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Abstract

Patients’ health related information is stored in electronic health records (EHRs) by health service providers. These

records include sequential documentation of care episodes in the form of clinical notes. EHRs are used throughout

the health care sector by professionals, administrators and patients, primarily for clinical purposes, but also for

secondary purposes such as decision support and research. The vast amounts of information in EHR systems

complicate information management and increase the risk of information overload. Therefore, clinicians and

researchers need new tools to manage the information stored in the EHRs. A common use case is, given a -

possibly unfinished - care episode, to retrieve the most similar care episodes among the records. This paper

presents several methods for information retrieval, focusing on care episode retrieval, based on textual similarity,

where similarity is measured through domain-specific modelling of the distributional semantics of words. Models

include variants of random indexing and the semantic neural network model word2vec. Two novel methods are

introduced that utilize the ICD-10 codes attached to care episodes to better induce domain-specificity in the

semantic model. We report on experimental evaluation of care episode retrieval that circumvents the lack of

human judgements regarding episode relevance. Results suggest that several of the methods proposed

outperform a state-of-the art search engine (Lucene) on the retrieval task.

Introduction
The development, adoption and implementation of

health information technology, e.g. electronic health

record (EHR) systems, is a strategic focus of health poli-

cies globally [1-4] and the amount of electronically

documented health information is increasing exponen-

tially as health records are becoming more and more

computerised. The vast amounts of computerised health

information complicate information management and

increase the risk of information overload. At the same

time, it creates opportunities for technological solutions

to support health related and clinical decision making.

For instance, the use of natural language processing

(NLP) methods to facilitate researchers in discovering

new knowledge to improve health and care.

EHRs are used throughout the health care sector by

professionals, administrators and patients, primarily for

clinical purposes, but also for secondary purposes such

as decision support and research [5]. EHRs include

structured and unstructured data, and they consist of a

sequential collection of a patients health related infor-

mation e.g. health history, allergies, medications, labora-

tory results and radiology images. Also, the different

stages of a patient’s clinical care are documented in the

EHR as clinical care notes, which mainly consist of free

text. A sequence of individual clinical care notes form a

care episode, which is concluded by a discharge sum-

mary, as illustrated in Figure 1.

Information retrieval (IR) aims at retrieving and rank-

ing documents from a large collection based on the

information related needs of a user expressed in a
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search query [6]. IR has become a crucial technology for

many organisations that deal with vast amounts of partly

structured and unstructured (free text) data stored in

electronic format, including hospitals and other health

care providers. IR is an essential part of the clinical

practice and clinicians, i.e. nurses and physicians search

on the Internet for information, typically health litera-

ture, to solve clinical problems and for professional

development [7]. Such online IR systems are associated

with substantial improvements in clinicians decision

making concerning clinical and health related problems

[8,9]. To date, as the information in the EHRs is increas-

ing, clinicians need new tools to manage the informa-

tion. Therefore, IR from EHRs in general is a common

and important task that, among other things, can sup-

port Evidence-Based Practice (EBP) through finding rele-

vant care episodes and gathering sufficient evidence.

This paper focuses on the particular task of retrieving

care episodes that are most similar to the sequence of

clinical notes for a given patient, which we will call care

episode retrieval. In conventional IR, the query typically

consists of several keywords or a short phrase, while the

retrievable units are typically documents. In contrast, in

this work on care episode retrieval, the queries consist

of the clinical notes contained in a care episode. The

final discharge summaries for each care episode are

assumed to be unavailable for constructing a query at

retrieval time.

We envision a number of different use cases for a care

episode retrieval system. Firstly, it could facilitate clini-

cians in care related decision making. For example,

given a patient that is being treated in a hospital, an

involved clinician may want to find previous patients

that are similar in terms of their health history, symp-

toms or received treatments. Additional inputs from the

clinician would enable the system to give more weight

to keywords of particular interest within the care epi-

sodes, which would further be emphasized in the

semantic similarity calculation during IR. This may

support the clinician’s care-related decision making

when seeing what similar patients have received in

terms of medication and treatment, what related issues

such as bi-conditions or risks occurred, how other clini-

cians have described certain aspects, what clinical prac-

tice guidelines have been utilized, and so on. This

relates to the principle of reasoning by analogy as used

in textual case-based reasoning [10]. Secondly, when

combined with systems for automatic summarization

and trend detection, it could help health care managers

to optimally allocate human resources with almost real

time information concerning the overall situation on the

unit for a specific follow-up period. Such a system could

for example support managerial decision making with

statistical information concerning care trends on the

unit, adverse events and infections. Thirdly, it could

facilitate knowledge discovery and research to improve

care (cf. EBP). For instance, it could enable researchers

to map or cluster similar care episodes to find common

symptoms or conditions. In sum, care episode retrieval

methods/systems hold large potential to improve docu-

mentation and care quality.

IR in the sense of searching text documents is closely

related to NLP and is often considered a subfield of

NLP. For example, stemming or lemmatization, in order

to increase the likelihood of matches between terms in

the query and a document, is a typical NLP task. From

the perspective of NLP, care episode retrieval - and IR

from EHRs in general - is a challenging task. It differs

from general-purpose web search in that the vocabulary,

the information needs and the queries of clinicians are

highly specialised [11]. Clinical notes contain highly

domain-specific terminology [12-14] and generic text

processing resources are therefore often suboptimal or

inadequate [15]. At the same time, development of dedi-

cated clinical NLP tools and resources is often difficult

and costly. For example, popular data-driven approaches

to NLP are based on supervised learning, which requires

substantial amounts of tailored training data, typically

Figure 1 Illustration of care episode retrieval. The two care episodes (A and B) are composed of a number of individual clinical notes and a

single discharge summary. Given an ongoing care episode (minus the discharge summary), the task is to retrieve other, similar care episodes.
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built through manual annotation by annotators who

need both linguistic and clinical knowledge. Addition-

ally, variations in the language and terminology used in

sub-domains within and across health care organisations

greatly limit the scope of applicability of such training

data [12]. Moreover, resources are typically language-

specific: most tools for processing English clinical text

are of no use for our work on Finnish clinical text.

Recent work has shown that distributional models of

semantics, induced in an unsupervised manner from

large corpora of clinical and/or medical text, are well

suited as a resource-light approach to capturing and

representing domain-specific terminology [16-19]. The

theoretical foundation for these models is the distribu-

tional hypothesis [20], stating that words with similar

distributions in language - in the sense that they co-

occur with overlapping sets of words - tend to have

similar meanings. These models avoid most of the afore-

mentioned problems associated with NLP resources.

They do not involve the costly manual encoding of lin-

guistic or clinical/medical knowledge by experts as

required in knowledge-based approaches, nor do they

involve equally costly investments in large-scale manual

annotation and corpus construction as required for

supervised learning. Instead, they can be constructed for

any language or domain, as long as a reasonable amount

of raw text in electronic format is available.

The work reported here investigates to what extent

distributional models of semantics, built from a corpus

of clinical text in a fully unsupervised manner, can be

used to conduct care episode retrieval. The purpose of

this study is to explore how a set of different distribu-

tional models perform in care episode retrieval, and also

to determine how care episode similarity is best calcu-

lated. The models explored include several variants of

random indexing and word2vec, methods which will be

described in more detail in the ‘Methods’ section. These

models allow us to compute the similarity between

words, which in turn forms the basis for measuring

similarity between texts such as individual clinical notes

or larger care episodes. Several methods for computing

textual similarity are proposed and experimentally tested

in the task of care episode retrieval - being the main

contribution of this paper.

It has been argued that clinical NLP should leverage

existing knowledge resources such as knowledge bases

about medications, treatments, diseases, symptoms and

care plans, despite these not having been explicitly built

for the purpose of clinical NLP [21]. Along these lines, a

novel approach is presented here that utilizes the 10th

revision of the International Classification of Diseases

(ICD-10) [22] - a standardised tool of diagnostic codes for

classifying diseases, labelled as meta-information to care

episodes by clinicians - to better induce domain-specificity

in the semantic model. Experimental results suggest that

such models outperform a state-of-the art search engine

(Lucene) on the task of care episode retrieval. Results also

indicate that performance gain is achieved by most models

when we utilize a list of health terms (cf. a health metathe-

saurus) for boosting term weights.

Apart from issues related to clinical terminology,

another problem in care episode retrieval is the lack of

benchmark data, such as the relevance scores produced

by human judges commonly used for evaluation of IR

systems. Although collections of care episodes may be

available, producing gold standard similarity scores

required for evaluation is costly. Another contribution

of this paper is the proposal of evaluation procedures

that circumvent the lack of human judgements regard-

ing episode similarity. Two evaluation setups are used,

one relying on ICD-10 codes attached to care episodes,

and the other relying on textual semantic similarity

between discharge summaries belonging to care

episodes. Neither discharge summaries nor ICD-10

codes are used for constructing a query at retrieval time.

This includes that sentences mentioning ICD-10 codes

in free text are excluded from the query episodes.

Despite our focus on the specific task of care episode

retrieval, we hypothesize that the methods and models

proposed here have the potential to increase perfor-

mance of IR on clinical text in general.

This article extends earlier work published in Moen et

al. [23]. New content includes the evaluation of various

methods and setups on 40 instead of 20 query episodes,

the introduction and evaluation of a new semantic

model (W2V-ICD), and alternative ways of calculating

care episode similarities.

The structure of this article is as follows. In the next

section, ‘Related work’, we describe some related work.

In the ‘Task’ section we describe in more detail the task

of care episode retrieval, followed by a description of

the data set of care episodes in the ‘Data’ section. The

‘Methods’ section presents six different distributional

semantic models as well as two baselines. The ‘Results’

section reports the results of two experimental evaluations.

The final two sections, ‘Discussion’ and ‘Conclusion’, are

dedicated to discussion and conclusions respectively.

Related work
With the issues of information overload in hospitals and

the general need for research and improvements in clinical

care, several IR systems have been developed specifically

for health records and clinical text. Examples are the Elec-

tronic Medical Record Search Engine (EMERSE) [24], the

StarTracker [25], the Queriable Patient Inference Dossier

(QPID) [26], the MorphoSaurus [27], and the CISearch

[28]. These software are used by clinicians and researchers

to seek information from EHRs. Other IR systems used in
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multiple domains, including the health domain, is the

open source search engine, or framework, Apache Lucene

(Lucene) [29] and the Terrier search engine [30]. Some

research has been published in relation to the use of these

systems in the clinical domain [11,26,28,31-34]. However,

research evaluating the effect of these tools and their

impact on care and patient outcomes seems to be scarce.

In this work Lucene is used as a baseline.

One challenge related to clinical NLP is the limited

availability of such data, mainly due to its sensitivity.

Thus, many IR/search solutions that are in use in var-

ious EHR systems today are often off-the-shelf generic

IR tools, or unique to the corresponding EHR systems.

In other words, the underlying IR methods are seldom

subject to research on clinical IR. However, in recent

years through shared tasks such as the TREC Medical

Records track [35,36] and the ShARe/CLEF eHealth

Evaluation Lab [37], clinical data is becoming increas-

ingly accessible to a broader audience of researchers,

thus research on clinical NLP and IR has gained some

momentum. Existing work on IR for health records

relies to a large extent on performing some type of

query expansion, and possibly some bootstrapping,

through the use of tailored information sources, or cor-

pus-driven statistical methods. Limsopatham et al. [38]

attempts to improve IR on health records by inferring

implicit domain knowledge, mainly done through query

expansion that relies on tailored domain-specific

resources and information from other high-ranked

documents. Zhu and Carterette [39,40] performs query

expansion mainly through the use of more generic

resources, including ICD-9, Medical Subject Headings

(MeSH) and Wikipedia. They also explore the use of a

negation detection tool for information exclusion (Con-

Text [41]).

Distributional semantic models have enjoyed a steady

popularity for quite some time, and have for instance

recently gained a lot of interest with the introduction of

the word2vec method by Mikolov et al. [42]. Such meth-

ods for inducing models of distributional semantics, in

an unsupervised and language independent fashion, have

shown to perform well at a range of NLP tasks, includ-

ing more generic IR [43,6,44-47] and clinical IR for

health records, see participants of the TREC Medical

Records track [35,36]. Noteworthy, Koopman et al. [17]

performs a comparison of several distributional models

at clinical IR, including models built using the methods

random indexing (RI) [48] and latent semantic analysis

(LSA) [49]. There is no doubt that further research and

evaluation of such methods would contribute to poten-

tial improvements in NLP, IR and information manage-

ment in the clinical domain. One method that lacks

proper evaluation in this domain is word2vec.

A promising direction in clinical NLP have been

demonstrated through methods/systems that utilize var-

ious external knowledge resources, other than just the

actual words in the query and target, either for perform-

ing query expansion [40], or in the textual similarity

metric [50]. This is some of the underlying inspiration

for a novel method contribution in this paper, one that

relies on exploiting ICD-10 codes that has been labelled

the care episodes. However, instead of using these for

direct query expansion, they are utilized in the actual

training phase of the semantic models.

Existing work on clinical IR that we are aware of relies

on evaluation data where the queries are short search

phrases. This differs from the task presented here,

where the query is an entire care episode.

Diagnosis and treatment codes, such as ICD codes, are

often applied at the end of the patient stay, or even after

discharged from the hospital. Automatic labeling of care

episodes with ICD codes has been the subject of a num-

ber of studies, e.g. [51,52]. Arguably this task is some-

what related to our task as far as the use of ICD codes

for evaluation is concerned.

Task
The task addressed in this study is retrieval of care epi-

sodes that are similar to each other in terms of their

clinical free text. The purpose is to explore how a set of

different distributional models perform in care episode

retrieval, and also to determine how care episode simi-

larity is best calculated. In contrast to the normal IR set-

ting, where the search query is derived from a text

stating the user’s information need, here the query is

based on another care episode, which we refer to as the

query episode. As the query episode may document

ongoing treatment, and thus lack a discharge summary

and ICD-10 code, neither of these information sources

can be relied upon for constructing the query. The task

is therefore to retrieve the most similar care episodes

using only the information contained in the free text of

the clinical notes in the query episode. An overview

showing the steps in our experimental setup is illu-

strated in Figure 2.

Evaluation of retrieval results generally requires an

assessment of their relevancy to the query. To perform

automatic evaluation, a gold standard is needed, which

specifies the relevant documents from the collection for

each query. It is common to produce such a gold stan-

dard through (semi-) manual work, relying on multiple

human experts to select or rank documents according

to their relevancy to a given query. Hence, obtaining

such judgements is typically costly and time-consuming.

Moreover, for the care episode retrieval task, the manual

work would require experts in the clinical domain.
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In relation to this study, with the help of an expert in

the clinical domain, we tried to assess the feasibility of

creating such a gold standard for the care episode retrie-

val task. What we found was that assessing whether or

not two care episodes are similar, strictly based on the

information in both texts, was a difficult task with a lot

of room for (individual) interpretation, especially for the

top-ranked care episodes. By looking at the top-10 care

episodes retrieved by the various semantic models and

Lucene for a particular query episode, we found almost

all of them had many overlapping clinical features with

the query episode, even if they did not share the same

primary ICD-10 code. In many cases they shared ICD-

10 codes, but not necessarily the primary ones. Also,

even though many patients were hospitalized due to

similar reasons and/or backgrounds, this did not neces-

sarily mean that they were treated in response to the

exact same diagnosis, given the same treatments, or

received those treatments in the same order. We esti-

mate the two most time-consuming sub-tasks to be (1)

creating explicit and unambiguous guidelines for the

human evaluators, possibly unique ones for each query

episode; (2) performing the evaluation for the required

number of care episodes (average being 357 care epi-

sodes for each of the 40 queries when looking at the top

100 retrieved care episodes per query for each model/

system). In addition, it is important to have enough

human evaluators evaluating the same data to be able to

verify that inter-annotator agreement is of a sufficiently

high level. We concluded that the effort required for

creating such a gold standard was simply too much for

the resources we had access to.

As we did not have access to the required resources for

creating the evaluation set manually, we opted for an

alternative approach. Two different evaluation strategies

were used in an attempt to approximate human relevance

judgements. The first evaluation method is based on the

assumption that a retrieved episode is relevant if its ICD-

10 code is identical to that of the query episode. The sec-

ond method assumes that a retrieved episode is relevant

if its discharge summary is semantically similar to that of

the query episode. In this setting, crucially, discharge

summaries or ICD-10 codes are not used in either query

construction or episode retrieval. Both evaluation meth-

ods are further detailed in the sections ‘Experiment 1:

ICD-10 code identity’ and ‘Experiment 2: Discharge sum-

mary overlap’ respectively.

Data
The data set used in this study consists of the electronic

health records from patients with any type of heart

related problem that were admitted to one particular

university hospital in Finland between the years 2005-

2009. Of these, the clinical notes written by physicians

are used (i.e. we did not use the corresponding nursing

notes). An assent for the research was obtained from

the Ethics Committee of the Hospital District (17.2.2009

§67) and permission to conduct the research was

obtained from the Medical Director of the Hospital Dis-

trict (2/2009). The total data set consists of 66884 care

episodes, which amounts to 398040 notes and 64 mil-

lion words in total. Words here refer to terms identified

through the lemmatization, except terms being pure

numbers. This full set was used for training of the

semantic models. To reduce the computational demands

of experimentation, a subset was used for evaluation

purposes, comprising 26530 care episodes, amounting to

155562 notes and 25.7 million words in total.

Notes are mostly unstructured, consisting of Finnish

clinical free text.

The care episodes have been manually labeled accord-

ing to ICD-10. Codes are normally applied at the end of

the patients’ hospital stay, or even after the patient has

been discharged from the hospital. Care episodes have

commonly one primary ICD-10 code attached and

optionally a number of additionally secondary codes. As

extraction of the potential secondary ICD-10 codes is

non-trivial, we have in this study only used the primary

ICD-10 codes - used for training two of the semantic

models and for evaluation purposes in Experiment 1.

ICD-10 codes have an internal structure that reflects the

classification system ranging from broad categories down

to fine-grained subjects. For example, the first character (J)

of the code J21.1 signals that it belongs to the broad cate-

gory Diseases of the respiratory system. The next two digits

(21) classify the subject as belonging to the subcategory

Acute bronchiolitis. Finally, the last digit after the dot (1)

means that it belongs to the sub-subclass Acute bronchioli-

tis due to human metapneumovirus. There are 356 unique

“primary” ICD-10 codes in the evaluation data set.

Figure 2 Experimental setup overview. Figure shows an overview

of the various steps in our experimental setup.
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Methods
Semantic models

A crucial part in retrieving similar care episodes is hav-

ing a good similarity measure. Here similarity between

care episodes is measured as the semantic similarity

between the words they contain (see section ‘Compute

care episode similarity’). Semantic similarity between

words is in turn measured through the use of distribu-

tional semantic models. In this way, no explicit query

expansion step is performed, but potentially indirect

word matches are found through the various models.

Several model variants are tested, utilizing different

techniques and parameters for building them. The mod-

els trained and tested in this paper are: (1) classic ran-

dom indexing with a sliding window using term index

vectors and term context vectors (RI-Word); (2) random

indexing with index vectors for clinical notes (RI-Note);

(3) random indexing with index vectors for ICD-10

codes (RI-ICD); (4) a version of random indexing where

only the term index vectors are used (RI-Index); (5) a

semantic neural network model, using word2vec (W2V)

to build word context vectors (W2V); and (6) a W2V

version of the RI-ICD method, using a modified version

of W2V for training (W2V-ICD).

RI-Word

Random indexing (RI) [48] is a method for building a

(pre) compressed vector space model with a fixed

dimensionality, done in an incremental fashion. RI

involves the following two steps: First, instead of allocat-

ing one dimension in the multidimensional vector space

to a single word, each word is assigned an “index vec-

tor” as its unique signature in the vector space. Index

vectors are generated vectors consisting of mostly zeros

together with a randomly distributed set of several 1’s

and -1’s, uniquely distributed for each unique word; the

second step is to induce “context vectors” for each

word. A context vector represents the contextual mean-

ing of a word. This is done using a sliding window of a

fixed size to traverse a training corpus, inducing context

vectors for the center/target word of the sliding window

by summing the index vectors of the neighbouring

words in the window. An example illustrating how RI-

Word works is shown in Figure 3.

As the dimensionality of the index vectors is fixed, the

dimensionality of the vector space will not grow beyond

the size W × Dim, where W is the number of unique

words in the vocabulary, and Dim being the pre-selected

dimensionality to use for the index vectors. As a result,

RI models are significantly smaller than plain vector

space models, making them a lot less computationally

expensive. Additionally, the method is fully incremental

(additional training data can be added at any given time

without having to retrain the existing model), easy to

parallelize, and scalable, meaning that it is fast and can

be trained on large amounts of text in an on-line fashion.

RI-Note

Contrary to sliding window approach used in RI-Word,

a RI model built with note index vectors first assigns

unique index vectors to every clinical note in the train-

ing corpus. In the training phase, each word in a note

gets the corresponding note index vector added to its

context vector. See Figure 4 for an illustration of how

RI-Note works.

RI-ICD

Based on the principle of RI with note index vectors, we

here explore a novel method for constructing a vector

space model by exploiting the ICD-10 code classification

done by clinicians. Instead of using note index vectors,

we now use ICD-code index vectors. First, a unique

index vector is assigned to each chapter and sub-chapter

in the ICD-10 taxonomy. This means assigning a unique

index vector to each “node” in the ICD-10 taxonomy, as

illustrated in Figure 5. For each clinical note in the

training corpus, the index vector of the their primary

ICD-10 code is added to all words within it. In addition,

all the index vectors for the ICD-codes higher in the

taxonomy are added, each weighted according to their

position in the hierarchy. A weight of 1 is given to the

full code, while the weight is halved for each step

upwards in the hierarchy. The motivation for the latter

is to capture a certain degree of similarity between codes

that share an initial path in the taxonomy. As a result,

this similarity gets encoded in the resulting model. As an

example, illustrated in Figure 5: for a clinical note

labelled with the code J21.1, we add the following index

vectors to the context vectors of all its constituting

words: −→

IJ × 0.125,
−→

IJ2 × 0.25,
−→

IJ21 × 0.5 and −−→

IJ21.1 × 1.0.

Figure 3 Training the RI-Word model. A sliding window with a

size of five words is moved over the text, word by word. The

context vector −−→Cw3
for the word in the center of the window w3 is

updated by adding the index vectors of the other words within the

window, i.e. −→Iw1
, −→Iw2

, −→Iw4
and −→

Iw5
. As a result, context vector

−−→

Cw3
records the fact that w3 co-occurs with word w1, w2, w4 and

w5. The training process continues with moving the sliding window

one position to the right and repeating the addition operation for

context vector −−→Cw4
, and so on until the end of the training text is

reached.
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The underlying hypothesis for building a model in this

way is that it may capture relations between words in a

way that better reflects the clinical domain, compared

with the other domain-independent methods for

modelling.

RI-Index

As an alternative to using context vectors for words, we

simply only use their index vectors in place of context vec-

tors, therefore not modelling their “contextual meaning”.

When constructing note or care episode vectors directly

from word index vectors (see the ‘Compute care episode

similarity’ section), the resulting vectors represent a com-

pressed version of a TF*IDF matrix, which again is similar

to Lucene.

W2V

Recently, a novel method for inducing vector space

models was introduced by Mikolov et al. [42], stemming

from the research in deep learning and neural network

language models. While the overall objective of learning

a continuous vector space representation for each word

based on its textual context remains, the underlying

algorithms are substantially different from traditional

methods such as LSA and RI. The model is based on a

somewhat simplified neural network with as many input

nodes as there are vocabulary items, a hidden linear

projection layer with as many nodes as is the desired

dimensionality of the vector space, and finally a hier-

archical soft-max output layer. Every node in the hidden

projection layer calculates a linear combination of the

values of the input layer nodes (0 or 1), as its own

value. The nodes of the output layer, in turn, calculate a

linear combination of the hidden layer node outputs,

which is subsequently passed through a specific non-lin-

ear function. The network is trained one input-output

example pair at a time, and for each pair the difference

between the expected and the actual output of the net-

work is calculated. The linear combination weights in

the network are subsequently adjusted to decrease the

error using the back-propagation procedure. This

procedure is repeated for all training data pairs, often in

several passes over the entire training dataset, until the

network converges and the error does not decrease any

further. The application of neural networks specifically

in word prediction tasks is presented, for example, by

Bengio et al. [53].

The main distinguishing features specific to the W2V

model are the linear (as opposed to the traditionally

non-linear) hidden layer, and the usage of the efficient

hierarchical soft-max output layer, which allows for a

substantial decrease in the number of output nodes that

need to be considered for the back-propagation. Com-

bined, these two techniques allow the network to be

efficiently trained on billions of tokens worth of input

text. There are two distinct regimes in which the net-

work is trained, or in other words, two ways to define

the task on which the network is trained. In the skip-

gram architecture, the network is trained given a focus

word to predict a nearby word. I.e. a sliding window of

typically ±10 tokens wide is slid across the text with the

focus word at its center and each word within the win-

dow is in turn considered a prediction target. The focus

word - context word pairs then constitute the word

pairs used to train the network. The single input node

corresponding to the focus word is activated while set-

ting all other input layer nodes to zero (also referred to

as one hot representation), and the error in the output

layer prediction of the context word is back-propagated

through the network. It is important to note that the

output layer predictions are only necessary to train the

network and we are not interested in them otherwise.

To understand on intuitive level why the network learns

efficient representations, consider the two-step process

of the prediction: first, the input layer is used to activate

the hidden, representation layer and second, the hidden

layer is used to activate the output layer and predict the

context word. To maximize the performance on this

task, the network is thus forced to assign similar hidden

layer representations to words which tend to have simi-

lar contexts. Since these representations form the W2V

model, distributionally similar words are given similar

vector representations. An alternative training regime is

the BoW (bag of words) architecture. In this architec-

ture, all words from the context are used at once to

activate the respective nodes in the input layer, and the

focus word is the prediction target. In a sense, it is the

reverse of the skip-gram architecture. The main advan-

tage of the BoW regime is its speed, because only a sin-

gle update of the network is necessary per each context,

unlike in the skip-gram architecture, where as many

updates are performed as there are words in the context.

Regardless of the training regime, the vector space

representation of a word is the weight vector from its

corresponding input node to the hidden layer. As

Figure 4 Training the RI-Note model. Word w4’s context vector,
−−→

Cw4
, is updated by adding the index vector −−−→

Inote2
of the note it

is part of. The same update is applied to all other words in the

note. As a result, context vectors for words co-occurring in the

same note become more similar.
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mentioned previously, the hidden-to-output layer

weights are discarded after training. See Figure 6 for an

example illustrating how model training with W2V is

carried out.

One of the main practical advantages of the W2V

method lies in its scalability, allowing the training on

billions of words of input text in the matter of several

hours, setting it apart from the majority of other meth-

ods of distributional semantics. Additionally, the W2V

method has been shown to produce representations that

preserves important linguistic regularities [54]; as elabo-

rated by Levy and Goldberg [55].

W2V-ICD

As will be shown, the RI-ICD method offers a notable

advantage over the standard RI in the care episode

retrieval task. We therefore introduce a novel variant of

the W2V algorithm which implements the same insights

as the RI-ICD method. As the starting point serves the

fact that only the input-to-hidden layer weights define

the final vector space representation. Therefore, as long

as we preserve the input and hidden layers as in the ori-

ginal W2V architecture, i.e. a single input node for

every word and a hidden layer with as many nodes as is

the dimensionality of the representation, we are free to

modify the prediction task of the network. In this case,

we will use the ICD-10 codes for the corresponding

clinical notes as the prediction target, training the net-

work to predict the ICD-10 code of the note given a

word from it. Following a similar intuition as for the

skip-gram architecture, in order to maximize the perfor-

mance on the task, the network will assign similar

representation to words which occur in notes with the

Figure 5 Training the RI-ICD model. Word w4 occurs in a note that is part of a care episode labeled with the ICD-10 code J21.1. Its context

vector
−−→

Cw4
is therefore updated by adding the index vector for the code J21.1. This context vector is constructed from the weighted sum of

index vectors of its parts:
∑

−→

I = (0.125 ×

−→

IJ ) + (0.25 ×

−→

IJ2) + (0.5 ×

−→

IJ21) + (1.0 ×

−−→

IJ21.1). As a result, w4’s

context vector becomes more strongly associated with the code J21.1 and - to a lesser degree - with all superclasses of J21.1 in the ICD-10

taxonomy. The same update is applied to the context vectors of all other words in care episodes labeled as J21.1.
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same ICD-10 codes. This objective clearly mirrors the

motivation for the RI-ICD method. As in RI-ICD, we

make use of the hierarchical structure of the ICD-10

codes, as illustrated in Figure 5, whereby not only the

full ICD-10 code, but also its structural parts constitute

training targets for the network. For each note, the net-

work is thus trained on all pairs of a word from the

note on the input layer, and a structural segment of the

ICD-10 code as the prediction target. We use the ICD-

10 code segments and their frequencies to define a

vocabulary, whereupon we induce the hierarchical soft-

max layer in exactly the same manner as in the standard

W2V algorithm. We implement the exact same weight-

ing as in the RI-ICD method, giving ICD-10 code seg-

ments a weight which decreases as the generality of the

segment increases. We then use these weights to scale

the update gradient propagated through the network.

See Figure 7 for an example how this training is done.

Compute care episode similarity

After having computed a semantic model, or six in this

case, together with the baselines, the next step is to cal-

culate care episode similarities for the retrieval task.

Multiple ways of calculating care episode similarities

exist.

We explore two overall approaches: One where each

care episode is viewed as a single document, with all

corresponding notes concatenated (SingleSim); Another

where each care episode is viewed as a set of individual

notes. For the latter, care episode similarity between two

care episodes is calculated from pairwise note similari-

ties and aggregating into a single similarity score. This

again can be done in multiple ways. Three approaches

are explored here (AvgSim, HASim and NWSim).

SingleSim: Single care episode vectors

Here we compute a separate vector for each care epi-

sode by summing the word vectors for all words in the

care episode. The resulting vector is divided by the total

number of words in the episode to normalize for differ-

ences in length between care episodes. Similarity

between care episodes is then determined by computing

the cosine similarity between their vectors.

AvgSim: Average note vector similarity

Each individual note within a care episode gets its own

note (document) vector by summing the word vectors for

all words in the note. In order to compute the similarity

between two episodes, we take the average over the

exhaustive pairwise similarities between their notes. That

is, for every note in the first care episode, we compute its

similarity to every note in the second care episode, and

Figure 6 Training the W2V BoW model. A sliding window with the size of five words is moved over the text, word by word. The input layer

nodes of the network corresponding to the words in the context window of the word w3 are activated. The error in the output layer prediction

and the expected prediction for the focus word w3 is back-propagated through the network. When the training is completed, the context vector
−−→

Cw3
constitutes the set of weights connecting the input layer node for w3 and the hidden layer.
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then take the average over all these pairwise similarities.

Similarity between notes is again measured by the cosine

similarity between their vectors.

HASim: Hungarian Algorithm for pairing of note vectors

For two care episodes, a note-to-note similarity matrix is

calculated, populated with pairwise note vector similari-

ties. By applying the Hungarian Algorithm [56], we com-

pute the optimal pairing of each note in one episode to

exactly one other note in the other episode, maximizing

the sum of similarities. The final similarity between two

care episodes is this sum of their paired notes similarities,

multiplied by two, and divided by the total number of

notes in the two care episodes (Equation 1). See Figure 8

for an example showing how the notes are paired using

the Hungarian Algorithm.

Sim(A, B) =
2 ×

∑
CosSim(

−→

Ai ,
−→

Bj )

A.noteCount + B.noteCount

NWSim: Needleman-Wunsch algorithm for sequence

alignment of note vectors

Here we utilize a sequence alignment algorithm called

Needleman-Wunsch [57] to align two episodes by their

most similar notes. A note in one care episode can be

aligned with zero or one notes in the other care episode.

See Figure 9 for an example showing how the notes are

aligned using the Needleman-Wunsch algorithm. The

difference with the Hungarian Algorithm is that the

temporal order of the notes is preserved. In other

words, crossing alignment are not allowed. This reflects

the intuition that care episodes sharing treatments in

the same order are more likely to be similar than epi-

sodes with the same treatments in a different temporal

order. We found that using the overall score produced

by the Needleman-Wunsch algorithm for care episode

similarity did not give any good results at this task.

Instead, similarity between two care episodes is calcu-

lated from pairwise note vector similarities for the

aligned notes. Final care episode similarity scores are

obtained by using Equation 1.

Word vector weighting

The word vectors used in calculating care episode simi-

larities, as described in section ‘Compute care episode

similarity’, are all normalized and weighted before they

are used. Common to all is that they are first normal-

ized and multiplied by their Inverse Document Fre-

quency (IDF) weight [58]. Such weighting is done in an

attempt to weight words by their overall relevancy com-

pared to the other words on corpus level. It essentially

gives more weight to words occurring in few documents

Figure 7 Training the W2V-ICD model. Word w4 occurs in a note that is part of a care episode labeled with the ICD-10 code J21.1. The input

node corresponding to w4 is activated and the error between the output layer prediction and the expected prediction for J21.1 is back-

propagated through the network. Same procedure is repeated for J21, with the update scaled by 0.5, and J2 scaled by 0.25, and finally J, scaled

by 0.125. When the training is completed, the context vector −−→Cw4
is formed by the weights connecting the input node corresponding to w4

and the hidden layer of the network.
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(notes in our case) while giving less weight to those

occurring in many documents. We refer to this weight-

ing method as IDFWeight.

As a part of the experiment reported here, we aim to

improve upon the domain-independent IDF weighting.

For this, we boost the weight of words with clinical rele-

vancy. This is accomplished by doubling the IDF weight

of words occurring in a Finish health metathesaurus

[59], which contains terms extracted from: vocabularies

and classifications from FinMeSH; ICD-10; ICPC-2

(International Classification of Primary Care); the ATC-

classification (generic drug names by WHO); the

NOMESCO classification for surgical procedures; the

Finnish vocabulary on nursing. This weighting method

will be referred to as IDF*MetathesaurusWeight. Each of

the approaches to calculating care episode similarity,

Figure 8 Hungarian algorithm for note pairing. Figure showing an example of how the Hungarian algorithm would find the optimal clinical

note pairs for care episode A and B.

Figure 9 Needleman-Wunsch algorithm for note alignment. Figure showing an example of how the Needleman-Wunsch algorithm would

align clinical note pairs for care episode A and B.
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with the models described in section ‘Semantic models’,

are tested both with and without such metathesaurus-

based re-weighting of word vectors.

Baselines

Two baselines were used in this study. The first one is

random retrieval of care episodes, which can be

expected to give very low scores and serves merely as a

sanity check. The second one is Apache Lucene [29], a

state-of-the-art search engine based on look-up of simi-

lar documents through a reverse index and relevance

ranking based on a TF*IDF-weighted vector space

model. Care episodes and underlying notes were

indexed using Lucene. Similar to the other models/

methods, all of the free text in the query episode,

excluding the discharge summary and any sentence

mentioning ICD-10 codes, served as the query string

provided to Lucene. Being a state-of-the-art IR system,

the scores achieved by Lucene in these experiments

should indicate the difficulty of the task.

Results
Experiment 1: ICD-10 code identity

As explained in the ‘Task’ section, we lack a gold stan-

dard data set for care episode retrieval, consisting of

relevant documents per query according to judgements

by human experts. Therefore the relevance of retrieved

episodes is estimated using a proxy. In this experimental

setup, evaluation is based on the assumption that a

retrieved episode is relevant if its ICD-10 code is identi-

cal to that of the query episode. It should be stressed

that ICD-10 codes, i.e. possible free-text sentences that

mention an ICD-10 code, are not included in the

queries when conducting the experiment.

In the experiment we strove to have a setup that was

as equal as possible for all models and systems, both in

terms of text pre-processing and in terms of the target

model dimensionality when inducing the vector space

models. The clinical notes are split into sentences, toke-

nized, and lemmatized using a Constraint-Grammar

based morphological analyzer and tagger extended with

clinical vocabulary [60]. After stop words were removed

[61], the total training corpus contained 39 million

words (minus the query episodes), while the evaluation

subset contained 18.5 million words. The vocabulary

consisted of 0.6 million unique words.

In total, 40 care episodes were randomly selected to

serve as the query episodes during testing, with the

requirement that each had different ICD-10 codes and

consisted of a minimum of six clinical notes. The aver-

age number of words per query episode is 796. The

number of correct episodes per query episode varies

between 9 and 1654. The total is 18440 episodes with

an average length of 461 words per episode. When

conducting the experiment all care episodes were

retrieved for each of the 40 query episodes.

The RI- and W2V-based models have all a predefined

dimensionality of 800. For the RI-based models, 4 non-

zeros were used in the index vectors. For the RI-Word

model, a narrow context window was employed (5 left +

5 right), weighting index vectors according to their dis-

tance to the target word (weighti = 21−distit ). In addition,

the index vectors were shifted once left or right depend-

ing on what side of the target word they were located,

similar to direction vectors as described in Sahlgren et

al. [62]. These parameters for RI were chosen based on

previous work on semantic textual similarity [63]. Also a

much larger window of 20+20 was tested, but without

noteworthy improvements.

The W2V-based models are trained using the BoW

architecture and otherwise default parameters. The

W2V-ICD model is trained with 10 iterations with a

progressively decreasing learning rate, starting from

0.04. The utilized software was: Apache Lucene (version

4.2.0) [29]; The word2vec tool [64], for training the

W2V model; A modified W2V implementation from the

gensim library [65], for training of the W2V-ICD-based

models; JavaSDM package [66], which served as the

basis for the RI-based methods. Evaluation scores were

calculated using the TREC eval tool [67].

As we have two different word vector weighting meth-

ods, and four different ways to calculate care episode

similarities, a total of eight test runs was conducted:

• IDFWeight & SingleSim (Table 1).

• IDFWeight & AvgSim (Table 2).

• IDFWeight & HASim (Table 3).

• IDFWeight & NWSim (Table 4).

• IDF*MetathesaurusWeight & SingleSim (Table 5).

• IDF*MetathesaurusWeight & AvgSim (Table 6).

• IDF*MetathesaurusWeight & HASim (Table 7).

• IDF*MetathesaurusWeight & NWSim (Table 8).

Performance on care episode retrieval was assessed

using three different evaluation measures:

• Precision at 10 (P@10) denotes the precision

among the top-10 results, in other words, the pro-

portion of episodes with the same ICD-10 code as

the query episode among the first 10 retrieved epi-

sodes. This probably best reflects the clinical usage

scenario where a user is only prepared to check the

highest ranked results, but is not willing to go

through all results. P@10 scores reported are

averages over 40 queries.

• R-precision (Rprec) is defined as the precision at

the R-th position in the results, where R is the num-

ber of correct entries in the gold standard. This
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Table 1 Experiment 1: Results from the IDFWeight &

SingleSim setup.

IR model MAP P@10 Rprec

Lucene 0.1210 0.2800 0.1527

RI-Word 0.0915 0.2475 0.1300

RI-Note 0.1035 0.2850 0.1356

RI-ICD 0.2478 0.4250 0.2601

RI-Index 0.1171 0.3075 0.1555

W2V 0.1557 0.3000 0.1892

W2V-ICD 0.2666 0.3975 0.2874

Random 0.0178 0.0175 0.0172

Table 2 Experiment 1: Results from the IDFWeight &

AvgSim setup.

IR model MAP P@10 Rprec

Lucene 0.0915 0.1564 0.0963

RI-Word 0.0317 0.0667 0.0465

RI-Note 0.0530 0.1308 0.0701

RI-ICD 0.1481 0.2256 0.1645

RI-Index 0.0599 0.1026 0.0654

W2V 0.1200 0.2128 0.1510

W2V-ICD 0.2357 0.3462 0.2499

Random 0.0178 0.0175 0.0172

Table 3 Experiment 1: Results from the IDFWeight &

HASim setup.

IR model MAP P@10 Rprec

Lucene 0.1045 0.2385 0.1230

RI-Word 0.0319 0.1154 0.0456

RI-Note 0.0425 0.1487 0.0639

RI-ICD 0.0464 0.2333 0.0640

RI-Index 0.0840 0.2231 0.1112

W2V 0.0791 0.2513 0.1124

W2V-ICD 0.0917 0.2359 0.1311

Random 0.0178 0.0175 0.0172

Table 4 Experiment 1: Results from the IDFWeight &

NWSim setup.

IR model MAP P@10 Rprec

Lucene 0.0812 0.2282 0.0938

RI-Word 0.0288 0.0795 0.0384

RI-Note 0.0358 0.0486 0.1000

RI-ICD 0.0407 0.1821 0.0560

RI-Index 0.0552 0.1923 0.0742

W2V 0.0647 0.1949 0.0954

W2V-ICD 0.0938 0.2410 0.1264

Random 0.0178 0.0175 0.0172

Table 5 Experiment 1: Results from the

IDF*MetathesaurusWeight & SingleSim setup.

IR model MAP P@10 Rprec

Lucene 0.1210 0.2800 0.1527

RI-Word 0.0958 0.2600 0.1355

RI-Note 0.1161 0.2975 0.1501

RI-ICD 0.2372 0.4200 0.2541

RI-Index 0.1387 0.3100 0.1775

W2V 0.1619 0.3125 0.1968

W2V-ICD 0.2580 0.3850 0.2793

Random 0.0178 0.0175 0.0172

Table 6 Experiment 1: Results from the

IDF*MetathesaurusWeight & AvgSim setup.

IR model MAP P@10 Rprec

Lucene 0.0915 0.1564 0.0963

RI-Word 0.0313 0.0641 0.0455

RI-Note 0.0559 0.1385 0.0741

RI-ICD 0.1453 0.2462 0.1632

RI-Index 0.0680 0.1000 0.0732

W2V 0.1280 0.2333 0.1592

W2V-ICD 0.2280 0.3410 0.2454

Random 0.0178 0.0175 0.0172

Table 7 Experiment 1: Results from the

IDF*MetathesaurusWeight & HASim setup.

IR model MAP P@10 Rprec

Lucene 0.1045 0.2385 0.1230

RI-Word 0.0318 0.1128 0.0451

RI-Note 0.0430 0.1538 0.0631

RI-ICD 0.0452 0.2256 0.0627

RI-Index 0.0930 0.2385 0.1225

W2V 0.0814 0.2308 0.1176

W2V-ICD 0.0874 0.2359 0.1257

Random 0.0178 0.0175 0.0172

Table 8 Experiment 1: Results from the

IDF*MetathesaurusWeight & NWSim setup.

IR model MAP P@10 Rprec

Lucene 0.0812 0.2282 0.0938

RI-Word 0.0288 0.0872 0.0379

RI-Note 0.0354 0.1179 0.0500

RI-ICD 0.0393 0.1821 0.0537

RI-Index 0.0601 0.2231 0.0810

W2V 0.0663 0.2051 0.0972

W2V-ICD 0.0890 0.2333 0.1196

Random 0.0178 0.0175 0.0172
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indicates the proportion of the top-R retrieved epi-

sodes with the same ICD-10 code as the query epi-

sode, where R is the number of episodes with the

same ICD-10 code in the whole collection. Our

Rprec scores are averages over 40 queries.

• Mean average precision (MAP) is defined as the

mean of the average precision over all (40) queries. For

each query, the average is the precision value obtained

for the top k documents, each time a relevant doc is

retrieved. This is probably the most commonly used

evaluation measure in IR. Moreover, it is very sensitive

to ranking, so systems that rank the most similar epi-

sodes first receive higher MAP scores.

For the models using normal IDF weighting of word

vectors (IDFWeight) the MAP, P@10 and Rprec results

from each model, baselines, and the different ways to cal-

culate care episode similarities, are shown in Tables 1, 2,

3, and 4. More precisely, results using IDFWeight and

SingleSim are shown in Table 1. Table 2 shows the

results from IDFWeight and AvgSim. Table 3 shows the

results from IDFWeight and HASim. Table 4 shows the

results from IDFWeight and NWSim. Best overall results

among these are achieved with the setup SingleSim.

Here, model W2V-ICD achieves highest MAP and Rprec

scores, closely followed by RI-ICD. RI- ICD achieves the

best P@10 scores. For the other setups, where each care

episode is viewed as a collection of notes, shown in

Tables 2, 3 and 4, the AvgSim approach to calculating

care episode similarities achieves highest scores for most

models. The exceptions are Lucene and RI-Index (and

P@10 scores for RI-Word), which achieve noteworthy

better scores with the HASim approach. No models

achieve best scores with the NWSim approach. On aver-

age, W2V, W2V-ICD and RI-ICD outperforms Lucene.

The other models either achieve scores that are compar-

able to Lucene, or lower. The latter is especially the case

for the AvgSim, HASim and NWSim. Lucene and RI-

Index seem to somewhat follow each other in terms of

performance, which is as expected, given the similarities

in how they are trained.

For the models using IDF weighting and double

weight to words matching those in a health metathe-

saurus (IDF*MetathesaurusWeight), results are shown in

Tables 5, 6, 7, and 8. The same trends are seen here

with regards to scoring, where all models achieve best

scores with SingleSim. No performance is gained in

viewing each care episode as a collection of multiple

individual notes.

When comparing the differences between IDFWeight

(Tables 1, 2, 3, and 4) with IDF*MetathesaurusWeight

(Tables 5, 6, 7, and 8), most setups and models achieve

increased scores with IDF*MetathesaurusWeight. This is

however not the case for the two models relying on ICD-

10 codes for training, namely RI-ICD and W2V- ICD.

Experiment 2: Discharge summary overlap

This experiment uses a different evaluation method in

which the semantic similarity between discharge sum-

maries is used as a proxy for relevance. It assumes that

a retrieved episode is relevant if its discharge summary

is semantically similar to that of the query episode. It

should be emphasized that discharge summaries are not

used in either query construction or episode retrieval.

Using the discharge summaries of the query episodes,

the top 100 care episodes with the most similar dis-

charge summary were selected. This procedure was

repeated for each model - i.e. the six different semantic

models and Lucene - resulting in seven different test

sets, each consisting of 40 query episodes with their cor-

responding 100 most similar collection episodes. The

top 100 was used rather than a threshold on the similar-

ity score, because otherwise seven different thresholds

would have to be chosen.

Subsequently a 7-by-7 experimental design was fol-

lowed where each retrieval method, or model, was tested

against each test set. At retrieval time, for each query

episode, the system retrieves and ranks 1000 care epi-

sodes. It can be expected that when identical methods

are used for retrieval and test set construction, the

resulting bias gives rise to relatively high scores. In con-

trast, averaging over the scores for all seven construc-

tion methods is expected to be a less biased estimator of

performance. The way these average scores are calcu-

lated is exemplified in Table 9 for MAP scores. This is

done in the same way for the other scores (Retrieved

count and P@10), but not shown for reasons of space.

The resulting average scores for each care episode simi-

larity calculation approach, over the various models, are

shown as follows: Retrieved counts in Figure 10, MAP

in Figure 11, and P@10 are shown in Figure 12.

The same models/systems and their parameters were

used here as in Experiment 1. The Random baseline

achieved the following average scores: Retrieved count =

151, MAP = 0.0004, P@10 = 0.0022.

For the results reported in Figures 10, 11 and 12, IDF-

Weight word weighting was used for generating both

the result sets and the evaluation sets, however we also

tried using the IDF*MetathesaurusWeight weighting

approach when generating the result sets. When evalu-

ated on the evaluation sets generated with IDFWeight

weighting, we observed that the results for each model

were typically slightly better compared to the result sets

generated with IDFWeight weighting for the following

models: RI-Word, RI-Note, RI-Index and W2V (average

score gain +3.39%). And similar to Experiment 1, this
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Table 9 Experiment 2: MAP scores for different IR models (rows) when using different models for measuring discharge

summary similarity (columns).

Test set Lucene RI-Word RI-Note RI-ICD RI-Index W2V W2V-ICD Average Rank

IR model

Lucene 0.084 0.046 0.041 0.050 0.030 0.062 0.071 0.055 4

RI-Word 0.041 0.049 0.029 0.036 0.016 0.048 0.051 0.039 7

RI-Note 0.048 0.041 0.063 0.061 0.024 0.050 0.074 0.052 5

RI-ICD 0.059 0.036 0.054 0.149 0.033 0.058 0.124 0.073 2

RI-Index 0.063 0.033 0.044 0.048 0.043 0.052 0.065 0.050 6

W2V 0.075 0.051 0.052 0.079 0.035 0.094 0.106 0.070 3

W2V-ICD 0.089 0.053 0.070 0.150 0.046 0.094 0.187 0.098 1

This table also illustrates the general approach to how the average scores are calculated for the results graphs for Experiment 2.

Figure 10 IDFWeight-Eval - IDFWeight-Results - Retrieved counts. Average number of correctly retrieved care episodes (max 4000) for

different similarity measures using the various IR models. For creating the evaluation set the IDFWeight weighting was used, and also the

retrieval was done using the IDFWeight weighting.

Figure 11 IDFWeight-Eval - IDFWeight-Results - MAP. Average MAP scores for different similarity measures using the various IR models. For

creating the evaluation set the IDFWeight weighting was used, and also the retrieval was done using the IDFWeight weighting.
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was not the case for the RI-ICD and W2V-ICD models

(average score gain −1.83%).

Discussion
The goal of the experiments was to determine which

distributional semantic model work best for care episode

retrieval, and what the best way of calculating care epi-

sode similarity is. The experimental results show that

several models outperform Lucene. This suggests that

distributional semantic models contribute positively to

calculating document/note similarities in the clinical

domain, compared with straight forward word matching

(cf. RI-Index and Lucene). Both W2V and RI-Word uti-

lize a narrow contextual sliding window during training.

The scores indicate that W2V induces a model that,

among these two, is better suited for IR with the

approach taken here. RI-Word did perform relatively

bad, and there are reasons to believe that performance

gains can be achieved through adjusting and/or optimiz-

ing the utilized weighting (cf. TF*IDF), vector normali-

zation, and model training parameters [68,69].

The relatively good performance of the RI-ICD and

W2V-ICD models suggests that exploiting structured or

encoded information in building semantic models for

doing clinical NLP is a promising direction that calls for

further investigation. This applies to clinical NLP as well

as other domains and NLP tasks. This approach concurs

with the arguments in favor of reuse of existing informa-

tion sources in Friedman et al. [21]. On the one hand, it

may not be surprising that these models perform best in

Experiment 1, given that both modelling/training and eva-

luation method here rely on ICD-10 codes. On the other

hand, being able to accurately retrieve care episodes with

similar ICD-10 codes evidently has practical value from a

clinical perspective. With the evaluation used in Experi-

ment 1, one could argue that the best performance would

be achieved by a dedicated ICD-10 classification system.

However, in an IR context a labeling of each care episode

by a small number of ICD- 10 codes does not provide suf-

ficient information to allow full (relative) similarity rank-

ings of the care episodes. One would thus not be able to

retrieve e.g. the top 10 most similar care episodes to a

query episode in a ranked (descending) order.

Additional support for the ICD-10 code based models

comes from a different evaluation strategy that makes

use of the discharge summaries associated with each

care episode. This method is based on the idea that

similar care episodes are likely to have similar discharge

summaries. Therefore an approximation of the gold

standard for a query can be obtained from the top-n

episodes in the collection with a summary most similar

to that of the query. Notice that, same as for the ICD-

10 codes, the discharge summary is not used for con-

structing the query. However, this approach has some

drawbacks. For example, similarity between discharge

summaries must be measured using the same distribu-

tional models as used in retrieval, introducing a certain

amount circularity. There is also no principled way to

determine the value of n when taking the top-n results.

Yet, when using this evaluation method - which does

not rely on ICD-10 codes - the ICD-based models still

perform best (cf. results reported in [23]), suggesting

that their good performance is not only due to the use

of ICD-10 codes for evaluation purposes.

Further, the results indicates, for most models whose

word vectors are built from word distribution statistics,

Figure 12 IDFWeight-Eval - IDFWeight-Results - P@10. Average P@10 scores for different similarity measures using the various IR models. For

creating the evaluation set the IDFWeight weighting was used, and also the retrieval was done using the IDFWeight weighting.
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performance gains when heightened weight is given to

words matching those in a health metathesaurus. Such a

list of health terms is something that can easily be

obtained in most languages. The fact that RI-ICD and

W2V-ICD did not benefit from such re-weighting of

word vectors can be explained through how these mod-

els are trained, and that the “statistical correct” semantic

meanings of words, especially in relation to the ICD-10

codes, is already induced through the training phase.

All models performed best when care episodes were

viewed as atomic documents (SingleSim). Thus there

seems to be no performance gain in taking the internal

structure of each care episode into account, i.e., the indivi-

dual clinical notes. One possible reason for this being the

case would be that each note on their own, compared to

all text in a full care episode, do not contain enough infor-

mation to be properly discriminative for this task.

In our data a single care episode can potentially span

across several hospital wards. A better correlation between

the similarity measures is to be expected when using care

episodes originating from a single ward. Also, taking into

consideration all ICD-10 codes for care episodes - not

only the primary one - could potentially improve discrimi-

nation among care episodes. This could be useful for

extending the RI-ICD and W2V-ICD models by training

them on the secondary ICD-10 codes as well.

Input to the models for training was limited to the free

text in the clinical notes, with the exception of the use of

ICD-10 codes in the RI-ICD and W2V-ICD models. Addi-

tional sources of information could, and probably should,

be utilized in an actual care episode retrieval system

deployed in a hospital. A prime candidate is the structured

and coded information commonly found in EHR systems.

Examples are patient diagnosis and treatment codes, lab

test values, dates, wards visited, medications, care episode

span, previous diagnosis, age, sex, classified events, and so

on. Some of these may belong to an ontology or thesaurus

with a certain internal structure that could be exploited,

such as SNOMED CT [70] and UMLS [71] (for languages

where this can be applied). Other potential sources include

user- supplied keywords or information units/concepts

that have been extracted from, or matched against, free

text using some type of information extraction tool such

as MetaMap [72]. Such structured information can be

used directly for IR, or indirectly through training of mod-

els as demonstrated in the current work. One potential

issue with the use of structured information is that it may

be incomplete or missing, giving rise to the problem of

“missing values”.

Conclusion
This paper proposes the new task of care episode retrieval

as a special instance of information retrieval in the clinical

domain. It was argued that the specialized clinical

language use calls for dedicated NLP resources, which are

mostly lacking - especially for languages other than

English - and costly to build. Distributional models of

semantics, built from a collection of raw clinical text in a

fully unsu- pervised manner, were proposed as a resource-

lean alternative. Several variants of random indexing and

word2vec were proposed and experimentally tested. Also

several approaches to calculating the overall care episode

similarity on the basis of their word similarities were

explored.

As manually constructing a gold standard is costly, two

new evaluation strategies are introduced. One relies on the

ICD-10 codes attached to care episodes, the other relies on

discharge summaries. Two innovative distributional mod-

els were presented - RI-ICD and W2V-ICD - which lever-

age the ICD-10 codes to enhance domain- specific word

similarity. These models also proved to yield best perfor-

mance, out- performing a state-of-the-art search engine

(Lucene). Taking the internal structure of care episodes

into account, including attempts at optimal pairing or

temporal alignment of individual clinical notes, did not

yield any improvements.

The work presented here suggests that training a

representation to associate additional knowledge to that

obtained from the free text alone, such as structured

domain information, is beneficial to the computation of

semantic similarity. We have demonstrated how ICD-10

codes can be used indirectly for care episode retrieval,

and we hypothesize that the utilized methods may also

perform well when applied to more generic IR tasks

within the clinical domain. Other types (structured)

information units and concepts should also be explored

in future work. Also, it is likely that a similar approach

can be used for IR and NLP in other domains.

Our evaluation, as well as that in most of the related

work, is based on pure retrieval performance. Future

work on IR in the clinical domain should arguably focus

more on evaluating IR-systems in terms of support for

care and patient outcomes.
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