPort}, Lo

calJP[var_time](var JP) evaluates to true if and only if var JP belongs to the

local host, and Trust [var_time](var_host) evaluates to true iff the local host

trusts var Jwst at time var _time. The system view declaration illustrates that

Sys View I, Sys Vew2, and Sys View3 are instances of the corresponding views.

The signature has three nodes (events). Node nl represents a SYN flooding at

tack against a TCP port on a host, say A; node n2 represents a TCP connection

seen on a host, say B, which trusts A. The timed condition with n2 says that this

connection is from the port being flooded. Both nl and n2 are positive nodes
(shown in solid circles), while node n3 is a negative node (shown in a dashed

circle). The labeled arc from n2 to nl says that the event of n2 should occur

during that of nl, and the labeled arc from n3 to n2 and the timed condition with

174 Information Security for Global Information Infrastructures

n3 say that n2 and n3 are the same connection. This signature describes the

Mitnick attack, in which a TCP connection is made from a port being flooded

while the host being flooded does not report the same connection.

during equal

..
V n2 : •• n:)

system VIew: SysViewl system view: ysView2 system view: :s'jsView3

assignment:
var _IP : = Victim!?

var _Port := VictimPort

timed condition:
Attack= SYN_Flooding

system view declaration:

assignment:
varSrc!P := Src!P
var _SrcPort := SrcPort
var _Dst!P := Dst!P
var_DstPort := DstPort

timed condition:

timed condition:
Src!P = var _Src!P and
SrcPort = var _SrcPort and
Dst!P = var _Dst!P and
DstPort = var _DstPort

Src!P = var _IP and SrcPort = var _Port
and Local_IP[var _event.begin_time](Dst!P)
and Trust[var _event.begin_time }(var _IP)

SysViewl is an instance of DOSAttacks SysView2 is an instance of
TCPConn View Sys View3 is an instance of TCPConn View

Figure I The signature for the mitnick attack

Note that while a signature may represent an attack that can be detected by an

intrusion detection system, we can also correlate the result of various intrusion

detection systems by writing signatures on the basis of their outcome. The

above signature shows such a correlation, in which the SYN flooding attack

may be detected by another intrusion detection system.

SPECIFIC SIGNATURE A signature is an event pattern over a set of

system views. Such a signature is also called a generic signature, as it does not

refer to any specific hosts. The signature in Figure 1 is an example of a generic

signature. Generic signatures need to be associated with the real systems before

the corresponding attack on these systems can be detected. A signature is called

a specific signature if each system view used by the signature is associated with

a particular component that provides information through the system view.

3. ARCHITECTURE DESCRIPTION

CARDS is a distributed intrusion detection system composed of three types

of independent but cooperative components: signature manager, monitor, and

directory service. Figure 2 shows the architecture of CARDS. In a typical

environment, there may be one or more signature managers and one or more

monitors. The monitors can be embedded in the monitored system or as a

dedicated system separate from the monitored system. Different monitors can

cooperate with each other through message passing when they are involved in

the detection of one attack.

SIGNATURE MANAGER As shown in figure 2, with the monitor configu

ration information retrieved from the directory service, a signature manager (1)

generates specific signatures from generic signatures, (2) decomposes specific

CARDS: A Distributed System for Detecting Coordinated Attacks 175

signatures into intrusion detection tasks, and (3) distributes these tasks to the

involved monitors.

A detection task is a part of a specific signature that is assigned to a moni

tor. When a specific signature involves only one monitor, it will have a single

detection task. Usually, a signature representing a coordinated attack involves

multiple monitors. Such a signature will be decomposed into several detection

tasks that the corresponding monitors need to perform.

Signature Managers ;

Monitors:

retrieve

Figure 2 The CARDS architecture

irector

register Service

MONITOR Monitors are the components that carry out the intrusion detec

tion tasks. At the beginning of detection, each monitor receives detection tasks

from signature managers. During detection, it cooperates with other monitors

if some detection tasks are parts of some coordinated attacks.

Console

Figure 3 The monitor architecture

Figure 3 shows the architecture of a monitor, which is composed of sev

eral probes: a probe registration module, a detection engine, an inter-monitor

interface, a detection task base, a monitor-manager interface, and a console.

Probes are responsible for collecting information from the target system, fil

tering and reformatting the information into structures defined by system views,

and providing the results to the detection engine. Each probe gets information

from one particular source, such as a host audit trail. The system view config-

176 Information Security for Global Information Infrastructures

uration of each probe (i.e., system views that each probe provides) should be

put into the directory service via the probe registration module, which is later

used by signature managers to generate specific signatures.

The monitor-manager interface receives intrusion detection tasks from the

signature manager and stores them in the detection task base.

The detection engine is the core module of the monitor that analyzes the

information provided by the probes in terms of the detection tasks. When

a detection task belongs to a specific signature involving several monitors,

the detection engine then cooperates with the detection engines in the related

monitors by passing messages through the inter-monitor interface. The console

is the user interface of the monitor. The administrator of a monitor can inspect

the status of the monitor and make local configurations through the console.

DIRECTORY SERVICE The directory service (DS) is the information

center for providing system-wide information to both signature managers and

monitors. Although DSs may be distributed or replicated, they function as a

single component of the system. Thus, the signature managers and the monitors

are allowed to work in a decentralized and scalable manner and deal with only

the components necessary for conducting the designated detection tasks.

The directory service provides two types of information: system view defi

nition and system view configuration. The system view definition specifies the

structures and the semantics of the system views. Once a system view is de

fined, its definition should be placed in the directory service. The system view

configuration information specify the system views of the probes. As described

above, the probe registration module of the monitors updates this information

when a monitor is deployed or reconfigured.

4. COORDINATED ATTACK DETECTION

In this section, we discuss approaches that signature managers use to generate

and decompose specific signatures and the procedures that monitors use for

cooperatively detecting the coordinated attacks. Before going into the detail,

we first introduce the notion of serializable signature.

SERIALIZABLE SIGNATURE For any two nodes n and n' in a given

signature, we say n requires n' if the variables in the timed condition associated

with n appear in the assignments associated with n '. Intuitively, n requires

n' means that node n needs information from node n' through the variable

assignments. For example, in the signature shown in figure 1, n2 requires nl

and n3 requires n2. We say a signature is serializable if there exists a total

order of the nodes in the signature such that for each node n, all the nodes

that it requires appear before it and all positive nodes appear before negative

nodes. For example, the signature shown in figure 1 is serializable, since the

total order nl, n2, n3 satisfies the above serializable condition. If a signature is

CARDS: A Distributed System for Detecting Coordinated Attacks 177

serializable, each node in the signature only needs information from the nodes

before it in the corresponding total order. To simplify the discussion, we will

only consider the detection of serializable signatures in this paper.

SPECIFIC SIGNATURE GENERATION We say a system view v used

by a signature is associated with the probe p of the monitor m if p is designated

to provide information for the signature through v. In CARDS, a signature is

called a specific signature if each system view used by the signature is associated

with a probe of a monitor in the system. Thus, the task of specific signature

generation is to associate all of the system views used by the signature with the

probes of the monitors in the system.

When generating specific signatures from a generic one, the signature man

ager first looks in the directory service to identify the probes that have the system

views used by the generic signature. Then the signature manager derives spe

cific signatures by associating the system views to the probes of the monitors

under its control. For example, consider the signature in figure 1. Suppose that

a signature manager and three monitors exist, called Sniffer, M egalon and Back

east. If the signature manager learns that the probe DOSProbe of Sniffer has the

system view DOSAttacks and both the probe ServerTCPConn of Megalon and

the probe ClientTCPConn of Backeast have the system view TCPConn View,

it can generate a specific signature by associating the corresponding system

views with these probes. This specific signature then describes the Mitnick

attack against the hosts monitored by Megalon and Backeast.

One generic signature may generate more than one specific signature. For

example, a monitor Outwest may have the system view TCPConn View and the

host monitored by Megalon trusts the host monitored by Outwest. The Mitnick

attack may be launched against these two hosts as well; thus, the signature

manager should have a specific signature similar to the one above.

Finally, optimization can be used to generate specific signatures. For exam

ple, the specific signature that we discussed earlier needs to be generated only

if the host monitored by Megalon trusts the host monitored by Outwest.

SPECIFIC SIGNATURE DECOMPOSITION Having generated the spe

cific signatures, the signature manager should decompose each specific signa

ture into detection tasks for the monitors involved so that they can cooperatively

detect these attacks. As coordinated attacks usually cannot be reliably detected

at a single location, two or more monitors are often involved in one specific

signature. Therefore, specific signature decomposition is necessary.

A given signature is decomposed in two steps. In Step 1, the signature

manager arranges the nodes of the signature in an order such that (1) for each

node n in the specific signature, all the nodes that n requires appear before n;

(2) as many nodes that belong to the same monitor can be adjacent to each other

as possible but condition (1) is still satisfied; and (3) all negative nodes appear

178 Information Security for Global Information Infrastructures

after all positive nodes and yet condition (2) is still satisfied. Such a sequence
of nodes is called a node chain.

In Step 2, the node chain is partitioned into groups such that each group
consists of the nodes whose system views belong to the same monitor. Each
group is then assigned to the corresponding monitor and represents the detection
task for which the monitor is responsible.

We also get an ordered list of monitors as a byproduct of the specific signature
decomposition. We call such a sequence of monitors a monitor chain and denote
it in the form of monitor1 -+ monitor2 -+ ... monitor; -+ ... monitorn.
where the monitor marked with "*" is the last one having positive nodes. The
arrow represents the information flow in the cooperative detection performed
by the monitors in the monitor chain. Note that a monitor may appear more

than once in a monitor chain.

COOPERATIVE DETECTION Due to space limitations, we only outline
the detection procedure in this paper. To facilitate the presentation, we define

some terms regarding the monitors in the monitor chain. We call the first monitor
in a monitor chain the beginning monitor, and the last one in the monitor chain
the ending monitor. We call the monitor marked with * the ending positive
monitor, since it is the last monitor having positive nodes. When the ending
monitor is not positive, we call it a negative ending monitor.

Each monitor maintains a "previously matched" table Tn for each node n
assigned to it. The table Tn keeps the information on the combination of events
and states that satisfy the timed conditions of and the temporal relationships

among the nodes before n. In addition, each monitor maintains a history table

Hv for each system view v in it. The history table Hv keeps the information on
all of the events and states that have happened in the system view v.

The detection is event driven. For each monitor involved in a cooperative
detection, three types of events can change its status: (1) history table update
(HTU) event, (2) partially matched table update (PMTU) event, and (3) "false
alarm update event". The last event occurs only when the monitor is the ending
positive monitor but not the ending monitor.

The HTU events refer to the raw events that occur on the target system.
When an HTU event occurs, the monitor stores the event attributes and the
timestamp into the corresponding history table. Then for each node n with
which the system view is associated, the monitor tries the combination of the
new event and "partially matched events" stored in Tn to determine whether
they collectively satisfy the timed conditions of and the temporal relationships
among the nodes up to n. When new combinations of events are found, the
monitor raises a PMTU event for the next node in the chain. If the next node
is positive and is in another monitor, the newly raised event is sent to the next
monitor. A similar procedure will be executed when a PMTU event for node

n occurs.

CARDS: A Distributed System for Detecting Coordinated Attacks 179

When the ending positive monitor finds a match on the last positive node, it

raises an alarm both to the local console and the signature manager. When the

negative ending monitor finds a match on the last negative node, it sends the

corresponding infonnation that identifies the combination of events to the posi

tive ending monitor. The positive ending monitor then marks the corresponding

alarm as false alarm.

Many optimization alternatives exist, but they are beyond the scope of this

paper.

5. IMPLEMENTATION ISSUES

We are now implementing a CARDS prototype to verify our intrusion de

tection model and the designed architecture. Due to the strong capability of

the Extensible Markup Language (XML), we have chosen this language to rep

resent various specifications, such as system views and signatures. We have

developed the corresponding Document Type Definition (DTD). A graphical

user interface for designing signatures is also planned.

Various auditing mechanisms apply to specific security purposes, each of

which may provide a different audit trail. For generality, our model is designed

to be independent of any specific audit trail. The system views are the unique

interfaces between the audit data and the detection engine. The probe is de

signed to restructure the raw audit data into the fonnat of the system view; each

probe is dedicated to a specific infonnation source.

Probes are designed as modules that can be plugged into monitors. Whenever

new infonnation is needed, a new probe can be designed and implemented.

The current implementation provides probes for Sun Solaris 2.x Basic Security

Module (BSM) and traffic infonnation captured by the TCPdump.

6. CONCLUSIONS AND FUTURE WORK

This paper describes the design of the CARDS for detecting coordinated at

tacks on large-scale, distributed systems. CARDS is a prototype for proving the

signature-based detection model presented in [9], which represents coordinated

attacks as generic event patterns over the structures of the typical infonnation

that can be found on target systems (i.e., system views). The system con

tains three types of components (signature managers, monitors, and directory

services), which are distributed at various places in the network.

CARDS implementation is underway. We have chosen Java as the imple

mentation language because of its rich API support. We have adopted Open

LDAP to provide the directory service and XML to define a text-based signa

ture specification language. As part of this effort, we would like to optimize

the distributed detection algorithm by considering more application semantics.

180 Information Security for Global Information Infrastructures

References

[1] J. S. Balasubramaniyan et al, An Architecture for Intrusion Detection using
Autonomous Agents, TR 98/05, COAST Lab., Purdue, 1998

[2] D. E. Denning, An Intrusion-Detection Model, Proc. 1986 IEEE Sympo

sium on Security and Privacy, pages 118-131, Oakland, May 1986

[3] A. K. Ghosh, J. Wanken, and F. Charron, Detecting Anomalous and Un

known Intrusions Against Programs, Proc. 14th Annual Computer Security

Applications Conf., Pages: 259 -267 Scottsdale, AZ, Dec. 1998

[4] T. L. Heberlein et al, A Network Security Monitor, IEEE Symposium on

Security and Privacy, Oakland, CA, May 1990

[5] H. S. Javitz and A. Valdez, The SRI IDES Statistical Anomaly Detector,

IEEE Symposium on Security and Privacy, Oakland, CA, May 1991

[6] J. Lin, X. S. Wang, and S. Jajodia, Abstraction-based misuse detection:

High-level specifications and adaptable strategies. In Proceedings of the 11th

Computer Security Foundation Workshop, pages 190-201, June 1998.

[7] T. Lunt and R. Jagannathan, A Prototype Real-time Intrusion-detection

System, IEEE Symposium on Security and Privacy, Oakland, CA, May 1988

[8] B. Mukherjee, L. T. Heberlein, and K. N. Levvit, Network Intrusion De

tection, IEEE Network, pages 26-41, May/June 1994

[9] P. Ning, S. Jajodia, and X. S. Wang, A Scalable Signature-based Model for

Detecting Coordinated Attacks. TR 01100, George Mason Univ., 2000.

[10] S. Northcutt, Network Intrusion Detection: An Analyst's Handbook, New

Riders, 1999

[11] P. A. Porras and P. G. Neumann, EMERALD: Event Monitoring Enabling

Response to Anomalous Live Disturbances, Proc. 20th National Information

Systems Security Conf., Baltimore, MD, Oct. 1997

[12] S. E. Smaha, Haystack: An Intrusion Detection System, Proc. IEEE 4th

Aerospace Computer Security Applications conference, Dec. 1988

[13] S. R. Snapp, J. Brentano, et al, DIDS (Distributed Intrusion Detection Sys

tem)- Motivation, Architecture, and An Early Prototype, Proc. 14th NCSC,

pages 167-176, Washington, DC, Oct. 1991

[14] S. Staniford-Chen et al, GriDS- A Graph Based Intrusion detection Sys

tem for Large Networks, Proc. 19th National Information Systems Security

Conf. Vol.l, pages 361-370, Oct. 1996

[15] G. Vigna and R. A. Kemmerer, NetSTAT: A Network-based Intrusion

Detection Approach, Proc. 14th Annual Computer Security Applications

Conf., Scottsdale, AZ, Dec. 1998

	CARDS: A DISTRIBUTED SYSTEM FORDETECTING COORDINATED ATTACKS
	1. INTRODUCTION
	2. SIGNATURE-BASED ATTACK MODELDESCRIPTION
	3. ARCHITECTURE DESCRIPTION
	4. COORDINATED ATTACK DETECTION
	5. IMPLEMENTATION ISSUES
	6. CONCLUSIONS AND FUTURE WORK
	References

