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Abstract

Emotions are expressed in nuanced ways,

which varies by collective or individual expe-

riences, knowledge, and beliefs. Therefore,

to understand emotion, as conveyed through

text, a robust mechanism capable of captur-

ing and modeling different linguistic nuances

and phenomena is needed. We propose a semi-

supervised, graph-based algorithm to produce

rich structural descriptors which serve as the

building blocks for constructing contextual-

ized affect representations from text. The

pattern-based representations are further en-

riched with word embeddings and evaluated

through several emotion recognition tasks.

Our experimental results demonstrate that the

proposed method outperforms state-of-the-art

techniques on emotion recognition tasks.

1 Introduction

Emotions reflect different users’ perspectives to-

wards actions and events, therefore they are in-

nately expressed in dynamic linguistic forms.

Capturing these linguistic variations is challeng-

ing because it involves knowledge of linguistic

phenomena such as slang and coded words. Pre-

vious methods model these linguistic behaviours

through rule-based (Volkova and Bachrach, 2016)

and statistics-based approaches (Becker et al.,

2017). These methods construct features that

rely on hand-crafted resources; thus, they cannot

properly capture the evolving linguistic variability

found in large-scale opinionated content.

Consider the social posts “Thanks God for

everything” and “Tnx mom for waaaaking me

two hours early. Cant get asleep now”, a

lexicon-based model may not properly represent

the emotion-relevant phrases: “waaaaking me”,

“Thanks God”, and “Tnx mom”. First, the word

∗* Corresponding author

“waaaaking” doesn’t exist in the English vocab-

ulary, hence its referent may vary from its stan-

dard form, “waking”. Secondly, knowledge of the

semantic similarity between the words “Thanks”

and “Tnx” is needed to establish any relationship

between the last two phrases. Even if such rela-

tionship can be established through knowledge-

based techniques, it’s difficult to reliably deter-

mine the association of these phrases to a group of

emotions. This is because traditional methods an-

alyze data at the sentence level, which may be less

effective as compared to methods that model the

corpus as a complex network (Santos et al., 2017).

We represent an emotion corpus as a graph,

which may suffer less from the problems men-

tioned above. This method efficiently captures the

global mutual use of linguistic variations found in

textual information. This is particularly important

for linguistic behaviour that is socially and cultur-

ally influenced, as is common in opinionated con-

tent. Other advantages of the graph approach are

that minimum domain knowledge and manual ef-

fort are required to capture important contextual

and latent information, which are useful to disam-

biguate meaning in emotional expressions.

As an overview, we first collect an emotion

dataset through noisy labels, annotated via distant

supervision as in (Go et al., 2009). The graph-

based mechanism helps to construct contextual-

ized, pattern-based emotion features, which are

further enriched with word embeddings in order to

preserve semantic relationship between patterns.

To evaluate the quality of patterns, emotion detec-

tion models are trained using various online clas-

sifiers and deep learning models. Our main contri-

butions are as follows: 1) A graph-based algorithm

for automatic emotion-relevant feature extraction,

2) a set of emotion-rich feature representations en-

hanced through word embeddings, 3) and a com-

prehensive performance analysis of various con-
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ventional learning models and deep learning mod-

els used for text-based emotion recognition.

The rest of the paper is organized as follows:

Section 2 discusses the relevant literature and dif-

ferent aspects of emotion recognition research ad-

dressed in this work; then, Section 3 provides

details of the proposed methodology for extract-

ing contextualized emotion-relevant representa-

tions; next, Section 4 lists the constructed emo-

tion recognition models and comparison models;

later, Section 5 discusses the data collection and

experimental results; and finally, Section 6 further

explains key insights observed from the results.

2 Related Work

Emotion Lexica: Several works use hand-crafted

features and statistics-based approaches to train

emotion recognition models (Blitzer et al., 2007;

Wang et al., 2012; Roberts et al., 2012; Qadir and

Riloff, 2013; Volkova et al., 2013; Becker et al.,

2017; Saravia et al., 2016a). Some of these studies

rely on affect lexicons, such as LIWC (Pennebaker

et al., 2007) and WordNet Affect (Strapparava

et al., 2004), to extract emotion features from a

text-based corpus. A recent study trained emotion

detection systems built on emoticons and hashtag

features (Volkova and Bachrach, 2016). Hand-

crafted features are useful for emotion recognition

but are usually constrained by manually created

resources. Our graph-based features are obtained

in an semi-supervised manner, requiring minimum

domain expertise and no dependency of linguistic

resources that quickly become outdated.

Emotion Corpora: There are several affective

datasets such as SemEval-2017 Task 4 (Rosenthal

et al., 2017) and Olympic games dataset (Sintsova

et al., 2013). However, these datasets are lim-

ited by quantity. We bootstrap a set of noisy

labels to obtain large-scale emotion tweets, and

then perform annotation via distant supervision as

in (Go et al., 2009; González-Ibánez et al., 2011;

Wang et al., 2012; Mohammad and Kiritchenko,

2015; Abdul-Mageed and Ungar, 2017). In emo-

tion recognition studies, Plutchik’s wheel of emo-

tions (Plutchik, 2001) or Ekman’s six basic emo-

tions (Ekman, 1992), are commonly adopted to de-

fine emotion categories (Mohammad, 2012; Sut-

tles and Ide, 2013). Similar to previous works, we

rely on hashtags to define our emotion categories.

Feature Representations: Recent emotion recog-

nition systems employ representation learning for

automatic feature extraction (Poria et al., 2016;

Savigny and Purwarianti, 2017; Abdul-Mageed

and Ungar, 2017). In general, a combination

of word embeddings (Mikolov et al., 2013) and

a convolutional neural network (CNN) performs

well for sentence classification tasks (Kim, 2014;

Zhang et al., 2015). These models learn features

which tend to have high coverage, high adapt-

ability, require minimum supervision, and cap-

ture contextual information to some extent. We

aim to leverage them and combine them with the

proposed affect representations. Our graph-based

feature extraction algorithm focuses on the un-

derlying interactions between important linguistic

components. Graph analysis measurements then

help to output the building blocks for construct-

ing pattern-based features. Hence, the patterns can

be constructed to capture important contextual and

latent emotion-relevant information.

3 Contextualized Affect Representations

In this section, we introduce a graph-based algo-

rithm which helps to output the building blocks

used to bootstrap a set of emotion-rich represen-

tations. The structural descriptions offered by the

graph are particularly efficient at automatically

surfacing important information (i.e., contextual

and latent information) from a large-scale emotion

corpus. Two different measurements are used to

surface two families of words, which are in turn

used to construct contextualized, pattern-based af-

fect representations. The patterns are further en-

riched using word embeddings so as to preserve

semantic relationship between patterns. After the

patterns are constructed, the goal is to assign a

weight to each pattern, referred to as a pattern

score, which denotes how important a pattern p is

to an emotion e. In the context of emotion classi-

fication, patterns and their weights play the role of

features. The graph-based feature extraction algo-

rithm is summarized in the following steps:

Step 1 (Normalization): First, we collected two

separate datasets using the Twitter API: subjective

tweets S (obtained through hashtags as weak la-

bels) and objective tweets O (obtained from Twit-

ter feeds of news accounts).1 Both datasets are

tokenized by white-spaces and then preprocessed

by applying lower case and replacing user men-

tions and URLs with a <usermention> and <url>

1Each dataset contains 2+ million tweets. S was collected
using 339 hashtags, similar to the process in Section 5.1.
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Figure 1: An overview of the important steps used to generate graph-based pattern representations.

placeholder, respectively. Hashtags are used as

ground-truth in this work, so to avoid any bias we

replace them with a <hashtag> placeholder.

Step 2 (Graph Construction): Given the nor-

malized objective tweets O and subjective tweets

S, two graphs are constructed: objective graph

Go(Vo;Ao) and subjective graph Gs(Vs;As), re-

spectively. Vertices V is a set of nodes which

represent the tokens extracted from the corpus.

Edges, denoted as A, represent the relationship of

words extracted using a window approach. These

steps help to preserve the syntactic structure of the

data. Given a post “<usermention> last night’s

concert was just awesome !!!!! <hashtag>”,

the resulting arcs are: “<usermention> → last”,

“last → night”, ... , “!!!!! → <hashtag>”.

Step 3 (Graph Aggregation): In this step we ob-

tain a set of arcs that represent syntactic structures

more common in subjective content. By adjusting

graph Gs with Go, we obtain a graph Ge, referred

to as the emotion graph, which preserves emotion-

relevant tokens and is obtained in two steps:

(1). For an arc ai ∈ A, its normalized weight

can be computed as shown in Equation 1.

w(ai) =
freq(ai)

maxj∈A freq(aj)
(1)

where freq(ai) is the frequency of arc ai.

(2). Subsequently, new weights for arcs ai ∈
Ge are assigned based on a pairwise adjustment as

shown in Equation 2.

w(ai) =

{

w(asi)− w(aoj ), if aoj = asi ∈ Go

w(asi), otherwise

(2)

The resulting weights belonging to graph Ge

were adjusted so that the most frequently occur-

ring arcs in objective set Go are weakened in Ge.

As a result, arcs in Ge that have higher weights

represent tokens that are more common in subjec-

tive content. Furthermore, arcs ai ∈ Ae are pruned

based on a threshold φw
2.

Step 4 (Token Categorization): Two different

graph measurements are used to extract two fam-

ily of words from Ge. These will function as the

building blocks to build contextualized patterns.

We formalize this step as follows: Given an ad-

jacency matrix M, an entry Mi,j is computed as:

Mi,j =

{

1 if node i and j are linked in Ge

0 otherwise

(3)

Then, the eigenvector centrality and clustering

coefficient of all vertices in Ve are computed and

used to categorize tokens into two types:

(1) Connector Words: To measure the influ-

ence of all nodes in graph Ge, we utilize eigenvec-

2φw is an experimentally determined threshold.
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tor centrality, which is calculated as:

ci =
1

λ

∑

j∈Ve

Mi,jcj (4)

where λ denotes a proportionality factor and ci
is the centrality score of node i.

Given λ as the corresponding eigenvalue, Equa-

tion 4 can be reformulated in vector notation form

as Mc = λc, where c is an eigenvector of M.

Given a selected eigenvector c and the eigenvec-

tor centrality score of node i, denoted as ci, the

final list of connector words, hereinafter referred

to as CW , is obtained by retaining all tokens with

ci > φeig
3. CW correspond to the set of nodes

that are very frequent and have high connectivity

to high-rank nodes (e.g., “or”, “and”, and “my”).

(2) Subject Words: In contrast, subject words

or topical words are usually clustered together,

i.e., many subject words are interconnected by the

same connector words. Therefore, a coefficient is

assigned to all nodes in Ge and is computed as:

cli =

∑

j 6=i;k 6=j;k 6=iMi,j ×Mi,k ×Mj,k
∑

j 6=i;k 6=j;k 6=iMi,j ×Mi,k

×
1

|Ve|
(5)

where cli denotes the average clustering coeffi-

cient of node i which captures the amount of inter-

connectivity among neighbours of node i. Similar

to the connector words, the subject words, here-

inafter referred to as SW , are obtained by retain-

ing all the tokens with cli > φcl
4. Examples of

subjects words obtained are: “never” and “life”.

The subject words represent psychological ori-

ented words similar to the LIWC affect lexi-

con (Pennebaker et al., 2007), while connector

words reflect the set of most common words in

the subjective tweets (e.g., pronouns, auxiliary

verbs, and conjunctions). As presented by Chung

and Pennebaker (2007), both connector words and

subject words are important for conveying emo-

tion. Influenced by their work, we aim to cap-

ture intricate relationships – through the graph –

between these two families of words. The graph

structure helps to preserve syntax and can auto-

matically be used to surface emotion-relevant in-

formation.

One of the advantages of using graphs to repre-

sent syntactic relationships is that rare and impor-

tant words are also surfaced. As shown in Table 1,

3φeig is an experimentally determined threshold.
4φcl is an experimentally defined threshold.

Subject Words (SW) Connector Words (CW)

baobei, juju myy, ??!, urs, congrats
plzzzzzzz, aaaaaaah bcoz, jus, tsk

happnd, yayyyyy sh*t, smh, smhh, pfft
definetley, everytin 4ever, stfu, eff

Table 1: Examples of subject words and connector words
automatically extracted from the emotion graph Ge.

informal words and misspellings, such as “de-

finetley”, “happnd”, were surfaced. Words con-

taining character repetitions help to express emo-

tion intensity (e.g., “plzzzzzzz”, “aaaaaaah”, and

“yayyyyy”). Interestingly, emotion-related coded

words are also captured (e.g., “juju”, “sh*t”,

“4ever”, and “baobei”5). All these examples

show the benefit of using graph methods to cap-

ture emotion-relevant linguistic information.

Step 5 (Pattern Candidates): Given SW and

CW , we bootstrap candidate patterns, which are

more prevalent in opinionated content, while pre-

serving syntactic structure. We provide the tem-

plates used to define the candidate patterns in Ta-

ble 2. (sw and cw represent arbitrary tokens ob-

tained from the sets SW and CW , respectively).

It is important to clarify that sequences of size two

and three were used in this work since this setting

experimentally produced the best results.

Step 6 (Basic Pattern Extraction): A naive pat-

tern extraction process consists of applying the

syntactic templates to a dataset Sp
6 in an exhaus-

tive manner. In addition, the sw component in

each pattern is replaced with a “*” placeholder.

This operation allows for unknown subject words,

not present in our training corpus, to be considered

when constructing features. This can enable many

useful applications, such as applying the patterns

to other domains. We are interested in patterns

that are highly associated with subjectivity, so pat-

terns frequently occurring above a threshold are

kept and the rest are filtered out. In Table 2, we

provide examples of the type of basic patterns ex-

tracted along with their corresponding templates.

3.1 Enriched Patterns

As they stand, the patterns constructed in the pre-

vious step contain limited information relevant to

emotion classification. Therefore, the patterns are

enriched using continuous word representations so

as to preserve semantic relationship between pat-

5baobei is a Chinese word used to show strong affection.
6 Dataset Sp (size=2+ mil.) is separately collected using

similar steps as the subjective dataset S, mainly to avoid bias.
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Templates Pattern Examples

< cw, sw > stupid * , like *, am *

< cw, cw, sw > love you *, shut up *

< sw, cw, sw > * for *

< sw, cw, cw > * on the

< sw, cw > * <hashtag>

Table 2: Examples of patterns and templates extracted
through the basic pattern extraction mechanism.

terns. The motivation behind this step is to focus

on patterns that may be more useful for an emo-

tion classification task. Alternatively, the whole

universe of patterns can also be used, but we show

in the experiments that the former method signifi-

cantly improves emotion recognition results.

Pre-trained Word Embeddings: First, we ob-

tain Twitter-based, pre-trained word embeddings

from (Deriu et al., 2017) and reweight them

via a sentiment corpus through distant supervi-

sion (Read, 2005; Go et al., 2009).7 We trained

a fully connected neural network (1 hidden layer)

with 10 epochs via backpropagation as in (Deriu

et al., 2017). The embeddings size is d = 52. Note

that term frequency-inverse document frequency

(tf-idf ) was used to reduce the vocabulary of words

(from 140K to 20K words).

Word Clusters: We then apply agglomerative

clustering to generate clusters of semantically re-

lated words through their word embedding in-

formation. To determine the quality of the

clusters, they are compared with WordNet-Affect

synsets (Strapparava et al., 2004) and tested for

both homogeneity and completeness. We use

Ward’s method (Ward Jr, 1963) as the linkage cri-

terion and cosine distance as the distance metric.

The scikit-learn package (Pedregosa et al., 2011)

was used to compute a total of k = 1500 clusters.

Enriched-Pattern Construction: The purpose of

the word clusters is to enrich the patterns by pre-

serving the semantic relationship between them,

which is useful for classification purposes. We

achieve this by revising the universe of patterns

obtained from the basic pattern extraction step,

and check to see if the words represented by the

sw component exist in any of the word embedding

clusters. This is done in an exhaustive manner, en-

suring that all possible patterns in the dataset Sp

are processed to meet the criteria. Furthermore,

patterns that appear < 10 times in dataset Sp are

filtered out, producing a total of 476,174 patterns.

7We collected approximately 10 million tweets via senti-
ment emoticons (5+ mil. negative and 5+ mil. positive).

The resulting enriched patterns8 now contain both

the semantic information provided by the word

embeddings and the contextual information pro-

vided through the graph components, hence the

term contextualized affect representations.

3.2 Emotion Pattern Weighting

Before using the patterns for classification, they

need to be weighted using a weighting mechanism

such as tf-idf (Leskovec et al., 2014). The weights

determine the importance of patterns to each emo-

tion category. The proposed pattern weighting

scheme used in this work is a customized version

of tf-idf, coined as pattern frequency-inverse emo-

tion frequency (pf-ief ), and is defined in two steps.

Firstly, we compute for pf as:

pfp,e = log

(

∑

pi∈Pe

freq(pi, e)

)

+ 1

freq(p, e) + 1
(6)

where freq(p, e) represents the frequency of p

in e, and pfp,e denotes the logarithmically scaled

frequency of a pattern p in a collection of texts

related to emotion e.

Then we compute for ief as:

iefp = log
freq(p, e) + 1

(

∑

ej∈E

freq(p, ej)

)

+ 1

(7)

where the inverse emotion frequency iefp is a

measure of the relevance of pattern p across all

emotion categories.

Finally, we obtain a pattern score calculated as:

psp,e = pfp,e × iefp (8)

where psp,e is the final score that reflects how im-

portant a pattern p is to an emotion class e.

4 Models

In this section, we present the emotion recogni-

tion models and comparison models used to evalu-

ate the contextualized affect representations. More

details are provided in Appendix A.

CARER: The proposed framework combines a

multi-layer CNN architecture with a matrix form

of the enriched patterns. The input X ∈ R
n×m

denotes an embedding matrix where entry Xi,j

8Refer to Table 6 for enriched patterns examples.
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represents the pattern score of enriched pattern i

in emotion j. 9
X is fed into two 1-D convolu-

tional layers with filters of sizes 3 and 16. The

output of this process is passed through a ReLU

activation function (Nair and Hinton, 2010) that

produces a feature map matrix. A 1-max pool-

ing layer (Boureau et al., 2010) of size 3 is then

applied to each feature map. The results of the

pooling are fed into two hidden layers of dimen-

sions 512 and 128 in that order, each applied a

dropout (Hinton et al., 2012) of 0.5 for regulariza-

tion. We chose a batch size of 128 and trained for

4 epochs using Adam optimizer (Kingma and Ba,

2014). A softmax function is used to generate the

final classifications. We use Keras (Chollet et al.,

2015) to implement the CNN architecture.

Baseline Model: As baseline, we present a first-

generation model (CARERβ) that employs prim-

itive enriched patterns‡10. We adopt the CNN ar-

chitecture used for CARER, however, this model

differs in that the set of patterns used is signifi-

cantly smaller as compared to the original size of

the enriched patterns. The reason is because a dif-

ferent set of primitive pattern templates was used,

which captured fewer patterns (187,648). This

shows that the proposed method offers flexibility

in terms of what templates to use and what size

of patterns to generate. This could be useful in

cases where there are limited computing and data

resources, and for incorporating domain expertise.

Traditional Models: We also compare with var-

ious traditional methods (bag of words (BoW),

character-level (char), n-grams, and TF-IDF)

which are commonly used in sentence classifi-

cation. To train the models we use the default

stochastic gradient descent (SGD) classifier pro-

vided by scikit-learn (Pedregosa et al., 2011).

Deep Learning Models: Among the works that

employ deep learning models for emotion recog-

nition, they vary by the choice of input: pre-

trained word/character embeddings and end-to-

end learned word/character representations. Our

work differs in that we utilize enriched graph-

based representations as input. We compare with

convolutional neural networks (CNNs), recurrent

neural networks (RNNs), bidirectional gated re-

current neural networks (BiGRNNs), and word

embeddings (word2vec) (Mikolov et al., 2013).

9We use a zero-padding strategy as in (Kim, 2014).
10‡ hereinafter refers to the primitive enriched patterns.

Emotions Amount Hashtags

sadness 214,454 #depressed, #grief

joy 167,027 #fun, #joy

fear 102,460 #fear, #worried

anger 102,289 #mad, #pissed

surprise 46,101 #strange, #surprise

trust 19,222 #hope, #secure

disgust 8,934 #awful, #eww

anticipation 3,975 #pumped, #ready

Table 3: Data statistics.

5 Experiments

5.1 Data

We construct a set of hashtags to collect a sep-

arate dataset of English tweets from the Twitter

API. Specifically, we use the eight basic emotions:

anger, anticipation, disgust, fear, joy, sadness,

surprise, and trust. The hashtags (339 total) serve

as noisy labels, which allow annotation via distant

supervision as in (Go et al., 2009). To ensure data

quality, we follow the pre-processing steps pro-

posed by (Abdul-Mageed and Ungar, 2017), and

considered the hashtag appearing in the last po-

sition of a tweet as the ground truth. We split

the data into training (90%) and testing (10%)

datasets. The final distribution of the data and

a list of hashtag examples for each emotion are

provided in Table 3. In the following section we

evaluate the effectiveness of the enriched patterns

on several emotion recognition tasks. We use F1-

score as the evaluation metric, which is commonly

used in emotion recognition studies due to the im-

balanced nature of the emotion datasets.

5.2 Experimental Results

Traditional Features: As shown in Table 4,

TF-IDF models produce better results than basic

count-based features for both character-level and

word-level feature extractors. These findings are

consistent with the work of Zhang et al., (2015),

where traditional methods, such as n-gram, were

found to perform comparable to deep neural net-

works on various sentence classification tasks.

Pattern-based Approaches: The results of

CNNBASIC
11, which employs the basic graph-

based patterns proposed in Step 6, perform worse

than most of the conventional approaches. Both

CARERβ and CARER, which use the enriched

patterns, acquire better results than CNNBASIC

11CNNBASIC adopts CNN architecture of CARER.
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and all the other conventional approaches. In fact,

our method obtains the best F1-score on all eight

emotions. We observed that there are significant

gains in performance (↑27% and ↑12%) when us-

ing the enriched patterns as compared to the ba-

sic patterns and primitive patterns‡, respectively.

This highlights the importance of the pattern en-

richment procedure and the benefit of refining the

pattern templates. Note that the baseline model,

CARERβ , also performs better than all other the

comparison models including the state-of-the-art

methods (DeepMoji and EmoNet).

Comparison to state-of-the-art: Felbo et

al., (2017) proposed a state-of-the-art emotion

prediction model, DeepMoji, trained on billions

of emoji-labeled tweets. We obtained their pre-

trained model12 and applied it to our dataset.

As shown in Table 4, their model performs as

well as other traditional methods. However, our

model (CARER) significantly outperforms theirs

(↑20%). Moreover, we re-implemented the GRNN

model proposed in (Abdul-Mageed and Ungar,

2017). We also outperform their model (EmoNet)

which manually trains word embeddings, similar

to DeepMoji. The CNNw2v model uses word

embeddings trained on billions of tweets (Deriu

et al., 2017), thus it performs better than all the

other approaches, and closer to ours.

Results with Deep Learning: We offer more

comparison with other various deep learning mod-

els as evaluated on Ekman’s six basic emotions

(i.e., sadness, disgust, anger, joy, surprise, and

fear). For the RNNw2v and CNNchar models, dif-

ferent inputs are used, as shown in Table 5. We

feed the enriched patterns as embeddings to a bidi-

rectional GRNN, which along with CAREREK

and CARERβ outperform all the other methods.

Contextualized Approaches: DeepMoji is built

on a stack of Bi-LSTM layers and performs much

better with six emotion classes. However, using

the enriched patterns as input, CAREREK
13 per-

forms the best (81%). Note that the number of

epochs used to train our models is much lower

as compared to the other methods, which pro-

vides a strong case of the benefit of contextualiz-

ing features prior to training the models. More-

over, the important distinction between connec-

tor words and subject words helps to refine and

surface relevant contextual information. We also

12Model obtained from github.com/bfelbo/deepmoji
13The proposed model trained on six emotions dataset.
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Figure 2: Comparison against Chinese word vectors.

show that the enriched patterns can be applied to

other deep learning models besides CNN, such as

BiGRNN, which leaves an opportunity to explore

more complex architectures and fusion models in

the future. More importantly, for problems that re-

quire deeper understanding of contextualized in-

formation, there is a need to go beyond traditional

features and distributed representations.

Multilingual Capabilities: We also tested the

effectiveness of the proposed feature extraction

algorithm for the Chinese language. We col-

lected Traditional Chinese datasets14 from several

of Facebook’s fan pages and applied the same pro-

cedures as were done for the English datasets.

User comments are considered as documents and

the associated user reaction to the root post repre-

sents the emotion labels. For comparison, we ob-

tained Chinese pre-trained word vectors computed

through (Bojanowski et al., 2017), and trained a

model (fastTextch) using the proposed CNN ar-

chitecture. For our approach (CARERch), we ap-

plied the same CNN architecture on the Chinese-

based enriched patterns. As shown in Figure 2,

our model performs significantly better on all four

emotions (average F1 score of 70%). Overall, we

show that the approach is not restricted to any spe-

cific language and that the enriched features are

applicable to other languages and data sources. In

the future, we seek to expand our methods to sup-

port other complex languages, such as Japanese,

French, and Spanish, where there tends to exist

fewer linguistic resources.

6 Analysis of Enriched Patterns

6.1 Pattern Coverage and Consistency

One of the advantages of the contextualized en-

riched patterns is that they possess high coverage

14Details of the dataset are provided in Appendix B.
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Models Features anger anticipation disgust fear joy sadness surprise trust F1 Avg.

BoW word frequency 0.53 0.08 0.17 0.53 0.71 0.60 0.36 0.33 0.57
BoWTF-IDF TF-IDF 0.55 0.09 0.18 0.57 0.73 0.62 0.39 0.35 0.60

n-gram word frequency 0.56 0.09 0.17 0.57 0.73 0.64 0.42 0.39 0.61
n-gramTF-IDF TF-IDF 0.58 0.12 0.17 0.60 0.75 0.67 0.47 0.45 0.63

char ngram character frequency 0.49 0.06 0.12 0.46 0.67 0.55 0.30 0.28 0.52
char ngramTF-IDF TF-IDF 0.53 0.07 0.15 0.53 0.71 0.59 0.35 0.31 0.57

LIWC affective words 0.35 0.03 0.11 0.30 0.49 0.35 0.18 0.19 0.35

CNNw2v word embeddings 0.57 0.10 0.15 0.63 0.75 0.64 0.61 0.70 0.65

EmoNet word embeddings 0.36 0.00 0.00 0.46 0.69 0.61 0.13 0.25 0.52
DeepMoji word embeddings 0.60 0.00 0.03 0.49 0.75 0.67 0.20 0.27 0.59

CNNBASIC basic patterns 0.65 0.10 0.22 0.64 0.73 0.56 0.15 0.08 0.52

CARERβ enriched patterns‡ 0.61 0.31 0.34 0.67 0.75 0.68 0.60 0.55 0.67
CARER enriched patterns 0.74 0.41 0.43 0.79 0.83 0.82 0.76 0.75 0.79

Table 4: Comparison of our model against various emotion recognition systems: LIWC uses a bag of words approach; CNNw2v

is the proposed CNN model and word vectors obtained from (Deriu et al., 2017); char refers to character-level features; n-
gram employ unigrams, bigrams, and trigrams as features; CNNBASIC uses the proposed CNN architecture with basic patterns;
EmoNet (Abdul-Mageed and Ungar, 2017) and DeepMoji (Felbo et al., 2017) are state-of-the-art emotion recognition models.
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Figure 3: Consistency check for various affect resources.

Model Input Epochs Accuracy

RNNw2v word2vec (Mikolov et al., 2013) 24 0.53

CNNchar character embeddings (end-to-end) 50 0.63

CNNw2v word vectors (Deriu et al., 2017) 33 0.69

EmoNet word embeddings (end-to-end) 23 0.58

DeepMoji word embeddings (end-to-end) 100 0.63

BiGRNN our enriched patterns‡ 12 0.68

CARERβ our enriched patterns‡ 12 0.72

CAREREK our enriched patterns 12 0.81

Table 5: Comparison of our method against deep learning
models, using Ekman’s 6 emotions and the accuracy metric.

due to the way they were constructed. High cov-

erage also means that the enriched patterns should

demonstrate stability, in terms of how useful they

are in an emotion classification task, even when re-

duced to smaller sizes. There are two cases where

this could be useful: limited data and limited com-

puting resources. Therefore, to test for pattern

consistency, we randomly selected several pattern

sizes15 and trained a random forest classifier us-

ing the eight emotions dataset. This model per-

forms comparable to CARERβ (average F1-score

of 65%), and it has the benefit of faster training

15We employed the primitive patterns‡ used in CARERβ .

time, making it suitable for the aforementioned ex-

periment. We compared with the results obtained

from the LIWC lexicon (affect dimension) (Pen-

nebaker et al., 2007), word2vec (Mikolov et al.,

2013), and tweet2vec (Deriu et al., 2017).16

As shown in Figure 3, due to the limited cover-

age of the LIWC lexicon, such resources may not

be feasible on evolving, large-scale datasets. In

contrast, word2vec contains over 3 million unique

word embeddings and has been proven effective

for text classification. However, if we keep reduc-

ing the available word vectors of word2vec, which

is common when there are limited computing re-

sources, the accuracy keeps dropping at significant

rates. tweet2vec has a similar effect. In the case of

our patterns, the classification results remain rela-

tively stable, even when reducing the patterns to

30% and 10% of the original size. These results

show that the proposed features are feasible to ad-

dress the text-based emotion recognition problem.

Moreover, the patterns are highly beneficial where

16Models were trained using the random forest implemen-
tation (depth=15 and estimators=50) provided by scikit-learn.
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Document GT DeepMoji EmoNet CAREREK Enriched Patterns

Short text
damn what a night joy surprise sadness joy what a { day, rush, pass }
want it to snow joy sadness fear joy { need, hoping } it

Rare words
whaaaaaat. i did not ex-
pect that at all

surprise sadness fear surprise { wondering, what } i

Mixed
emotions

got thee worst sleep ever anger sadness sadness anger got { madd, thatt, bacc }
what the fuck is going on !? fear anger sadness fear is { ends, finishes }

Table 6: Classified documents in the testing data. Words in bold blue correspond to the sw component of one of the enriched
patterns extracted from the document. Words in italic green represent other relevant word examples found in the cluster sw
belongs to. Words in bold pink denote the connector word/s cw in the pattern; E.g., “it” is cw of patterns “need it” and
“hoping it”. GT stands for ground truth. DeepMoji, EmoNet, and CAREREK correspond to the models reported in Table 5.

there is shortage of computing and linguistic re-

sources.

6.2 What’s captured by CARER?

In Table 6, we provide samples extracted from the

testing data. The examples show different cases

where the comparison models struggled to cap-

ture important contextual information that helps to

determine the emotion conveyed in the text. For

instance, in the short text, “damn what a night”,

only our model was able to interpret the statement

as joy because it uses the “what a” pattern and its

corresponding subject words to determine that this

statement has a stronger association with joy. Our

model also works well for capturing rare words

and for disambiguating emotional meaning using

the enriched and refined contextual information of

the patterns. Rare words like “whaaaaaat” and

“thee” help to implicitly convey intense emotional

expressions, which are also captured and consid-

ered important by our enriched patterns. Emotion-

relevant verbs, such as “want” and “going” are

also considered important context that help to con-

vey and interpret emotion. Overall, the enriched

patterns efficiently capture important emotional

information that other models seem to ignore.

7 Conclusion

We proposed a graph-based feature extraction

mechanism to extract emotion-relevant represen-

tations in an unsupervised manner. The con-

textualized affect representations are further en-

riched with word embeddings and are used to train

several deep learning-based emotion recognition

models. The patterns capture implicit and ex-

plicit linguistic emotional information which sig-

nificantly improves emotion recognition results.

We offered a detailed analysis demonstrating

special cases where the patterns are helpful to fur-

ther extract and understand emotional information

from textual information. For instance, short text

is a challenging problem in emotion recognition

and various natural language tasks; the proposed

contextualized patterns show promising results in

addressing this issue by helping the models to cap-

ture nuanced information which is useful to de-

termine the overall emotion expressed in a piece

of text. The proposed method paves the way for

building more interpretable emotion recognition

systems which have various implications when in-

vestigating human behavioural data (Saravia et al.,

2015, 2016b; Chang et al., 2016) and building

empathy-aware conversational agents.

In the future work, we aim to investigate the

graph-based patterns more in-depth and provide a

more comprehensive and advanced theoretical dis-

cussion of how they are constructed. We also hope

to keep improving the pattern weighting mecha-

nism so as to improve the overall performance on

emotion recognition tasks and minimize trade-off

between pattern coverage and performance. We

plan to employ transfer learning methods with

the proposed enriched patterns and test on other

emotion-related problems such as sentiment clas-

sification and sarcasm detection. The proposed

methodology is also being expanded to support

Spanish and Japanese emotion recognition tasks.
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