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We investigate the solutions of those autonomous systems with quadratic nonlinearities in a N
dimensional vector space together with the solutions of their first variational equation systems by 
means of the Carleman embedding. An iterative procedure based on this result is developed to 
evaluate the Lyapunov exponents of the considered systems. We test the method by giving some 
results for the Lyapunov exponents of the Lorenz model. 

PACS numbers: 02.30.Hq 

I. INTRODUCTION 

The concepts of Carleman embeddingl and Lyapunov 
exponents are related to the study of nonlinear differential 
equation systems and have been intensively investigated re
cently.2-6 Loosely speaking the former is a method for solv
ing the proposed system after embedding it into an infinite 
set of linear equations, whereas the latter reports about the 
asymptotic behavior of two trajectories (with respect to each 
other) which are close together at the initial time. 

In this paper we bring these concepts together in that 
we use the method of Carle man to evaluate Lyapunov expo
nents. We consider here those autonomous systems in a N
dimensional vector space with the form 

dy; 
dt = F;(! Y; j) 

= I aij Yj + Ibij/YjY/' i,j,l = 1,2, ... ,N, 
j j/ 

(1 ) 

where the aij and the bij/ are constant. 
System (1) describes many different models in hydrody

namic and chemical reactions, etc., which display nontrivial 
dynamics, with the presence, e.g., of strange attractors and 
sequences of period-doubling bifurcations. The results we 
get here can be easily extended to include systems with high
er polynomial nonlinearities. 

The central point of our method lies on the fact that the 
infinite matrix M (to be defined later) resulting from the Car
leman embedding of the system (1) gives rise not only to the 
solution of (1) itself, but also to the solution ofthe system of 
first-variational equations of (1), 

doy; 
-d =IaijoYj 

t j 

+ Ib;j1 (Yj(t)oy/ +y/(t)OYj) , 
jI 

(2) 

whose knowledge is required for the evaluation of the Lya
punov exponents. The solution of (2) indicates how the dif
ference oY between two trajectories evolves with time, and 
we have explicitly writtenYj(t) on the rhs of(2) to call atten
tion to the fact that it is not a simple autonomous linear 
equation system at all. 

Generally one can find approximate solutions for (1) 
and (2) with the help of numerical techniques. The method 
developed here gives a clear insight into the relation between 
the solutions of (1) and (2), and has simplifying advantages 

for the numerical computing that is required if we want to 
give the explicit values of the Lyapunov exponents. 

This article is organized as follows: In Sec. II we intro
duce the concept of the Carleman embedding and use it to 
write down the solutions of (1) and (2). The equivalence 
between the Taylor series solution of(2) and the one given by 
the Carleman embedding is explicitly proven. In the Sec. III 
we define the Lyapunov exponents and discuss their mean
ing. Finally, a discussion of the numerical procedure, some 
results for the Lorenz model, and concluding remarks are 
presented in the Sec. IV. 

II. THE CARLE MAN EMBEDDING 

A. The solution of the basic system 

Let us write the system (1) with the help of vector nota-
tion; 

dx = Ax + BX[21 

dt 
(3) 

where x is the column vector of N components Y; andA is the 
matrix of components a ij. The nonlinear terms are described 
by theN XN 2matrixB [B;k = bij/' wherek = (j,l) and is to 
be labeled according to the lexicographical order], and by 
the vector X[2 I = x ® x, where ® denotes the Kronecker pro
duct. It is convenient to introduce the L th Kronecker power 
by X[L I = X[L - 1 I ® x,x[ 1 I = x, as well as the matrices 

Al=A, 

L = 2,3,.··, 

B1=B, 
(4) 

with I denoting the N X N identity matrix. They will appear 
throughout the work with the method of Carleman. 

The Carleman embedding of the system (3) amounts to 
first considering the components of x[21 as independent var
iables, and then to writing down their equations of motion. It 
can be easily shown that 

(5) 

Then we consider successively the X[3 1, X[41,. .. , as indepen
dent, which leads to the infinite linear system 
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(6) 

We write X and M for the infinite-dimensional vector 
and matrix appearing in (6), and let their block components 
be denoted by capital indices as XL = X[L J and 

M L.K = ALoL.K + BL 0L.K + I . 

The component XI of the solution of (6) should also 
furnish the solution of the system (3). Nevertheless one must 
proceed carefully, for the system (6) may have a broader class 
of solutions than that of (3); e.g., one can find Coo solutions 
for (6) whose component Xl does not satisfy (3).7 However, 
the analytical solutions of(3) and of XI in (6) are equal, which 
can be shown by comparing the terms of their Taylor series. 

The formal analytical solution for X in (6) is 
X (t) = eMT X (0). If we are only interested in the component 
XI' we may write 

(7) 

We introduce now a generalized power operation 
between theN XNmatrixA and theN XN 2 matrixBwhich 
enables the writing of both the Carleman solution and the 
general term of the Taylor series solution of (1) and (2) in a 
very compact way. So, if n, rnEZ we define the matrix 
(A "IBm) by 

(A"IBm) =Oifnorrn<O, (8a) 

(A °IB 0) = I (8b) 

(A "IBm) = (A "IBm-I)Bm + (A "-IIBm)A m+ 1 , 

(8c) 

where the A" and Bm are the matrices defined in (4). 
The definitions (8c) implies that the elements of 

(A "IB m) given in terms of those of A and B contain always 
an n-fold product of elements of A and an rn-fold product of 
those of B. 

This justifies calling the definition (8) a kind of general
ized power. In particular we have (A "IB 0) = A" and 
(A °IB m) = B lB2B 3,,·Bm. 

Now it is straightforward to verify that 

(M"lt,L = (A"+ I-L IB L - I ), (9) 

and after inserting (9) into (7) we get 

Xl(t) = i t~"±l (A"+l-LIBL-I)XL(O). (10) 
"~o n. L ~ I 

The expression (10), which was derived only with the 
help of the Carleman method, constitutes also the Taylor 
series solution of (1), which can be directly verified by using 
the definition (8) to evalutate the nth time derivative of x in 
(1). In the next subsection we illustrate the use of the matrices 
defined in (8) to verify a similar result for the case of the first 
variational system (2). 
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B. The solution of the variational equation system 

Now we will show the solution of(2) may be given with 
the help of the Carleman embedding matrix as 

00 M aXL(O) 
ox(t;xo,oxo) = I (e ')I.L -- oxo · (11) 

L~ I ax(O) 

In order to prove Eq. (11) it is convenient to write (2) in 
terms of Kronecker operations to get 

d 
- ox = Aox + B (x ® ox + ox ® x) . 
dt 

(12) 

Further, we define the following N L X N matrices Y L' 

L;;>1: 

YL =X®YL _ I +I®XIL-IJ, L=2,3,.··, 
(13) 

Yl=I. 

The YL are very important for our proof, since it can be 
shown that they satisfy the relation 

(14) 

We can also use the YL to bring (12) into a more compact 
form 

d 
-Ox = (A + BY2)ox . 
dt 

(15) 

The solution of (15) written with the aid of the Taylor 
series is 

00 t" d" I ox(t) = I --Ox . 
"~o n! dt n ,= 0 

Using the bracket operation defined in (8) and YL , we will 
show that 

d n I n + 1 -Ox = I (An+I-LIBL-I) YL(O)OXO ' (16) 
dt n t~O L = I 

We proceed by induction over n. For n = 1, (16) is evident, 
for it reduces to (15). If we assume (16) to be valid for n - 1, 
we get 

£ox = i (A n-L IB L - l ) ~ (YL ox). (17) 
dt" L~I ~ 

In order to go further we need identity (18), which can be 
easily derived with some algebraic manipUlations with the 
help of Kronecker operations and of Eq. (15), 

~ (YL ox) = (AL YL + BL YL+ tlox . (18) 
dt 

After inserting (18) into (17) we arrive at 

" I (A"-LIB L - I) [AL YL +BL YL+d ox,(19) 
L~l 

and using the definition of the bracket operation it follows 
that 

£ Ox = i [(A n + 1 - L IB L - 1) 
dt n L~ 1 

_(An+I-LIBL-2)BL_I] YLox 

+ i (A "-L IBL-I)BL YL+ lOX. (20) 
L~l 
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We now observe that all the terms in the second and 
third series cancel each other with exception of 

- (AnIB-I)Bo YI =0 

and 

(AOIBn-I)Bn Yn+ 1 = (AOIBn) Yn+ l • 

Then Eq. (16) follows immediately. 
The solution of (12) given by the Taylor series is thus 

ox(t;xo,oxo) 

= f nil t: (A n+ I-L IB L - I ) YdO)oxo , (21) 
n ~o L ~ I n. 

which reduces to (11) if we use (9) and (14). 
The Carleman method shows very clearly the relation 

between the solutions of (1) and (2). This fact has not only a 
formal relevance, but also for practical purposes it enables 
the development of a numerical procedure furnishing the 
solutions of both equations which are required for the eva
luation of the Lyapunov exponents. 

III. L YAPUNOV EXPONENTS 

Let us now introduce the notation which is most used 
when one is concerned with the problem of defining Lya
punovexponents. Let us write the solution of(3) as 

x(t) = T'xo, X o = x(t = 0) , (22) 

where the map T', which describes the evolution of any 
point in the phase space, is the flow induced by the vector 
field F(x). Let DT'xo be the matrix of partial derivatives 

J(T'xot 
(DT'xo)ij =. (23) 

J(xot 

The map DT,xo may be so interpreted: two trajectories start
ing at x and x + ox, where ox is a small vector, will differ by 
DT'xoDx at a time t. HenceDT' entails the same information 
as the solution of(2), and if knowledge of the explicit form of 
T' is not possible, DT' is formed by collecting the N column 
eigenvectors of (2). The rhs of (2) is time dependent through 
x(t) and by the above quoted method one can only give an 

approximation for DT' which is valid only for short time 
intervals. On the other hand, the Carleman method enables 
the evaluation of DT' by direct differentiation of T' [identi
fied with the time-evolution operator in (7)] as has become 
clear from the last section. 

The concept of Lyapunov exponents of the dynamical 
system (1) may be introduced in different ways.2.3.8.9 A very 
illustrative one is to say that the point X o of the phase space 
has Lyapunov exponents AI <A2 ... <AN if there exist sub
spaces E Ie E2 C ... C EN of our vector space with the fol
lowing properties: 

E
j 

= {oxllim J.. ln [ IIDT'xoox II ]<A
j

} , (24a) 
h<x> t Iloxll 

dim Ej = j , (24b) 

lim J.. ln [ IIDT'xoDx II] = A.. 
h<x> t Ilox II J 

if oxEEj but oxrUij _ 1 • (24c) 
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Definition (24) becomes easy to visualize if we consider 
a linear autonomous system with real eigenvalues. In such a 
case the Lyapunov exponents Aj coincide with the eigenval
ues of the system. The subspace Ej is the set of all vectors 
which are written as linear combinations of the eigenvectors 
corresponding to the j smallest eigenvalues of the system. 

The largest eigenvalue Aj of Ej is projected out by (24c). 
Two trajectories differing by oxEEj will converge or diverge 
according to the negative or positive sign of Aj • Since an 
arbitrary vector ox will almost always belong to EN' the AN 
is the exponent which really decides about the diverging 
character of the trajectories. Moreover, it is easier to evalu
ate than any other Aj • 

The question concerning the existence of such expo
nents has been answered by Oseledec. 1O The convergence of 
the limits in (24) is assured for almost all x o, provided aT' 
invariant measureJ.l exists. The concrete evaluation of Lya
punov exponents has also been investigated, e.g., in refer
ences.2.3 Our method presented in Sec. IV goes along the line 
of some of the ideas of the quoted works. We make use of the 
Carleman method, which besides simplifying the evaluation 
of the DT', offers the possibility of easily increasing the accu
racy of the numerical work. 

IV. APPROXIMATE SCHEME AND DISCUSSION 

The major difficulty we are faced with while working 
with the Carleman embedding lies in the exact determina
tion of the time evolution operator eM' which, as has become 
clear from the previous discussion, is equivalent to summing 
up the Taylor series for the trajectory x(t ). However, we can 
use the Carleman method as a starting point for approxima
tive schemes which are useful in connection with computing 
facilities. In what follows we will take the Lorenz model 1 1 

x = a(y -x), 

y= -y+rx-xz, 

Z= -bz+xy 

(25) 

as an example and evaluate its largest Lyapunov exponent 
A3• This model belongs. to the class of systems described by 
(1), and has been chosen as testing object because some re
sults on its Lyapunov exponents have been published, which 
will be used for comparison with ours.3 In (25), (7, r, and bare 
constant parameters, whilex,y, andzdenote the variablesy;, 
i = 1,2,3. 

We consider the Carleman solution (10) for the Lorenz 
model. Our approximation scheme starts by cutting off M to 
get M s ' which contains only the first s + 1 diagonal and the s 
upper-diagonal blocks. Then the approximate time-evolu

tion operator eM" (determined, e.g., by numerical methods), 
applied to the cut off vector formed by the first s + 1 block 
components XL' leads to an approximate trajectory which 
differs from the exact one by terms of the order t s + I. This 
fact induces us to proceed as usual in the numerical methods 
for differential equations: Ifwe want to integrate Eq. (1) until 
a time T, we divide it in subintervals at length 'T' such that the 
error introduced in the approximate solution is sufficiently 
small, and integrate until Tstep by step. The iteration proce
dure for the trajectory with the help of the matrix Ms is based 
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TABLE I. Values for the largest Lyapunov exponent of the Lorenz model 
with the standard values of the parameters u = 10, b = 8/3, r = 28. s char
acterizes the cutoff matrix M, and gives also the accuracy of integration, 
across a step T, of the order ofr'. We have taken T = 0.01, and the values of 
A are given after a number n of 1.4 X 105 iterations. We list the results for five 
arbitrary trajectories, characterized by their starting points. 

f-~~m~l 

IPo~~ 
~.o'1.0'1.0) I 0.8981 

l--f----

I (-0 

(3. 

( -0 

. ] ,27.0,0. ]) 

0,-2.0,5.0) 

.0,]1.0,12.0) 

.1,27.0,-0.11 

i (\.9084 

I 
i 0.9024 

0.90 ]] 

0.9153 

0.9009 

O.8 Q 69 

, 
0.9045 

0.9093 

0.90R9 

on the following scheme: 
s+, M 

(i)X,(nr)= I (e S\,LXL(nr-r), 
L~' 

0.9023 

0.9059 

0.9017 

0.9032 

0.9046 

(26) 

For the Lyapunov exponents ,1,3' which we will hereaf
ter call A (xo,8x), we have 

, ( r» _ l' 1 1 [II DTnTxo 8xo II] 
/L xo,ux - 1m - n 

n~oo nr II 8x II 
1
. 1 

= 1m- (27) 
n~oo nr 

In[ IIDTT(xn - ,)Drr(xn - 2) ... DTT(xo)8XII] 

X 118x II ' 
where we have used the properties 

DTIr+ '1lx = DTT(T'1x)DTTX 

and 
xn = x(nr). (28) 

Equation (28) follows immediately from (11) in the exact 
summation and is valid also within our approximation 
scheme if r is small and s large. Writing DTT(xn _ ,)8xn _ , 
= 8xn IIDTT(xn _ \ )8xn _ , II, 8xo = 8x, we get from (27), 

,1, (xo,8x) = lim _I_In [yf IIDTT(xk)8xk II ] 
Hoo nr k~O 118xkll 

. 1 n~' IIDTT(xk )8Xk II 
=hm-Lln . 

n~oo nr k ~ 0 118xk II 
(29) 

i 

I 
I 

I 
i 

,1, (xo,8x) is then evaluated within our scheme with the help of 
the expressions (26) and (29). In each step we evaluate the 
X\(nr) and the DTT(xn _ \ )8xn _ \, besides the XL (nr), 8xn, 
and DT T(X n ) which are necessary to go further with the itera
tive procedure. 

We present some of our results for the Lorenz model 
obtained with the help of the above described method in 
Tables I and II. Those in Table II may be compared with the 
calculations of Shimada, 3 who has obtained the same value 
for,1, as ours. The results in the Table I, where values of,1, for 
different start points and increasing size of the cut off matrix 
Ms are presented, show a rather good convergence and sup
port the suggestion that, for the Lorenz model, ,1, should not 
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TABLE II. Results for the Lyapunov exponent of the Lorenz model with 
the Shimada values for the parameters u = 16, b = 4, r = 40. Here we have 
also T = 0.01 and n = 1.4 X 105. The starting point of the trajectory used in 
the evaluation of A is (1.0, 1.0, 1.0); s has the same meaning as in the Table I. 

I \ I ].3704 1 1. 3620 1. ~37n7 

depend upon the starting point. 
We see two major practical advantages in our approxi

mation scheme. In evaluating the Lyapunov exponents we 
just have to work with one time-evolution operator, which 
takes into account both the trajectory and its variation. This 
makes the separate integration of the Eqs. (1) and (2) unnec
essary, requires just one basic time intervalr within the pro
cedure, ensures equal accuracy for the evaluated time devel
opment of x and 8x, and reduces the sources of possible 
rounding off errors. 

The second interesting point refers to the possibility of 
easily increasing the accuracy of the procedure without any 
further difficult than increasing the size of the cut off matrix 
Ms. This remains in contrast with the normally used Runge
Kutta methods: despite their major advantage of requiring 
only the knowledge of the first time derivative of the varia
bles, they become increasingly complicated if we want to get 
higher accuracy, and new formulae must be derived for each 
new case. 

Concluding, we point out that the Carleman embed
ding has provided a useful method for evaluating Lyapunov 
exponents of a large class of systems. It is based on a rigorous 
analytic result and on an iterative numerical procedure to 
avoid the problem of the impossibility of determining the 
exact time-evolution operator. Whereas the solution oft 1) by 
means of the Carleman embedding has already been ana
lyzed, an investigation of the interdependency between the 
first variational equation and the Carleman method was 
needed. 

Moreover, the evaluation of Lyapunov exponents ena
bles us to test the viability of iterating the Carleman method 
itself, for Lyapunov exponents are quantities which may be 
used for comparision between our results and others. On the 
other hand, comparing individual trajectories of systems 
with sensitive dependence on the initial point, as that of Lor
enz, which were obtained by two different numerical meth
ods, makes no sense at all. 
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