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Abstract. Let L = −∆−W be a Schrödinger operator with a potential
W ∈ L

n+1
2 (Rn), n ≥ 2. We prove that there is no positive eigenvalue.

The main tool is an Lp − Lp′
Carleman type estimate, which implies that

eigenfunctions to positive eigenvalues must be compactly supported. The
Carleman estimate builds on delicate dispersive estimates established in [7].
We also consider extensions of the result to variable coefficient operators
with long range and short range potentials and gradient potentials.

1. Introduction

Let n ≥ 2. Suppose W is a potential in Rn which decays at infinity. Then
the Schrödinger operator

−∆Rn −W

has continuous spectrum [0,∞). In addition its spectrum may contain eigen-
values which could be positive, negative of zero. Positive eigenvalues in the
continuous spectrum are undesirable. They are very unstable since they are
destroyed even by weak interactions between the continuous spectrum and
the eigenvalue (see [9]). Physically they correspond to trapped states in the
continuous spectrum, and they are difficult to handle analytically. Moreover,
excluding eigenvalues in the continuous spectrum is often a first step toward
scattering. There is an extensive theory dealing with the absence of positive
eigenvalues.

It is well known that under weak assumptions like

(1) lim
|x|→∞

|x||W (x)| = 0

there are no positive eigenvalues. The argument uses Carleman estimates in
three steps as follows. Suppose that

−∆u−Wu = u

with u ∈ L2, where the eigenvalue is normalized to 1 by scaling. Then one
proves that:

(1) The eigenfunction u decays faster than polynomially at infinity.
(2) If u vanishes faster than polynomially at infinity that u has compact

support.
(3) If u has compact support then it must vanish.
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These arguments work for many Schrödinger operators. However they do
not cover Schrödinger operators for several particles (which are studied in [2]
and [1]), neither do the standard arguments apply to the absence of bound
states (i.e. L2 solutions) in nonlinear optics modeled by problems of the type

−∆u = ωu+ a(x)|u|σu
with a bounded function a, because it is not clear how the assumption u ∈
L2(Rn) is related to pointwise decay.

On the other hand the assumption (1) on pointwise decay is sharp: There
is the famous Wigner-Von Neumann example of a positive eigenvalue and a
potential decaying like 1/|x| but not better, see [12, 8].

Motivated by the above questions and by other potential applications one
seeks to replace the pointwise bound (1) by an Lp bound. In terms of scaling
any such bound must necessarily be weaker than (1) due to counterexamples by
Jerison and Ionescu ([3]) with potentials concentrated close to n−1 dimensional
planes. Jerison and Ionescu [3] have recently obtained absence of embedded
eigenvalues for W ∈ Ln/2. In this paper we obtain the same result for a larger
class of potentials which includes

(2) W ∈ L
n+1

2 .

We note that a higher index is better since it allows for potentials with less
decay at infinity. Another way to look at this is that such a condition is mostly
relevant for the low frequency part of W . The counterexample of Jerison and
Ionescu ([3]) shows that this is the highest possible exponent.

Our method is robust enough so that it also allows us to add a long range
potential, and also to replace the Laplacian with a (mildly) asymptotically flat
second order elliptic operator. The latter generalization is more technical and
less self-contained, so it is discussed only in the last section.

Thus we consider potentials which are the sum of weakly decaying long range
potentials V and short range potentials W . We even include the eigenvalue
λ > 0 into the long range potential and study the problem

(3) (−∆− V )u = Wu.

To describe the long range potential we define the space C2
〈x〉 by

Definition 1. C2
〈x〉 is the space of C2

loc functions for which the following norm
is finite:

‖f‖C2
〈x〉

:= max{sup
x
|f(x)|, sup〈x〉|Df |, sup〈x〉2|D2f |}

Then we introduce the condition

Assumption A 1 (The long range potential). V belongs to C2
〈x〉 and satisfies

(4) lim inf
|x|→∞

V > 0, τ0 := − lim inf
|x|→∞

x · ∇V
4V

< 1/2.
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The bound from below on V corresponds to the condition λ > 0 while the
last bound in (4) says that for large |x| the function |x|2 is strictly convex
along the null Hamilton flow for −∆ − V , and thus guarantees nontrapping
outside a compact set.

To describe the short range potential we define the space

Definition 2. X is the space of W
− 1

n+1
,
2(n+1)

n+3

loc functions for which the following
norm is finite:

‖W‖X = sup
u∈C∞0

‖Wu‖
W

− 1
n+1 ,

2(n+1)
n+3

/‖u‖
W

1
n+1 ,

2(n+1)
n−1

n ≥ 3

‖W‖X = sup
u∈C∞0

‖Wu‖
W− 1

3+ε, 65
/‖u‖

W
1
3−ε,6 n = 2, ε > 0

For a domain D ⊂ Rn we denote

X(D) = {1DW ; W ∈ X}

Then we introduce

Assumption A 2 (The short range potential). W belongs to Xloc and can be
decomposed as W = W1 +W2 where

(5) lim sup
j→∞

‖W1‖X({x|2j≤|x|≤2j+1}) < δ

(6) lim sup
|x|→∞

|x||W2(x)| < δ.

The W2 component corresponds to the L2 Carleman estimates. The class of
allowed W1 potentials includes L

n
2 and L

n+1
2 or even better1 l

n+1
2 (L

n
2 ) where

the l
n+1

2 norm is taken with respect to a partition of Rn into unit cubes.
Our main result is

Theorem 3. Assume that V and W satisfy Assumptions A1 and A2, let
τ1 > τ0 and assume that δ is sufficiently small. Let u ∈ H1

loc(Rn) satisfy (3)

and (1 + |x|2)τ1− 1
2u ∈ L2. Then u ≡ 0.

By comparison, the result of Jerison and Ionescu [3] applies to the case
V = 1 and W ∈ L

n
2 , n ≥ 3. We note that the exponent p = n/2 is critical

for weak unique continuation; for smaller exponents there are examples of
compactly supported eigenfunctions, see [6].

The conditions (5) and (6) have a different scaling behavior. Nevertheless
both are sharp, which can be seen by the Wigner-Von Neumann example and
the non radial counter example of Jerison and Ionescu.

The proof uses Carleman estimates, following the same three steps indicated
above. A combined L2- Lp Carleman inequality replaces the previous L2 Car-
leman inequalities. Proving such inequalities is a highly nontrivial task and

1l
3
2 L1+ if n = 2.
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relies on the bounds established in [7]. Conjugation of the operator −∆ − V
with the weight of the Carleman inequality leads to a non-selfadjoint partial
differential equation. A pseudo-convexity type condition is satisfied, but it
degenerates for large x. This is related to the fact that the anti-selfadjoint
part of the conjugated operator decays for large x in relevant coordinates.

Compared to earlier work and to the steps outlined above, we also consider
a different family of weights in the Carleman estimates. Precisely, we begin

with weights of the form h(x) = eτ
√
|x| for part 2 of the argument, which we

then flatten at infinity for part 1. This yields a more robust argument, and
also better results in the variable coefficient case.

The paper is organized as follows. In the next section we state all the Lp

Carleman estimates and show how they lead to the result on the absence of
the embedded eigenvalues.

There are two main ingredients in the proof of the Lp Carleman estimates.
The first is the L2 Carleman estimates, which are proved in Section 3. The
second is a dispersive estimate for second order operators which is obtained in
Section 4 using an earlier result of the authors, namely Theorem 3 of [7]. This
is of independent interest so we state it in more generality than needed here.

The Lp estimates are proved Section 5. The L2 bounds obtained earlier are
used to localize the Lp bounds to small spatial scales. Then we can rescale to
a setting where the general dispersive estimates of Theorem 7 apply.

Finally, in the last two sections we discuss the extension of the results to
second order elliptic operators with variable but asymptotically flat coefficients
as well as unbounded gradient potentials. This goes along the same lines.

2. Carleman estimates and embedded eigenvalues

As explained above the proof depends on Carleman inequalities. In this
section we explain the Carleman inequalities and their application whereas
most of the proofs are postponed to the remaining sections.

Let 1 ≤ p ≤ ∞ and s ∈ R. We define the Sobolev space W s,p(Rn) by the
norm ‖f‖W s,p = ‖(1 + |D|2)s/2f‖Lp and W s,p(U) for open subsets U of Rn

through its norm which is the infimum of the norm of extensions.
Given a measurable function f and the Sobolev space W s,q we define the

norm

‖f‖lpW s,q =

(
∞∑
j=1

‖f‖p
W s,q({2j−1≤|x|≤2j+1})

)1/p

with the obvious modification for p = ∞.
Our Carleman estimates have the form

‖eh(ln(|x|))v‖
l2W

1
n+1 ,

2(n+1)
n−1

+ ‖eh(ln(|x|))ρv‖L2 .

inf
f1+f2=(−∆−V )v

‖eh(ln(|x|))ρ−1f1‖L2 + ‖eh(ln(|x|))f2‖
l2W

− 1
n+1 ,

2(n+1)
n+3

(7)
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where ρ is given by

(8) ρ =

(
h′(ln(|x|))
|x|2

+
h′(ln(|x|))2h′′+(ln(|x|))

|x|4

) 1
4

with h′′+ denoting the positive part of h′′. As a general rule, the function h is
chosen to be

(a) increasing, h′ ≥ τ0, with h′(0) large.
(b) slowly varying on the unit scale, |h(j)| . h′ for j = 2, 3, 4.
(c) strictly convex for as long as h′(ln(|x|)) & |x|.
More precise choices are made later on for convenience, but the estimates

are in effect true for all functions h satisfying the above conditions.
The two terms in ρ have different origins. The second one simply measures

the effect of the convexity of the function h. The first one, on the other hand,
is due to the presence of the long range potential, which provides some extra
pseudoconvexity for large |x|.

A simplifying assumption consistent with the choices of weights in this paper
is to strengthen (c) to

(c)’ h′′(ln(|x|)) ≈ h′(ln(|x|)) for as long as h′(ln(|x|)) & |x|.
This allows us to simplify the expression of ρ to

(9) ρ =

(
h′(ln(|x|))
|x|2

(
1 +

h′(ln(|x|))2

|x|2

)) 1
4

Our Carleman estimates use weights which grow exponentially, but also
allow for the possibility of leveling off the weight for large enough |x|.

Proposition 4. Suppose that V satisfies Assumption A1. There is a universal
constant ε0 such that with

(10) h′ε(t) = τ1 + (τe
t
2 − τ1)

τ 2

τ 2 + εet

(7) holds with h = hε for all |ε| ≤ ε0, v supported in |x| > 1 and satisfying

|x|τ1− 1
2v ∈ L2, uniformly with respect to τ large enough.

The coefficient 1
2

in the exponent is chosen somewhat arbitrarily. However,
it must be smaller than 1 in order for stage (c) above to be reached. This is
necessary if we are to be able to taper off the weight at infinity. We continue
with a short discussion of the weight hε.

For small t it is uniformly convex in the sense that h′′ε ≈ h′ε. The first
interesting threshold for it is t0 defined by

et0 ≈ τ 2

This implies that h′ε(t0) ≈ et0 . In the range [0, t0] the last factor in (10)
is largely irrelevant, and h′ε behaves like an exponential. In this region, the
pseudoconvexity in the Carleman estimates is produced by the convexity of h.
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After t0 hε is still convex, roughly up to t1 defined by

et1 ≈ ε−1τ 2

The region t1 + O(1) contains both the inflexion point t1 and the maximum
point for h′ε. In between t0 and t1 the pseudo-convexity comes from the poten-
tial term, while the contribution from the convexity of hε is still positive but
smaller.

Beyond t1 + O(1) the function h′ε(t) − τ1 decays in an exponential fashion.
The last interesting threshold is t2 where h′ε approaches 1, given by

et2 ≈ ε−2τ 6

Between t1 and t2 there is still convexity coming from the potential V , which
suffices in order to control the lack of convexity of hε. Finally, after t2 the
pseudoconvexity in the classical sense is lost, but there remains an Airy type
gain to push the estimates through.

Proof of Theorem 3. Here we show that Proposition 4 implies Theorem 3.

STEP 1: We prove that u decays at infinity faster than e−τ
√
|x|. We choose

R large enough so that (see Assumption A2)

(11) sup
2j+1>R

‖W1‖X({x|2j≤|x|≤2j+1}) < 2δ

(12) sup
|x|>R

|x||W2(x)| < 2δ.

Choose φ ∈ C∞ be identically 1 for |x| ≥ 2R and 0 for |x| ≤ R. We set v = φu.
Then

−∆v − V v = Wv − (∆φ)u− 2∇φ · ∇u
For τ1 as in Theorem 3 we have |x|τ1− 1

2v ∈ L2, therefore we can apply Propo-
sition 4 with ε > 0 to v to obtain

‖ehε(ln |x|)v‖
l2W

1
n+1 ,

2(n+1)
n−1

+‖ehε(ln |x|)ρv‖L2 . ‖ehε(ln |x|)ρ−1(|u|+ |∇u|)‖L2(B2R\BR)

+ ‖ehε(ln |x|)W1v‖
l2W

− 1
n+1 ,

2(n+1)
n+3

+ ‖ehε(ln |x|)ρ−1W2v‖L2

By (11), (12) if δ is small enough then we can absorb the last two right hand
side terms on the left to obtain

‖ehε(ln |x|)v‖
l2W

1
n+1 ,

2(n+1)
n−1

+‖ehε(ln |x|)ρv‖L2 . ‖ehε(ln |x|)ρ−1(|u|+ |∇u|)‖L2(B2R\BR)

Then letting ε→ 0 in the definition of h yields
(13)

‖eτ
√
|x|v‖

l2W
1

n+1 ,
2(n+1)

n−1
+ ‖eτ

√
|x|ρv‖L2 . ‖eτ

√
|x|ρ−1(|u|+ |∇u|)‖L2(B2R\BR).

which shows that v and therefore u is rapidly decaying at infinity.
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STEP 2: We prove that u vanishes outside a compact set. This is done
using (13) (which can also be derived directly from Proposition 4 as above).
From (13) we obtain

R−1e−τ
√

2R‖eτ
√
|x|v‖

l2W
1

n+1 ,
2(n+1)

n−1
+ ‖eτ

√
|x|ρv‖L2 . ‖(|u|+ |∇u|)‖L2(B2R\BR).

Letting τ →∞ shows that v = 0 outside B2R. Then the same holds for u.
STEP 3: We prove that u is identically 0. Assume by contradiction that

this is not the case, and choose r minimal so that u is supported in B(0, r).
Our problem is scale invariant, so without any restriction in generality we
can assume that r > 1. Take x0 ∈ supp u with |x0| = r. The problem
is also invariant with respect to translations so we can assume instead that
supp u ∈ B(x0, r) and 2x0 ∈ supp u.

To reach a contradiction we prove that there is α > 0 so that u is supported
in B(0, 2r − α). This follows as in STEP 2 provided we know that for every
δ > 0 we can find ρ > 0 such that

‖W1v‖
W

− 1
n+1 , n+1

n+3
≤ δ‖v‖

W
1

n+1 , n+1
n−1

, supp v ⊂ B(2x0, ρ)

Then α is chosen so that

{2r − α < |x| < 2r} ∩B(x0, r) ⊂ B(2x0, ρ)

Due to our choice of W this is a somewhat technical matter which is left for
Proposition 14 in the appendix. This step can be approached alternatively by
the unique continuation results of [7]. �

3. The L2 Carleman estimates

In this section we obtain the L2 Carleman inequalities.

Proposition 5. Suppose that V satisfies Assumption A1. Let h be as in (10)

and ρ as in (8). Then for all u satisfying |x|τ1− 1
2u ∈ L2 we have

(14)

‖eh(ln |x|)ρu‖L2 +
∥∥∥ |x|
h′(ln |x|) + |x|

eh(ln |x|)ρ∇u
∥∥∥
L2

. ‖eh(ln |x|)ρ−1(∆ + V )u‖L2 .

uniformly with respect to τ sufficiently large and 0 < ε ≤ ε0.

Proof. We use a conformal change of coordinates

t = ln |x|, y = x/|x| ∈ Sn−1

Denote
∆u = g

and set
v(t, y) = e(n−2)t/2u(ety), f(t, y) = e(n+2)t/2g(ety)

A routine computation shows that

|x|(n+2)/2(∆ + V )|x|(n+2)/2 =
∂2

∂t2
+ ∆Sn−1 − ((n− 2)/2)2
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therefore v solves the equation

(15) Lv = f, L = ∂2
t + ∆Sn−1 − ((n− 2)/2)2 + e2tV

We also note that part of Assumption A1 in the new coordinates we get

− lim inf
t→∞

Vt
4V

= τ0 <
1

2

By (4) we slightly readjust τ0 and choose t0 so that

(16) − Vt
4V

≤ τ0 <
1

2
, t > t0

For any exponential weight h we have

(17)

∫
e2h(ln |x|)|u|2dx =

∫
R

∫
Sn

e2h(t)+nt|u(ty)|2 dt dy = ‖eh(t)etv‖2
L2(R×Sn−1),

(18)

∫
e2h(ln |x|)|g|2dx =

∫
R

∫
Sn

e2h(t)+nt|g(ty)|2 dt dy = ‖eh(t)e−tf‖2
L2(R×Sn−1).

Hence, in the new coordinates the bound (14) becomes

(19) ‖eh(t)ρ1v‖L2 + ‖eh(t) ρ1

et + h′(t)
∇v‖L2 . ‖eh(t)ρ−1

1 f‖L2 ,

where ∇v is the gradient of v with respect to y and t and, by (9),

ρ1(t) = etρ = h′(t)
(
e2t + h′(t)2

) 1
4

To prove the above bound one would like to follow a standard strategy. This
means conjugating the operator with respect to the exponential weight, and
producing a commutator estimate for the self-adjoint and the skew-adjoint part
of the conjugated operator. There are two small problems with this approach,
both of which occur in the region where h′(t) is small.

First we want to incorporate the weight ρ−1
1 on the right, which would

require an additional conjugation. Where h′ is small this cannot be treated
as a small perturbation, so we really have to include ρ−1 in the exponential
weight.

This leads to a second difficulty. After including ρ−1 in the exponential
weight the commutator between the self-adjoint and the skew-adjoint part
of the conjugated operator is no longer fully positive definite and we need a
slightly modified argument.

To handle both issues we prove a slightly more general result and then we
obtain (19) as a special case of it. Precisely, we consider an exponential weight
φ as follows:

(i) φ′ ≥ τ1 − 1
2
, and φ′(0) is large.

(ii) 1 + φ′ is slowly varying on the unit scale, i.e.

|φ(j)(t)| . 1 + φ′(t) j = 2, 3

(iii) φ′ can only have a limited exponential growth rate, φ′′ . 3
4
(1 + φ′).
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Together with (i) this yields the existence of a unique t0 so that φ′(t0) = et0 .
Our last assumption asks for uniform convexity up to t0:

(iv) φ′′(t) ≈ φ′(t) for 0 ≤ t ≤ t0 + C for some large parameter C.
We summarize the bound for the weight eφ:

Lemma 6. Consider a weight function φ satisfying the conditions (i)-(iv)
above. Then for all v which are supported in t > 0 and with eφ(t)+tv ∈ L2 we
have

(20) ‖eφ(t)(e2t + φ′(t)2)
1
2v‖L2 + ‖eφ(t)∇v‖L2 . ‖eφ(t)(1 + φ′)−

1
2Lv‖L2 .

Proof. First we conjugate with respect to the exponential weight. If we set
w = eφ(t)v then w solves the equation

Lφw = eφ(t)f, Lφ = eφ(t)Le−φ(t)

We decompose Lh into a selfadjoint and a skewadjoint part,

Lrφ = ∂2
t + ∆− (

n− 2

2
)2 + e2tV + φ′2, Liφ = −φ′∂t − ∂tφ

′

The bound to prove is

(21) ‖(e2t + φ′(t)2)
1
2w‖L2 + ‖∇w‖L2 . ‖(1 + φ′)−

1
2Lφw‖L2 .

The proof of this inequality is based on several integrations by parts. In a
standard manner one verifies that the integrations by parts below are valid if
eφ+tv ∈ L2.

We multiply Pφw by −1
2
wt and integrate by parts to obtain∫

φ′|wt|2 dy dt+

∫
(
1

4
φ′′′ +

1

2
φ′φ′′)|w|2dtdy +

∫
e2t

4
(2V + Vt)w

2 dy dt

=
1

2

∫
wtLφw dy dt

(22)

This computation is essentially like taking the commutator of Lrφ and Liφ. On
the left we have mostly positive contributions, with the following qualifications:

-the first term can be negative where φ′ < 0
-the φ′φ′′ term can also be negative, but only for t > t0 + C where it is

controlled by the V term.
-the φ′′′ term is controlled either by the V term or by the φ′φ′′ term.
To correct the first term in the region where φ′ is negative we consider a

cutoff function χ which equals δ in {φ′ > 2} and which equals 1 in {φ′ < 1}.
Here δ is a small universal parameter which we shall choose below. Since φ′+1
is slowly varying we can assume that χ has uniformly bounded derivatives.
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Multiplying Pφw by χ2(t)w and integrating gives

‖χwt‖2
L2+‖χ∇w‖2

L2 + (
n− 2

2
)2‖χw‖2

L2 −
∫
χ2(e2tV + φ′2)|w|2 dy dt =∫

1

2
(∂2
t χ

2)w2 dy dt+

∫
wLφw dy dt.

(23)

We multiply this by µ and add to the previous relation. This yields

µ‖χ∇w‖2
L2+

∫
(χ2µ+ φ′)|wt|2 dy dt+

∫ (
1

2
− χ2µ+

Vt
4V

)
e2tV w2 dy dt

+

∫
(
1

2
φ′φ′′ − χ2µφ′2)|w|2 dy dt

=

∫ [
− φ′′′/4− (

n− 2

2
)2µχ2 + ∂2

ttχ
2µ
]
|w|2 dy dt

+

∫
(χ2µw +

1

2
wt)Lφw dy dt.

(24)

To ensure that the left hand side is positive definite we recall that for large t

− Vt
4V

≤ τ0 < τ1 ≤
1

2
+ φ′

Hence if we choose µ positive so that

1

2
− τ1 < µ <

1

2
− τ0

then the first three terms are positive definite.
For the fourth term we consider two possibilities. If t < t0 + C then χ = δ

while φ′′ ≈ φ′ so it yields a positive contribution. We choose the universal
constant δ so that

1

2
φ′φ′′ − χµφ′

2 ≥ 1

4
φ′φ′′

if t ≤ t0 +C. For larger t this fourth integrand may be negative but then it is
controlled by the third. The first term on the right hand side is controlled by
the left hand side and we obtain

‖∇w‖2
L2 + ‖(1 + φ′)

1
2wt‖2

L2 + ‖(φ′(t)2 + e2t)
1
2w‖2

L2 .
∫

(µw +
1

2
wt)Lφwdydt

The proof is completed by an application of the Cauchy-Schwarz to the right
hand side.

�

Proof of Proposition 5, continued.
We obtain (19) from Lemma 6. For this we need to associate to each weight

h a function φ satisfying (i)-(iv) with the property that

1 + φ′ ≈ h′, (1 + φ′)−
1
4 eφ ≈ eh(h′2 + e2t)−

1
4
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The natural choice for φ is

φ(t) = h(t)− t

2
+

1

4
ln(1 + h′(t))− 1

4
ln(1 + e−th′(t))

Then

φ′ = h′ − 1

2
+

h′′

4(1 + h′)
+

(h′ − h′′)e−t

4(1 + e−th′)

We verify the properties of φ. It is easy to see that 1 + φ′ is slowly varying.
This implies that the last two terms in φ′ are bounded and have bounded
derivatives. Hence the properties (ii)-(iv) follow from the similar properties of
h′.

It remains to check the bound φ′ > τ1− 1
2
. This is clear when h′ � 1 which

corresponds to εe
t
2 � τ 3. For larger t we have

h′(t) = τ1 +
1

ε
τ 3e−

t
2 (1 +O(τ−1))

and

h′′(t) = − 1

2ε
τ 3e−

t
2 (1 +O(τ−1))

Then

φ′(t) > τ1 −
1

2
+

1

2ε
τ 3e−

t
2 (1 +O(τ−1))

so the desired bound is again verified. We note that what happens when
h′ is small is not so important anyway; in this region we can simply choose
φ(t) = h(t)− t

2
. �

4. A general dispersive estimate for second order operators

In this section we study the second order operator2

Lµ = ∂ia
ij(x)∂j + µ2c(x)− iµ(bj(x)∂

j + ∂jb
j(x)),

in the unit ballB ⊂ Rn, n ≥ 2 with real coefficients aij and complex coefficients
bj and c. Here µ is sufficiently large and plays the role of a semiclassical
parameter. Concerning the type and regularity of the coefficients we assume
that

(REG)

{
the matrix (aij(x)) is real, symmetric and positive definite
the functions aij, bi and c are of class C2

We define the symbol

l(x, ξ) = −ξiaij(x)ξj + c(x) + 2bjξj

The real part of l is a second degree polynomial in ξ with characteristic set

charx<l(x, ξ) = {ξ ∈ Rn; <l(x, ξ) = 0}

2We use the summation convention here and in the sequel.
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The geometric assumption on the operator L is

(GEOM)

{
for each x the characteristic set charx<l(x, ξ)
is an ellipsoid of size ≈ 1.

Our third hypothesis is concerned with the size of the Poisson bracket of
the real and imaginary part of L. We are interested in a principal normality
type condition of the form

(25) |{<l(x, ξ),=l(x, ξ)}| . δ + |<l(x, ξ)|+ |=l(x, ξ)|

where the relevant range for δ is µ−1 < δ � 1. This would suffice for our
purposes if in addition we knew that all the coefficients of l are of class C3. In
general for technical reasons we need to replace the inequality with a decom-
position

(26) {<l,=l}(x, ξ) = δq0(x, ξ) + qr1(x, ξ)<l(x, ξ) + qi1(x, ξ)=l(x, ξ) + q2(x, ξ)

Thus our last assumption has the form

(PN)


the Poisson bracket {<l,=l} admits a representation (26) where

|∂αx∂
β
ξ qi(x, ξ)| ≤ cαβ |α| ≤ i

|q0| . 1, |qr1|+ |qi1| . 1, |q2| . |l|

For L in the class of operators described above we are interested in con-
structing a parametrix T which has good Lp

′ → Lp and L2 → Lp mapping
properties, while the errors are always measured in L2. A dual form of this
also allows us to estimate the Lp norm of a function u in terms of the L2 norms
of u and Lu.

In the context of the Carleman estimates such parametrices allow us to
superimpose local Lp

′ → Lp bounds on top of the global L2 → L2 estimates
in order to obtain a global Lp

′ → Lp bound.
Such estimates are dispersive in nature and are strongly related to the

spreading of singularities in the parametrix T . This in turn is determined
by the nonvanishing curvatures of the characteristic set charx<l(x, ξ).

If L has constant coefficients and real symbol then the theorem below is
nothing but a reformulation of the restriction theorem. If L has real symbol
but variable coefficients then we are close to the spectral projection estimates
of C. Sogge [10]. In the case when L has constant coefficients but complex
symbol some bounds of this type were obtained in [4].

In the more general case considered here we rely on bounds and parametrix
constructions in the author’s earlier paper [7]. These apply to principally
normal operators. The operator Lµ is principally normal on the unit spatial
scale only if δ ≈ µ−1. Otherwise, we use a better spatial localization to the
(δµ)−

1
2 scale. On one hand Lµ is principally normal on this scale, while on

12



the other hand this localization is compatible with the L2 estimates and this
allows us to easily put the pieces back together.

All Sobolev norms in the theorem below are flattened at frequency µ instead
of frequency 1 as usual. Hence we introduce the notation

W s,p
µ = {u ∈ S ′; (µ2 +D2)

s
2u ∈ Lp}

with the corresponding norm.
We note that the operator L is elliptic at frequencies larger than µ so all

the estimates are trivial in that case. All the interesting action takes place at
frequency . µ, where we can identify all Sobolev norms with Lp norms.

Theorem 7. Suppose that the operator Lµ satisfies the conditions (REG),
(GEOM) and (PN) for some δ > µ−1. Let φ ∈ C(B2(0)) have compact support.
Then

A) There exists an operator T such that

‖Tf‖
W

1
n+1 ,

2(n+1)
n−1

µ

+ (δµ)1/4µ−1/2‖Tf‖H1
µ

. inf
f=f1+f2

(δµ)−1/4µ−1/2‖f1‖L2 + ‖f2‖
W

− 1
n+1 ,

2(n+1)
n+3

µ

(27)

and

(δµ)−1/4µ−1/2‖LTφf − φf‖L2 .

inf
f=f1+f2

(δµ)−1/4µ−1/2‖f1‖L2 + ‖f2‖
W

− 1
n+1 ,

2(n+1)
n+3

µ

(28)

B) For all functions u in B2(0) we have

‖φu‖
W

1
n+1 ,

2(n+1)
n−1

µ

. (δµ)1/4µ1/2‖u‖L2

+ inf
Lu=f1+f2

(δµ)−1/4µ−1/2‖f1‖L2 + ‖f2‖
W

− 1
n+1 ,

2(n+1)
n+3

µ

(29)

C) Suppose that in addition the problem is pseudoconvex in the sense that

(30) q0(x, ξ) ≈ δ � µ−1 x ∈ B2(0), µ� 1

Then for all functions u with compact support in B2(0) we have

‖u‖
W

1
n+1 ,

2(n+1)
n−1

µ

+ (δµ)1/4µ1/2‖u‖L2

. inf
Lu=f1+f2+f3

(δµ)−1/4µ−1/2‖f1‖L2 + ‖f2‖
W

− 1
n+1 ,

2(n+1)
n+3

µ

(31)

The difficult part of this theorem is the existence of the rough parametrix in
Part A. This existence will be derived from Theorem 3 in [7]. The arguments
repeat partially those of Section 3, 7 and 8 of [7].

Proof. Part A. (i) Localization. We first reduce the problem to the case
when δ = µ−1. This is done by localization to a small spatial scale and then by
rescaling. The appropriate spatial scale is r = (µδ)−

1
2 . We cover the support

13



of φ with balls Bj of radius r and choose a subordinate partition of unity of
the form ∑

φ2
j = 1

Suppose that within Bj there exists a parametrix Tj satisfying the desired
estimates. Then we set

T =
N∑
j=1

φjTjφj.

The bound (27) for T follows directly by square summing the similar bounds
for Tj. For (28) we compute

I − LT =
N∑
j=1

φj(I − LTj)φj +
N∑
j=1

[L, φj]Tjφj

For the first term we use (28) for Tj while for the second we estimate the
commutators using (27) for Tj.

In order to obtain the localized parametrices Tj we rescale Bj to the unit
scale. Then the problem reduces to the original one but with δ = µ−1.

(ii) The elliptic high frequency parametrix.
For each x the zero set of <l is an ellipse contained in a ball of radius BRµ(0)

with R ∼ 1. Let ψ ∈ C∞(Rn) be a nonnegative radial radially decreasing
function supported in B2(0) and identically 1 in B1(0). Let φ be as in the
statement of the theorem. We fix a nonnegative function φ0 ∈ C∞(B2(0)),
identically 1 on the support of φ. We define Thigh by its Weyl symbol

φ0(x)l
−1
µ (x, ξ)(1− ψ(ξ/µR))φ0(x).

Then the following L2 bounds are immediate:

‖Thighf‖H1
µ

. ‖f‖H−1
µ

‖(1− LThigh)(1− ψ(D/(2µR)))φf‖L2 . ‖f‖H−1
µ

This estimates are the elliptic versions of the parametrix bounds. By Sobolev
embeddings they imply bounds of the type of Theorem 4.

(iii) The low frequency parametrix. We first mollify the coefficients of
Lµ on a scale µ−1/2 and note that this does not affect the hypothesis of the
Theorem. We also modify its symbol for large ξ and extend it to R2n so that
it is of size µ2 and so that it satisfies

|∂αx∂
β
ξ l̃µ(x, ξ)| .

{
µ2−|β| if |α| ≤ 2
µ1+|α|/2−|β| if |α| ≥ 3

By Theorem 3 of [7] there exists a parametrix Tlow for l̃µ satisfying

µ
1

n+1‖Tlowf‖
L

2(n+1)
n+3

+ µ1/2‖Tlowf‖L2

. inf
f=f1+f2

µ−1/2‖f1‖L2 + µ−
1

n+1‖f2‖
L

2(n+1)
n−1

(32)
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and the error estimate

µ−1/2‖(1− l̃wµ (x,D)Tlow)ψ(D/(2µR))φf‖L2

. inf
f=f1+f2

µ−1/2‖f1‖L2 + µ−
1

n+1‖f2‖
L

2(n+1)
n−1

(33)

(iv) The complete parametrix In the final step we combine the low and
high frequency parametrices. We set

T = Thigh(1− ψ(D/2µR)φ0 + φ0ψ(D/4µR)Tlowψ(D/2µR)φ0

The estimate (27) follows easily from the similar bounds for Thigh and Tlow. It
remains to consider the error estimate. We have

(I − LT )φf = (I − LThigh)(1− ψ(D/2µR)φf

+ φ0ψ(D/4µR)(I − L̃wµTlow)ψ(D/2µR)φf

+ [L̃wµ , φ0ψ(D/4µR)]Tlowψ(D/2µR)φf

+ (L− L̃wµ )φ0ψ(D/4µR)Tlowψ(D/2µR)φf

For the first two terms we use the error estimates for Thigh, respectively Tlow.
In the third term the commutator has size µ in L2 so we can use the L2 bound
for Thigh. The operator

(L− L̃wµ )φ0ψ(D/4µR)

also has size µ in L2 since the original coefficients differ from the mollified ones
by µ−1. This complete the proof of the inequality (28).

Part B. We prove (29) by duality as in Section 3 of [7]. Let g ∈ W− 1
n+1

,
2(n+1)

n+3
µ .

We decompose φg as

φg = h+ L∗Tφg

where T is the operator of Theorem 7 constructed for the formal adjoint op-
erator L∗. By part A of the theorem we have

(δµ)−1/4µ−1/2‖h‖L2 + (δµ)1/4µ1/2‖Tφg‖L2 + ‖Tφg‖
W

1
n+1 ,

2(n+1)
n−1

µ

. ‖g‖
W

− 1
n+1 ,

2(n+1)
n+3

µ

.

Therefore we can write

|〈φu, g〉| =|〈u, φg〉|
≤|〈u, h〉|+ |〈u, L∗Tφg〉|
=|〈u, h〉|+ |〈Lu, Tφg〉|

.

(
(δµ)1/4µ1/2‖u‖L2 + inf

Lu=f1+f2
(δµ)−1/4µ−1/2‖f1‖L2 + ‖f2‖

W
− 1

n+1 ,
2(n+1)

n+3
µ

)
× ‖g‖

W
− 1

n+1 ,
2(n+1)

n+3
µ

.

This implies the estimate (29).
15



Part C. We begin with an L2 estimate. The principal symbol of

Lµ = Lµ(µ
2 + |D|2)−1/2

is

l̄µ(x, ξ) =
(
− aij(x)ξiξj + µ2W (x) + 2µgjξj

)
(µ2 + |ξ|2)−1/2.

A short calculation shows that

δµ− {<l̄µ(x, ξ),=l̄µ(x, ξ)} . |l̄µ(x, ξ)|

and hence, by Corollary II.14 of [11], we obtain the bound

δµ‖w‖L2 . ‖Lµw‖L2 + ‖w‖L2

If δµ� 1 then the norm of u on the right hand side can be hidden on the left
hand side. Applying this to w = (µ2 + |D|2)1/2v we obtain

(34) δµ‖v‖2
H1

µ
. ‖Lµv‖2

L2

For u as in the theorem we write

u = v + TLµu

The bounds for the second term come from part A. On the other hand,

Lµv = (1− LµT )Lµu

for which we can use the error estimate (28) to obtain

(δµ)−1/4µ−1/2‖Lv‖L2 . inf
Lµu=f1+f2

(δµ)−1/4µ−1/2‖f1‖L2 + ‖f2‖
W

− 1
n+1 ,

2(n+1)
n+3

µ

Then we successively apply (34) and (29) to v, concluding the proof. �

5. The Lp Carleman inequality

In this section we prove Proposition 4. We first conjugate with respect to
the exponential weight. If we set w = eh(ln(|x|))v then we can rewrite (7) in the
form

‖w‖
l2W

1
n+1 ,

2(n+1)
n−1

+ ‖ρw‖L2 . inf
Lhw=f1+f2

‖ρ−1f1‖L2 + ‖f2‖
l2W

− 1
n+1 ,

2(n+1)
n+3

where

Lh = ∆ + V w + h′(ln |x|)2|x|−2 − h′(ln |x|)
[
∇ x

|x|2
+

x

|x|2
∇
]

We want to apply Theorem 7 on dyadic annuli

Aj = {x|2j−1 < |x| < 2j+1}

The rescaling y = 2−jx transforms this set to A0 and the operator Lh to

Ljh = ∆ + 22jṼ + h′(ln(2j|y|))2|y|−2 − h′(ln(2j|y|))
[
∇ y

|y|2
+

y

|y|2
∇
]
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We verify that we can apply Theorem 7 to Ljh. Since h′ varies slowly on the
unit scale we can take the corresponding value for µ to be

µj =
√

22j + h′(j ln 2)2

The coefficients b and c are given by

c = µ−2
j (22jV + h′(ln(2j|y|))2/|y|2), bj = −h

′(ln(2j|y|))
µj

yj
|y|2

and are clearly of class C2 and size O(1). We have

<ljh(x, ξ) = −ξ2 + c, =ljh(x, ξ) = 2b · ξ

Their Poisson bracket has the form

{−|ξ|2 + c, b · ξ} =
h′(t)

µ|y|2
(−|ξ|2 + c) + 2y · ξ

(
1

|y|4
− h′′(t)

h′(t)|y|3

)
b · ξ

− 22jh′(t)

|y|2µ3
j

y · ∇V − 2h′(t)2h′′(t)

|y|4µ3
j

, t = ln(2j|y|)

Then we can apply Theorem 7 with δ comparable to the size of the third term.
For our choice of h we have |h′′| . h′ and also

h′′(t) < 0 =⇒ h′(t) � et

Hence we can choose

δj = µ−3
j

(
22jh′(j ln 2) + h′(j ln 2)2h′′+(j ln 2)

)
Let φ ∈ C∞

0 (R) be a nonnegative function supported in [−1, 1] with

∞∑
j=−∞

φ2(t− j) = 1

and let φj(x) = φ(ln |x| − j). After rescaling, part A of Theorem 7 yields a
parametrix Tj for Lh in Aj with the property that

‖Tjg‖
W

1
n+1 ,

2(n+1)
n−1

+ ‖ρTjg‖L2 + ‖ρ |x|
h′(ln |x|) + |x|

∇(Tjg)‖L2

+‖ρ−1(LhTj − 1)φjg‖L2 . inf
g=g1+g2

‖ρ−1g1‖L2(Aj) + ‖g2‖
W

− 1
n+1 ,

2(n+1)
n+3 (Aj)

.

We define a parametrix for Lh by

T =
∞∑
j=0

φjTjφj

Summing up the bounds on Tj we obtain a bound for T ,

‖Tg‖
l2W

1
n+1 ,

2(n+1)
n−1

+ ‖ρTg‖L2 . inf
g=g1+g2

‖ρ−1g1‖L2 + ‖g2‖
l2W

− 1
n+1 ,

2(n+1)
n+3

.
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We also compute the error

1− LhT =
∞∑
j=0

φj(1− LhTj)φj −
∞∑
j=0

[Lh, φj]Tjφj

Since

[Lh, φj] = O(|x|−1)∇+O(h′(ln |x|)|x|−2)

and

|x|−1 . ρ2 |x|
h′(ln |x|) + |x|

, h′(ln |x|)|x|−2 . ρ2

we can bound the error by

‖ρ−1(1− LT )g‖L2 . inf
g=g1+g2

‖ρ−1g1‖L2 + ‖g2‖
l2W

− 1
n+1 ,

2(n+1)
n+3

.

Now, after the construction of the parametrix the assertion of Proposition
4 follows exactly as the corresponding part of Theorem 7. We repeat the
argument. Split w into

w = v + TLw

Then the second term satisfies the desired bounds while for the first we know
that

‖ρ−1Lv‖L2 = ‖ρ−1(LT − 1)Lw‖L2 . inf
Lw=g1+g2

‖ρ−1g1‖L2 + ‖g2‖
l2W

− 1
n+1 ,

2(n+1)
n+3

.

Lemma 5 allows us to also estimate

‖ρv‖L2

On the other hand by Theorem 7, B rescaled and applied to v in Aj we get

‖φjv‖
W

1
n+1 ,

2(n+1)
n−1

. ‖ρv‖L2(Aj) + ‖ρ−1Lv‖L2(Aj)

and after summation in j,

‖v‖
l2W

1
n+1 ,

2(n+1)
n−1

. ‖ρv‖L2 + ‖ρ−1Lv‖L2

thereby concluding the proof.

6. Equations with gradient potentials

In this section we discuss the corresponding results which are obtained when
short range gradient potentials are added. Thus we consider equations of the
form

(35) (−∆− V )u = Wu+ Z l∇u+∇Zru

with V and W as before. The gradient potential Z = (Z l, Zr) is subject to
the following conditions:
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Assumption A3 (The short range gradient potential). The gradient potential
Z ∈ l∞(Ln) satisfies

(36) lim sup
j→∞

‖Z‖Ln({x|2j≤|x|≤2j+1}) ≤ δ

In addition for some R � ‖V ‖L∞ the low frequency part S<RZ of Z satisfies
the conditions in Assumption A2.

The Ln assumption is natural due to scaling. The low frequency condition
is also natural, since on the characteristic set of −∆ − V the frequency has
size O(1), and at frequency one there is no difference between the potential
and the gradient potential. Under these conditions we have

Theorem 8. Assume that V , W and Z satisfy Assumptions A1,A2 respec-
tively A3. Let τ1 > τ0 and assume that δ is sufficiently small. Let u ∈ H1

loc(Rn)

satisfy (3) and (1 + |x|2)τ1− 1
2u ∈ L2. Then u ≡ 0.

By scaling we obtain the following result on the absence of embedded eigen-
values:

Corollary 9. Assume that V , W and Z satisfy Assumptions A1,A2 respec-
tively A3 with δ = 0. Then there are no embedded eigenvalues for the operator

−∆−W − Z l∇−∇Zr

The problem of introducing gradient potentials has long been considered
in the context of the unique continuation and the strong unique continuation
problems for the same operators as here. There the key breakthrough came in
Wolff’s work [13] who proved that Z ∈ Ln suffices for the unique continuation
property. He also obtained the same result for strong unique continuation
but only in low dimension. Later his ideas were used by the authors in [5] to
complete the picture for strong unique continuation in high dimension, working
with gradient potentials Z ∈ l1Ln . This latter paper is more relevant to the
present context as it provides Carleman estimates in largely the same format
as here.

Ideally, one would like to include matching gradient estimates to our Lp

Carleman inequalities. This would solve the problem but unfortunately cannot
work. Wolff’s contribution was to show that by osculating the weight one can
considerably improve the bounds for the gradient term in the equation. Thus
the choice of weights ultimately depends both on the gradient potentials and
on the solution u. In our context this argument is needed only at spatial scales
where the frequency of the conjugated operator is larger than one. Elsewhere
the gradient does not contribute much to the problem. Thus we are led to
consider perturbed weights

(37) ψε,τ (x) = hε(ln |x|) + k(x)

where k is not spherically symmetric but is small in an appropriate sense. The
assumptions on k are summarized in what follows:
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(38)

 supp k ⊂ {|x| ≤ τ 2}

|x|α|∇αk(x)| � h′(ln |x|) α = 1, 2, 3

Part of the Carleman estimates below describes what happens in elliptic
regions of the conjugated operator Lφ. To select (part of) this elliptic region
we introduce a pseudodifferential operator χ>R which selects the region

E = {|x| & τ 2, |ξ| & R}

Here both the truncation in x and in ξ are done on the dyadic scale, while R
is chosen sufficiently large so that E is away from the characteristic set of Pφ.
Then the Carleman estimates are as follows:

Theorem 10. Assume that the long range potential V satisfies A1. Let Z
satisfy A3 with

‖Z‖l∞Ln + ‖S<RZ‖l∞X+〈x〉−1L∞ ≤ 1

Then for each 0 < ε ≤ ε0, τ large enough, τ1 > τ0 and v which satisfies
(1 + |x|2)τ1− 1

2v ∈ L2 there is a weight perturbation k satisfying (37),(38) so
that the following estimate holds with constants independent of 0 < ε ≤ ε0,
τ > τ0:

‖eψε,τ (x)v‖
l2W

1
n+1 ,

2(n+1)
n−1

+ ‖χ>Reψε,τ (x)v‖H1 + ‖eψε,τ (x)ρv‖L2

+‖eψε,τ (x)Z l∇v‖
l2W

− 1
n+1 ,

2(n+1)
n+3 +χ>RH−1

+ ‖eψε,τ (x)∇Zrv‖
l2W

− 1
n+1 ,

2(n+1)
n+3 +χ>RH−1

. inf
f1+f2=(−∆−V )v

‖eψε,τ (x)ρ−1f1‖L2 + ‖eψε,τ (x)f2‖
l2W

− 1
n+1 ,

2(n+1)
n+3 +χ>RH−1

(39)

The key feature of the theorem is that the weight ψε,τ (x) depends both on
the potential Z and on the solution v itself. Once this result is established,
it leads as before to the conclusion that solutions to (35) must be compactly
supported. Then (a variation of) Wolff’s weak unique continuation result [13]
takes over and implies that v must be identically 0. We also refer the reader
to [5], where the estimates are formulated in a way similar to this paper, and
where both left and right gradient potentials are considered.

The proof requires the following steps:
(i) Conjugate the equation with respect to the exponential weight and set

w = eψε,τv. This elliminates the exponential weight from the equation and
replaces the operator −∆− V by its conjugated operator Lψε,τ .

(ii) prove the L2 estimate for v uniformly for all weights φε,τ with k satisfying
(38). This is done exactly as in Section 3. The size of the perturbation k is so
that its effect is negligible in this computation.

(iii) prove the estimate (7), again uniformly with respect to all choices for
k. This repeats the arguments in Section 5 with no change.
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(iv) Add in the H−1 and H1 norms, thus proving (39) for Z = 0. This is
done in an elliptic fashion, by constructing an elliptic parametrix for Lφ away
from its characteristic set. For this the norms involving ρ are used only to
estimate errors, while the Lp norms are all used via L2 norms and Sobolev
embedding. The standard pseudodifferential calculus can be applied since the
coefficients of Pφ are smooth on the dyadic scale in x.

(v) observe that the L2 estimates allow localization on the dyadic spatial
scale. Thus we separate the estimate into two regions, {|x| < τ 2} and {|x| >
τ 2/2}.

(iv) show that within the first region it is possible to choose the weight
k so that the estimate with Z included holds. This is the part that uses
Wolff’s osculation lemma, and it is explained in detail in [5]. Our case here is
somewhat simpler than in [5] since in the region {|x| < τ 2} we have uniform
convexity of the weight, h′′ ≈ h′. Also the Lp bound here is stronger than in
[5], which only makes things better.

(v) prove the estimate in each dyadic component of the second region {|x| >
τ 2/2} with Z included. This starts from the estimates without Z and uses only
elliptic bounds. We outline the argument. Since we use dual norms on the left
and on the right of (39), it suffices to do it for the Z∇ term. The bounds for
∇Z will work out similarly but in dual spaces.

We split Z into a low and a high frequency part,

Z = Z<R + Z>R

and the gradient also,

∇ = ∇<R/2 +∇>R/2

Using the L
n+1

2 bound on Z<R/2 we can directly estimate the contribution
of Z<R∇<R/2 which is located at low frequency.

The contribution of Z>R∇<R/2 lies at high frequency, so it suffices to bound
it in H−1. We can actually bound it in L2,

‖Z>R∇<R/2w‖L2 . ‖Z‖Ln‖w‖
W

1
n+1 ,

2(n+1)
n−1

For Z∇>R/2 we can use the H1 bound to write

‖Z∇>R/2w‖
L

2n
n+2

≤ ‖Z‖Ln‖χ>R/2w‖H1

and conclude by Sobolev embeddings.

7. Asymptotically flat metrics

In this section we describe how the results on the absence of embedded eigen-
values extend to variable coefficient asymptotically flat metrics. We replace
the Laplacian with a second order elliptic selfadjoint operator

L = −∂jajk∂k + i(bj∂j + ∂jb
j) + c
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where the coefficients a, b, c are real. We assume that P is flat at infinity in
the sense that (see Definition 1) :

ajk, bj, c ∈ C2
〈x〉 ⊂ L∞

lim sup
|x|→∞

|x||∇aij| ≤ δ0,

lim sup
|x|→∞

|b(x)|+ |x||∇b(x)| ≤ δ1, lim sup
|x|→∞

|c(x)|+ |x||∇c(x)| ≤ δ2
1

(40)

We also slightly strenghten the assumption A3 to make it stable with respect
to changes of variable:

Assumption A4 (The short range gradient potential). The gradient potential
Z ∈ l∞(Ln) satisfies

(41) lim sup
j→∞

‖Z‖Ln({x|2j≤|x|≤2j+1}) ≤ δ

In addition 〈D〉−NZ satisfies the conditions in Assumption A2 for some N
sufficiently large.

Then we have

Theorem 11. Assume that W , V and Z satisfy Assumptions A1,A2 and A4
with small enough δ, that τ1 > τ0 and that the coefficients of P satisfy (40)
with δ0 and δ1 sufficiently small. If u ∈ H1

loc(Rn) solves

(42) Lu+ V u = Wu+ Z l∇u+∇Zru

and (1 + |x|2)τ1− 1
2u ∈ L2 then u ≡ 0.

The assumption of Theorem 11 are not scale invariant. For the following
straightforward consequence we rescale the operator.

Corollary 12. Assume that the coefficients of the operator P satisfy (40) with
δ0 sufficiently small. Let W , Z be as in Assumptions A2, A4 with δ = 0. Then
there exists C > 0 so that P +W has no eigenvalues λ > Cδ1.

The proof follows the same outline as in the constant coefficient case. We
describe the steps in what follows, and discuss the necessary modifications.

First one needs to augment (40) to gain also the relation

(43) lim sup
|x|→∞

|a(x)− In| . δ0

This is achieved using a change of coordinates somewhat similar to the one
introduced in [5]. Due to (40), within each spatial dyadic region this can be
achieved with a linear change of coordinates. But from one dyadic region to
the next these linear maps differ by O(δ). Hence gluing them together yields
a nonlinear function χ which achieves (43) and has the regularity

|∂αχ(x)| . δ1|x|1−|α| |α| ≥ 2
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It is easy to verify that such a change of coordinates does not affect δ1 by more
than a fixed factor.

If χ were linear then the Assumption A1 on V would rest unchanged. As it
is, we have to modify τ1 by O(δ0), which is suitably small.

Finally, the operator L is still L2 selfadjoint in the new coordinates but with
respect to the measure given by the Jacobian J of the change of coordinates.
This implies that JL is selfadjoint with respect to the Lebesque measure. This
requires replacing V and W by JV and JW , which has no significant effect
on our assumptions.

Once (43) is gained the Carleman estimates (7) in Proposition 4 remain
valid with essentially no change. The only minor modification that is needed is
concerned with what happens within a compact set, where we have no control
over the geometry of the coefficients aij in the principal part. But this can
be easily addressed by adding some additional convexity to the exponential
weight within this compact set. Precisely, a weight of the form

h(t) = τeλt

would suffice for bounded t provided λ is large enough.
The L2 Carleman estimates are established using integration by parts, and

do not require any bounds on the second derivatives of aij.
The Lp Carleman estimates are derived from the L2 ones exactly as in

Section 5. For comparison purposes, we recall that the Lp estimates proved in
[7] and [5] only require bounds on the first derivatives of aij. This is because
the spatial localization which is allowed by the Carleman estimates is on a
scale on which one is allowed to freeze the aij modulo negligible errors. The
same applies here for |x| . τ 2 (which corresponds to et . τ 2). However,
beyond this threshold the rescaled skewadjoint part becomes very small and the
problem is close to the spectral projection estimates respectively the Strichartz
estimates for wave equations with C2 coefficients. The spatial localization scale
is h′(ln(|x|))− 1

2 |x| while the frequency, instead of decaying, remains O(1) due
to the long range potential V . Hence the difference between P and its frozen
coefficient version is O(h′(ln(|x|))− 1

2 ), which is more than the constant ρ2 in
the L2 estimates. This is why we need also bounds on the second derivatives
of aij, as required by pTheorem 7.

Finally, the gradient potential can be added in as explained in the previous
section.

8. Appendix

We consider a dyadic partition of unity in Rn,

1 =
∞∑

j=−∞

χj(x)
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where χj(x) = χ0(2
−jx) is supported in |x| ≈ 2j. We also consider bump

functions χ̃j(x) = χ̃j(2
−jx) with slightly larger support, which equal 1 within

the support of χj such that χ̃jχ̃l = 0 if |j − l| ≥ 2.

Lemma 13. Let 1 < p <∞ and − n
p′
< s < n

p
. Then

‖u‖pW s,p ≈
∑

‖χju‖pW s,p

Proof. Let (uj) be a sequence in W s,p. Arguing by duality it suffices to prove
the bound

‖
∞∑

j=−∞

χjuj‖pW s,p .
∑

‖uj‖pW s,p

With 〈D〉 = (1 + |D|2)1/2 we have

‖
∞∑

j=−∞

χjuj‖W s,p = ‖〈D〉s
∑

χjuj‖Lp

We write

〈D〉s
∞∑

j=−∞

χjuj =
∞∑

j=−∞

χ̃j〈D〉sχjuj +
∞∑

j=−∞

(1− χ̃j)〈D〉sχjuj

The terms in the first sum have almost disjoint supports and are easy to
estimate. It remains to consider the second sum. We use bounds on the kernel
of 〈D〉−s and its derivatives to estimate

|(1− χ̃j)〈D〉sχjuj(x)| . ‖uj‖Lp2
(s+ n

p′ )j(2j + |x|)−n−s.

Then we conclude using

‖
∞∑

j=−∞

aj2
(s+ n

p′ )j(2j + |x|)−n−s‖pLp ≈
∞∑

j=−∞

|aj|p s > −n
p′

�

This is the main ingredient in the proof of

Proposition 14. Let δ > 0. Suppose that W ∈ X (see Definition 2). Then
we have

lim
α→0

‖W‖X(B(0,α)) = 0

Proof. We assume that n ≥ 3, the case n = 2 is similar. The result follows
from the estimate

(44) ‖W‖X ≈ ‖χjW‖
l
n+1

2 (X)

24



For one direction we write

|〈Wu, v〉| = |
∑

〈χjWχ̃ju, χ̃jv〉|

.
∑

‖χjW‖X‖χ̃ju‖
W

1
n+1 ,

2(n+1)
n−1

‖χ̃jv‖
W

1
n+1 ,

2(n+1)
n−1

. ‖χjW‖
l
n+1

2
‖χ̃ju‖

l
2(n+1)

n−1 W
1

n+1 ,
2(n+1)

n−1
‖χ̃jv‖

l
2(n+1)

n−1 W
1

n+1 ,
2(n+1)

n−1

. ‖χjW‖
l
n+1

2
‖u‖

W
1

n+1 ,
2(n+1)

n−1
‖v‖

W
1

n+1 ,
2(n+1)

n−1

For the other, we consider separately sums with j even and with j odd:∑
j even

〈χjWuj, vj〉 =
∑
j even

〈χjWχ̃juj, χ̃jvj〉

= 〈W
∑
j even

χ̃juj,
∑

χ̃jvj〉

. ‖W‖X‖
∑
j even

χ̃juj‖
W

1
n+1 ,

2(n+1)
n−1

‖
∑
j even

χ̃jvj‖
W

1
n+1 ,

2(n+1)
n−1

. ‖W‖X‖uj‖
l
2(n+1)

n−1 W
1

n+1 ,
2(n+1)

n−1
‖uj‖

l
2(n+1)

n−1 W
1

n+1 ,
2(n+1)

n−1

�
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