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CARLEMAN ESTIMATES

FOR THE LAPLACE-BELTRAMI EQUATION

ON COMPLEX MANIFOLDS

by ALDO ANDREOTTI and EDOARDO VESENTINI (1)

Let P(^, D) be a differential operator defined in an open set Q. ofR", with C00 coeffi-

cients. Let u be a 0°° function such that P(^, D)u has compact support in Q. Assume

that for any such function u we have an inequality of the type

j>° u^dx^cfe^^^x, D)u ^dx

for any T>T() and where 0 is a positive 0°° function on 0. Then it follows that, on the

support of u, 0 does not exceed the maximum of 0 on the support of P{x, D)u. An

inequality of the above type is an inequality of Carleman's type [8]; its essential feature

is in the presence of the exponential weight factor which permits to give information

on the support of u in terms of the support ofP(A:, D)u, This remark which we learned

from a paper of L. Hormander [13] is at the origin of the present paper.

In the first part we establish a general criterion for the vanishing of cohomology

with compact support on a complex manifold X, the coefficients being chosen in a

locally free sheaf, <y, i.e. in the sheaf of germs of holomorphic sections of a holomorphic

vector bundle E on X.

This is done by the study of the Laplace-Beltrami operator and by use of an

inequality of Carleman's type. It turns out that the role of the exponential factor is

nothing else than the choice of a metric in the fibres of E. The possibility of a large

freedom of choice in this metric replaces the parameter T of Carleman's inequality.

In the second part of the paper we show how the general theory gives the vanishing

theorems for ^-complete spaces established elsewhere by other methods [2]. Here the

presence, on the manifold, of a 0°° positive function 0 whose Levi form has a given

signature, gives the desired freedom in the choice of the metric on the fibres of E. The

Carleman inequality is established by using a generalized form of an inequality given

by K. Kodaira [14] using a method of Bochner [23].

(1) This work has been supported in part by AF - EOAR Grant n° 63-29. During the final phase of the
preparation of this paper the second named author has been supported by the National Science Foundation through
a research project at Harvard University.
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82 A L D O A N D R E O T T I AND E D O A R D O V E S E N T I N I

The last part of the paper gives, we hope, a sufficiently detailed indication of

how to apply the previous results to establish the finiteness theorems for ^-pseudoconvex

and ^-pseudoconcave manifolds [2]. Since we deal with cohomology with compact

support, we are able to avoid the use of the approximation theorem which was, on the

contrary, the essential point in establishing the results for the cohomology with closed

supports in [2]. Moreover, for ^r-pseudoconcave manifolds we gain additional infor-

mation (by Serre's duality [20]), namely that the groups IP-^X, ^(E)) have a topology
of a (separated) Frechet space.

The case of a general complex space (in the sense of Serre) and of the cohomology

on it with values in any coherent sheaf is not treated here. We believe that the methods

developed in [14] will be sufficient for the reader to see how to extend the above result

to cover this more general case (the starting point being always the case of a locally
free sheaf on a manifold).

We are indebted to B. Malgrange for many valuable suggestions and, in particular,

for the idea of reducing the theorem of finiteness to a classical theorem of finiteness of

L. Schwartz [17]. E. Calabi gave us the idea of the proof of Lemma 18. M. K. V. Murthy

and B. V. Singbal of Tata Institute of Fundamental Research helped us in learning the

theory of topological vector spaces and the works ofL. Hormander and A. Grothendieck.

To all of these we wish to express our sincere thanks. The results of this paper
have been announced in [5].

§ i. Preliminaries

i. a) Let X be a complex manifold and let E-^X be a holomorphic vector

bundle over X with fibre (T. Let ^=(U),^ be a coordinate covering of X such

that on each U,, E|U, is isomorphic to the trivial bundle. If d\. : U.xC^-^E are

these trivialisations of E, we denote by

^.:U,nU^GL(77z,C)

the holomorphic cocycle defined by the conditions:

^-loo^tey=te^•)

where ^ denote the fibre coordinates over U,.

The dual bundle E*->X of the given bundle E is thus defined on the same
covering ^ by the cocycle t

e~•
l
.

In particular the tangent bundle 0 will be defined in terms of a choice of local

coordinates (4, . . ., ^n) on U, by the cocycle J,—a(^)/a(^.), and the dual bundle ©*
by the cocycle ^J-1.

b) A C00 form of type Q&, q) with values in the bundle E is a C°° section of the

bundle E®Q^®Q^ where ©^ stands for A©* and where the bar over ©*3 denotes the

complex conjugate of ©^. Locally on U, such a form is given by a column vector
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LAPLAGE-BELTRAMI EQUATION ON COMPLEX MANIFOLDS 83

^==
t
^^ . . . ^ (p^) whose components are G00 forms of type (p, q) on U^. In U^nU^

we will have

^i^Wj-

Let ^ denote the exterior differentiation with respect to the complex conjugates of the

local holomorphic coordinates. If J^(E) denotes the sheaf of germs of C°° forms of

type (p, q) with values in £5 then ^ defines a sheaf homomorphism

a :j^(E) -^^'^(E)

because E is a holomorphic vector bundle.

If ^(E) is the sheaf of germs of holomorphic sections of E®©*^ we get, by the

Dolbeault theorem, an exact sequence

o ->^(E) -.j^0-^^1-^ . . .

and therefore the isomorphism

H^(X,^(E))^H^(X,E)

where 0 is the family of closed or the family of compact subsets ofX and where H^(X, E)
00

denotes the homology of the complex © F^(X, J^(E)).

In the sequel the space F^(X, J^(E)) will be denoted by C^X, E) if 0 is the

family of closed sets, and by ^^(X, E) if 0 is the family of compact sets.

2. a) We introduce on the fibres of E a hermitian metric. This will be given

by a hermitian scalar product h{v, w), v, wen~
1
^), which depends differentiably on

the base point ^.

Locally on U^, if^, ̂  are the fibre-coordinates ofv and w, h{u, w) will be expressed

in the form
h(y, ̂ -)=^,^

where h^ will be a positive definite hermitian matrix, whose elements depend diffe-

rentiably (i.e. C°°) on ^eU,.

For this local representation, the consistency conditions are given in U^nUy by

( i ) ^S-A^--
Consider in U^ the matrix of ( i , o) forms

k=h^^

where S is the exterior differentiation with respect to holomorphic coordinates.

From ( i ) we deduce that

^l^==lj—^liieij

and this means that {/J are the local components of a ^-connection in the bundle E.
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84 A L D O A N D R E O T T I AND E D O A R D O V E S E N T I N I

The obstruction for this connection to be holomorphic is given by the curvature

form

(2) s,==~8l,

for which the consistency conditions are now on U^nU :

(3) ^i=W^

In particular, if E is a line bundle (m= i) then the curvature form s== ^<9 log h^

is a global (i, i) form on the base.

b ) The datum of a ^-connection in the holomorphic bundle E enables us to consider

for any C00 section of E the absolute differentiation with respect to local holomorphic

coordinates. If t={tA are the local components of a section of E,

t,=^e^ in U,nU,,

and if /, are the local components of the ^-connection, then the absolute differential Vt

of t has the local components

(V^.=^,+U-,

with the consistency conditions

(V^=^(V^.

The absolute differentiation is therefore a linear map

v : F(X, J^(E)) -> F(X, ^(E®Q*)),

.o/ denoting the sheaf of differentiable sections.

If {Aj are the local components of a hermitian metric on the fibres of E then

U== /^-1
 ShA are the local components of a ^-connection on E. Analogously in the

antiholomorphic bundle E the forms [l,= h^^h^} are the local components of a

^-connection.

On the dual bundle E* it is natural to assume {^r1} as metric on the fibres and

correspondingly {—^A/A^1} as ^-connection. We have the corresponding formulae

for the bundle E* passing to the complex conjugate forms.

Given any tensor product of holomorphic and antiholomorphic bundles with

corresponding ^ and ^-connections, the absolute differentials V and V for the sections

of that tensor product are then defined in a natural way.

We remark that the choice of a " metric 5? connection has the advantage that the

absolute differentials of the metric tensor {Aj are zero:

Vh =o, VA = o.

3. a) In particular, a hermitian metric on the fibres of the holomorphic tangent

bundle © will be the datum on X of a hermitian metric

ds2^2^g^d^
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LAPLACE-BELTRAMI EQUATION ON COMPLEX MANIFOLDS 85

The corresponding ^-connection will be given by

c^-S^ag- w^.
y P

The curvature form is given by

a^=L^^°A^
af^P

where L^=—^
^CT

In this case one can consider the torsion tensor

S3 —^C3 —C3 \^ap—^^ap ^paj

whose vanishing represents the necessary and sufficient condition for the hermitian

metric to be a Kahler metric.

b) It is more convenient to operate in the case of the tangent bundle with a

symmetric connection in which the metric tensor has absolute differential zero. This

is the corresponding riemannian connection whose components are

pa - 'apfc ,^l^~2g fa^ '^ i 5

P" -r^ _i ap^PP ^YP<
i^~L^-^ \^ ^p^

r-;-^o.

The local forms of this connection are thus given by

i^Sr^+Sr;^; nj=o;
Y y

Qj-Sr^^; n;==o|.

Let il denote the matrix of i-forms Q*; then the curvature form is given by

rfQ+f}A^

whose components are denoted by

VJ^d^^d^ (ij, k, l== i, . . ., TZ, T, . . ., 7z).

If the metric is a Kahler metric, then

(4) <%=I^, L^=R^.

c ) If {^a} (<2== i, . . ., m) is a section of E, and if we take covariant derivatives,

we see that the covariant derivatives V^Vy^ and V^V^ are related by the (( Ricci identity95

(v,v,-v,v,)r=^/.
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86 A L D O A N D R E O T T I AND E D O A R D O V E S E N T I N I

4. a) Let X be a complex manifold of complex dimension n, E a holomorphic

vector bundle on X, h = {h,} a hermitian metric on the fibres ofE and let ds
2
 == ̂ g^d^d^

be a hermitian metric on X.

On the space C(X, E)=@C
pq

(X, E) we can define a number of local (1) operators:
a) the operator

^ : C^(X,E) -^G^-^X.E)

defined before, with the property c)8==o;

(B) the isomorphism

* : G^(X, E) -> C^-^-^X, E)

locally defined, with the evident block indices notation, by

(5) *<P=^ det{§^sgn(MA)sgn{GB)^d^^d^

the constant c being so chosen that

**(p=(--i)^+?cp

(see e.g. [22]).

The datum of a hermitian metric on the fibres ofE defines an " anti-isomorphism "

of E onto the dual bundle E\ If ^ is the fibre-coordinate over U, on E, it is given

by ^%
This anti-isomorphism extends to an anti-isomorphism

# :C^(X,E)->C^(X,E*),

which is defined locally by

{#^i-^

and which commutes with the operator *.

Using * and # we obtain:

y) the operator

6 : C^X.E) -^C^-^X.E),

defined by 6 = — # ~
l
^ ^ # ^

we have 00 --== o.

Using S and 0 we define the Laplace-Beltrami operator

D-^e+ea : C^X.E) —C^X.E) .

The operators 6 and Q depend on the hermitian metric on X and on the metric

along the fibres of E. To emphasize this fact, we may write occasionally 6^ and n?

for these operators.

It follows from the very definition of 6, that for any cpeC^X, E):

(6) a^*==(—i)^*#o^ ^#^={—,)P+^-^#^

(1) We call an operator A on C(X, E) local if, for any (peC(X, E), support of Ay c support of (p.
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LAPLACE-BELTRAMI EQUATION ON COMPLEX MANIFOLDS 87

Hence

(7) D E * * # = * # D E -

b
)
 L

^ ^=-\/~^g^d^^d^

be the exterior form associated with the hermitian metric on X. Let

L : G^(X, E) -> Cy^+^X, E)

be the linear mapping locally defined by

(L9)?=COA9?.

We shall consider also the linear mapping

A=(—i)^*L* : C^(X, E) —(y-^-^X, E).

Let e{s,)^ be the local vector form locally defined by

M^^-S/^^A^.
It follows from (3) that

^^^•(^P,) on UnU^..

This allows us to define a linear mapping

e{s) : C^(X, E) -> C^^-^X, E).

Let i{s) : C^(X, E) -^ C^-^^-^X, E)

be the linear mapping defined by

^)=(—I)P+^(^.

c ) Given 9, ^eC^X, E) we can construct the global scalar (n, ?z)-form

t^^^#^.

If rfX is the volume element in the considered metric on X we will denote this
form by A(<p, A)rfX. One has

A((p ,^)=A(^(p) , A((p,cp);>o

Moreover A(cp, y)=o if and only if 9=0. We shall call A(cp, op)^2 the /^^A of the
form 9.

In the space L^(X, E^cpeC^X, E) | f^A(^ ^)dX<oo}

the scalar product (9, ^)== f A(9, ^)rfX
j x

is defined and gives L^(X, E) the structure of a complex prehilbert space. One verifies

immediately that for (peC^(X, E) we have

AE*(*#?, *#<?)==A^, 9).

-57.9



^ A L D O A N D R E O T T I AND E D O A R D O V E S E N T I N I

If 9, ^ are forms of suitable degree in C^X, E) one has the formulae:

A(L9,^)=A(9,A^),

A(^)9,^)=A(9,z(^).

If yeC^^X^E) , ^eC^-^X.E) one has

^cpA* # ^ — ^ A * ̂ 69=^^* #9).

Thus, by Stokes5 theorem we have that, if Supp 9 n Supp ^ is compact, then

(8) (B 9,^) =(9, 6^).

If 91, cp^CWX, E) and if Supp 9^0 Supp 93 is compact, then

(a?i,92)-(?i, D 92)-(^pi ̂ 92)4-(691,693).
We will be concerned with forms with (locally) Lipschitz coefficients. We observe

that for such a form 9, ^9 and 69 are defined almost everywhere. Since Stokes5 theorem

holds for Lipschitz forms, (8) remains valid also in this case.

d ) IfE', E" are two holomorphic vector bundles on X of rank m\ m" respectively

and if {A,'}, [h['} are hermitian metrics on the fibres of E', E" then [h[®h['} is a hermitian

metric on the fibres of E'O^E". The corresponding connections and curvature forms

are then represented locally by

l^l^+l^

Wm"+^^f

where /,', /,", ^, s [ ' are the connections and curvature forms corresponding to h\, h\'

respectively and where 1^ denotes the identity matrix of rank r.

§ 2. W-ellipticity of vector bundles

5. The spaces W^(X, E). — a) In the space ̂ (X, E) we introduce the hermitian

sesquilinear non-degenerate positive form

^(9, ^)=(9, ^+(B9, ^)+(69, HY

We denote by

^(X.E) the completion of ^(X, E) with respect to the norm |[9 | | =(9, 9)1/2;

W^(X, E) the completion of ^(X, E) with respect to the norm N(9) ==^(9, 9)l/2.

The canonical map W^(X, E) -> ^f^(X, E) is an injective map, as it follows from a

remark of K. 0. Friedrichs (cf. e.g. [10]). The elements of W^(X, E) are those

elements 9eJS^P^(X, E) which admit simultaneously 8 and 6 in the generalized sense

of Friedrichs; i.e. there exists a Cauchy sequence (9^) C^^(X, E), converging to 9

in ^^(X, E), such that the sequences (^pj and (69,,) are also Cauchy sequences

in JSf^^X.E) and ^'^(X, E) respectively.
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LAPLACE-BELTRAMI EQUATION ON COMPLEX MANIFOLDS 89

The extension of the operators ^ and 6 to W^(X, E) will be denoted by the same

letters.

Consider now the dual bundle E* endowed with the metric {^T'1}.

We obtain from (6) and (7) the following

Proposition 1. — The anti-isomorphism * # defines an isometry of oS^^X, E) onto

^n-p.n-^x, E") which maps W^(X, E) isometrically onto V^-^-^X, E').

In W^X, E) we introduce the Dirichlet sesquilinear hermitian form

^(9,^) =(^9,^)+(69, e^).

Then ^(9, (p)^2 is a seminorm on W^(X, E).

Definition, — We say that the vector bundle E is W-elliptic in the degree {p, q) (or

briefly "W^-elliptic) if there exists

a hermitian metric on X,

a hermitian metric on the fibres of E,

a constant c>o,

such that for every (pe^^X, E) we have the inequality:

(9) (9. 9)^(9. ?)•

IfE is W^ elliptic, then the Dirichlet seminorm ^(9, (p)^2 is a norm on W^ and defines

on it the same topology as the natural norm N(9).

Conversely, if the Dirichlet seminorm ^(9, (p)^2 defines in W^(X, E) the same

topology as the natural norm N(9), then E is W^-elliptic [21].

Since, by (6) and (7)

(10) A^Ca* # 9, "a* # 9) + AE^* # 9, OE.* # 9) =W^ ^9) + AE(6E9, 6^9)

for all 9eCP?(X3 E), then the anti-isomorphism * # transforms the Dirichlet seminorm

in W^(X, E) onto the Dirichlet seminorm in W^^'^X, E*). This proves the

following

Lemma 2. — IfE is Vf^-elliptic (with respect to a metric {/?,}), then E* is W^^-3

elliptic (with respect to the metric {^-1}).

b) From the Riesz representation theorem one obtains the following

Theorem 1. — If the vector bundle E is Vf^-elliptic, then, for any a e ̂ m (X, E), the equation

D^=a

has one and only one weak solution .veW^X, E)

(i.e. for any z/eW^X, E) one has

(8x^u)+{Qx,Qu)=(^u)).

Moreover, since D represents a strongly elliptic system, it follows from the

regularization theorem (see e.g. [16]) that if aeJS^X, E) nG^X, E) then

A:eW^(X,E)nC^(X,E),

321
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90 A L D O A N D R E O T T I AND E D O A R D O V E S E N T I N I

and one has Q,y==a

in the classical sense.

6. The case of a complete metric on X. — a) Let o be a point of X and let d{p, 6)

be the geodesic distance from o to peX in the fixed hermitian metric on X. Let

^{c)={xeX\d{x,o)<c};

one has the following useful

Propositions.—There exists a constant A>o such that if o<r<R andifB(R) is relatively

compact in X, then, for any a>o and any cpeC^X, E), one has the inequality (which will be

referred to as Stampacchia's inequality):

(") 11^112B(.)+11^11^^1|D9||2B(K)+^+^^

The proof of this proposition has been given in [3] in the case of a line-bundle.

Although the same proof holds, with some slight changes, in the general case [21], we
reproduce it here for the sake of completeness.

We start with a lemma, which has been established in [3] (see also [21]).

a) The distance ^{x)=d{o,x) is a locally Lipschik function. At points where the

derivatives exist, we have in terms of local real coordinates,

..^p ^p
^-^-^n {n=dim,X)

(B) A straightforward calculation yields the following:

There exists a constant CQ>O {which depends only on the dimension of X) such that, at

any point xeX, for any scalar form u and for any form v with values in E, one has

A{u/\v, u^v)<^CQ\u\2A(v, v),

where \u\ denotes the length of the scalar form u= S m i dxil^ Adx1? expressed bv
ii<...<ip 1 ' " P ' f j

H^s^ , u 1 1 - - - 1 ? .1 1 1 1 • - • ip

y) We choose a C00 function [L{t) on R, with the following properties

0^[L{t)^l

^ l i for t^i

^-(o for .>2,

and we set M=Sup -
[ L .

Civ

We consider the function w^)^^^4'1^2^
\ R—r /
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for any choice of R>r>o. It is a real locally Lipschitz function, and satisfies the
following conditions:

o<^w{x)<i

w (x)==[1 for xeK^
' o for ^eX-B(R),

dw\ M
r fp l—R—r"

It follows from the first condition that, for every form (peC^X, E) and at any
point ^eX,

( I 2) A(^9, ^9)_<A(9, 9).

From the third condition and from a) we see that, where the derivatives ap exist
^

I J 12 V ^
w

 ̂
w
 ^ M2

\dw\2=^-——<2n.-,——
^^- "(R—r)2 '

We get from this and from (B) that for every cpeC^(X, E), we have almost
everywhere in X:

(^ A(^A<p, a^A9)^ ̂ ^A(9, 9),

/ \ A 2^ M2

(I4) A(a^A*9, a^A*9)^-_——_A(<p, <p).
(-K—r)

8) If a is any locally Lipschitz (j&, ^)-form with values in E and with support
contained in B(R), then

^5) (^ ^a)B(R)+(6(p, 6a)B(R)=(Dy, a)B^.

Letting 0=^9, we have almost everywhere

()QL=W
2
()(p-}-2W()w/\^, Q^=W

2
Q^—*(2W^A*Cp).

Substituting in (15) we have

(16) ll^lli(R)+11^111^

KD?, ^29)B(R) +1(^9, 2Wa^A9)B(R)|+|(69, *(2^awA*9))B^|.

On the other hand, the Schwarz inequality gives the following

KD^^^^l^^ll^ll^+^HDyll^)) for every (T>O,

l(^2wawA?)B(R)l^^{||^9||l(R)+4||^A9|||(R^

1(69, *(2^^A*9))B(R)|^ ̂ {||^e9[||^+4ll ̂ A*9|[^}.

^3



92 A L D O A N D R E O T T I AND E D O A R D O V E S E N T I N I

Substituting in (16) we have

11^9|I^R)+IM?||1(R)^^1|D9||1(R)+^||^1^

It follows from (12), (13), (14) that

IWIW^IHII(B).
•» «-Q

^7) II^Ay||^^^|[y|[^,

ific ]V[^

(I8) ll^^ll^^^^ll^ll^,

Thus, since w^o on B(R), w==i on B(r), we obtain (n) with A=;i6^M2.
t Q..E.D.

b) Let 9eJS^?(X, E) be a form which admits a ^eJS^-^X, E) and a

ecpeJS^-^X, E) generalized in the sense of distributions, i.e. such that

(9, 6z/)=('a<p, u) for all ^e^^+^X, E),

(9, 'ay)=(6(p, y) for all ye^^-^X, E).

^ Lemma 4. — If the hermitian metric on X is complete, then (p(=W^(X, E), and ^9, 69 are

the () and 6 of 9 m ^A^ j^ro^ ^7^ .̂

Proo/: — As in Proposition 3 we consider the open balls B(R) and B(r) of radii

R=2v, r=v (v== i, 2, . . .) , and we construct the function

/pW+R-2r\ /pM\

"•'̂ -^—j^H
Let 9 ,̂ be the form ^==w^;

the support of 9^ belongs to B(2v).

Since on B(\/), w^= i, we have

lly—^IMKi—^pll^lHlx-BM-
Therefore lim | [ 9 — ̂  | [ == o.

On the other hand we have

^==w^9+^A9, 69^=^69—*(B^A* 9)

in the sense of distributions.

Hence, by (17) and (18)

||^--^J|^||(l-^9||+^||9||B(2v)^|l^||x-B(v)4-^||9|lB(2v)-0,

||e9-99j|^||(i-^)e9||+^[9||^<||69|[x_BM+^||9|lB(2v)->o

with c==M\/2ncQ.
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LAPLACE-BELTRAMI EQUATION ON COMPLEX MANIFOLDS 93

Let (U) be a locally finite open coordinate covering of X, such that only a

finite number of U, has a non-void intersection with Supp ̂ . We denote by V, open
sets V,CCU, such that X=(JV,.

By an elementary convolution argument we can construct, for every V. and

every v, a sequence (<p^) of forms cp^eC^(V,,E), such that

^J^Iv.-^Jk-o, ^im^[|^i^-a<J|^=o, Jimj[6^-e<J|^=o.

If U^n Supp <p^==o, we can assume <p^=o.

Let (rrj be a G00 partition of unity associated with the covering (V,) (Supp TT^CV,).

Let ^=^i^

Since only a finite number of U^ are not disjoint from Supp <p^ then

<pv,,^(X, E).

Furthermore, it is easily checked that

J,mJ^-^J|=o, ^mJ^-a^J|=o, ^Hmje<p,-e^J| =o,

i.e. ^Um^N(9,-^J=o.

Let (ejvgn be a sequence of positive numbers e ,̂ converging to zero.

For every v we can find an index p.(v) such that for any (A.>(Ji(v) we have

N(<p.—<p^)<£,.

We have N(9—9^^)^N(9—9j+N(9,—9^^)<N(9-9j+e^o.

Hence the sequence (pv.^) C^^(X, E) converges to 9 in the norm N, i.e.

(<Pv,^(v))-^ (^y^(v))-^y5 (Qyv,^))-^^? m the norm || ||. Q.E.D.

Proposition 5. — If the hermitian metric on X is complete, W^(X, E) can be identified with

the space of forms <pe,2^(X, E) which admit a ^(pe.J&^-^X, E) Wa Oye^f^^-^X, E)

^ ^A^ j^^^ <?/' distributions.

Under the assumption that the metric on X is complete, setting in (n) R=2r

and letting r->4-°° we obtain the inequality

(^ ll^ll'+lieyll^^llDpH^^II^II2 for every o>o.

The following statement is a consequence of (19) and of Proposition 5.

Corollary 6. — If the metric on X is complete, any form (peG^X, E) such that

| [<p | [<+oo, |[D?||<+oo can be identified with an element of W^(X, E).

If, in particular, Dy==o, letting in (19) o-->+oo, we obtain

Proposition 7. — Let the metric on X be complete. If (peJSf^X, E^C^X E) is

such that Q 9 == o, then ^<p = o, 69 = o.

c ) We now make one more assumption, namely that E is 'W^-elliptic with respect

to a complete metric on X (and to a suitable hermitian metric on the fibres of E).
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We then have the following

Proposition 8. — Under the above assumptions^ if

9GoSf^(X, E)nC^(X, E) and D<P=o

then also 9=0.

Proof. — By the W^-ellipticity condition there exists an A:eW^(X, E^C^X, E)

such that 9 = Q ;v.

By the previous proposition ^9=0=69. Hence Qc)x==o=QQx. Since ^A: and 6^

are square integrable, again by the proposition, one has Q8x == o = 8Qx. Hence n x == o.

7. Vanishing theorem (weak form).

Theorem 21. — If the vector bundle E is ^N^'elliptic with respect to a complete metric on X,

then if <peo§f^(X, E)nG^(X, E) and a<p==o,

there exists a ^eJS^-^X, E^C^-^X.E) such that

<p== ̂ ^.

Proo/. — By the W^-ellipticity condition there exists an ^eW^(X, E) nC^(X, E)

such that 9 = Q x.

Since ^9 == o one has Q c^ = o. By proposition 7 of the previous section it follows

that Q()x==o. Therefore

9==^==^,

where ^e^e^^-^X, E)nCP•3-l(X, E).

Corollary 9. — Under the above hypothesis, the natural map

H^(X, ̂ (E)) -> H^(X, tP(E))

^ ^A^ r̂o homomorphism.

§ 3. Green's operator and Carleman's inequality

8. Greeks operator. — a) Let E be a holomorphic vector bundle on X which

is W^-elliptic with respect to a given choice of hermitian metrics on the fibres of E

and on the base X.

For any yeJSf^X, E) there exists one and only one element A:eW^(X, E) such

that f== D ^

in the generalized sense. This means that for any ^eW^X, E) we have

{f,u)=(8x,~8u)+{6x,Qu).

We thus define this unique solution x as the image of an operator

G : JSf^X, E) -> W^X, E): x = Gf.
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b) From the inequality of the W^-ellipticity one obtains

IMI^ll^+ll^ll2}
=c\(f,x)\

^11/IIIMI.
We then have

(20) IIO/'ll^ |[/||.

9« Carleman's inequality. — a) Let E be a holomorphic vector bundle on X;

let h=={h^ be a hermitian metric on the fibres ofE and let ds
2 be a complete hermitian

metric on X.

We now make the following

Assumption: There exists a G°° function 0 : X->R with the following properties:

(i) <D^o;

(ii) for any non decreasing C00 convex function X(^), o_^ t< + oo? the vector bundle E

is W^-elliptic with respect to the metric e^h on the fibres and the complete metric ds
2

on X (the constant c of W-ellipticity which appears in (9) being independent of

^ : (9,9)x^^(^^)x+(ex^9x?)x}(1)). Let/e^(X,E)nC^(X,E),'a/=o; then,
by theorem 2, there exists a form ^eJSf^-^X, E^C^-^X, E) such that

/==^.

And indeed it is enough to take for ^ the form

k-QxCV

Since the operators 6 and G depend on the metric considered on the fibres of E we have

put the subscript X to indicate dependence on the choice of the function X(^).

Similarly we will denote by A^(cp, ^) the pointwise scalar product of the two

forms 9, ^ of the same degree with respect to the metric e^h on the fibres of E. We

have A,(^)=^A(9,^

where A( , ) stands for A()( , ).

From (19) we get for x^=G^f and any (T>O

(^ ^x)x+ (9^ 9^)^C/;/)x+^ ^)x.

Since A^eW^(X,E) we obtain from the above assumption

(^, ̂ )x^{(^ ^)x+ (e^x, e,^)x}

with <; independent of X.

(1) The index X denotes the dependence of the symbol on the function X.

327



96 A L D O A N D R E O T T I AND E D O A R D O V E S E N T I N I

Taking or==— we thus obtain

(^ ̂ )x+ (6^ e,̂ )^4,(/,/),.

In particular we have proved the following

Lemma 10. — If assumptions (i) and (ii) are satisfied/or the vector bundle E, then, for

any G00
 form /eft ̂ (X, E) such that B/= o,

we have the inequality

(2I) J^^'^^J^A^/)^

where ^=^GX/.

The inequality (21) will be called the Carleman inequality for the operator ~8 in degree
(A q) [8], [13].

Remark. — Inequality (21) is in particular valid for any fe^{X, E) with ~8f=o.

b) Let us now choose /e^w(X, E) with ~9f=o, and s>o. Let <;o=sup $
and select a C°° function X(f) for o^K+oo with the following properties: 8UPP</)

(i) Ht)^o, r{t)^o, x"(f)^o

(") ^W=
o for o^< ̂  CQ

^—(^0+1) for ^Co+e.

Let \==vX, v= i, 2, ... Construct the forms ^=6^G^/. Then the Carleman ine-

quality gives

J^)A(^, ̂ )dx^ 4cf^A(f,f)dx.

Since evx(o)=I on supp(/), we obtain the inequality,

L^/^^^^S^f'f^
Hence

 S^^ ̂ ^'^S^f'f^
and letting v-^+oo we see that

L^».+.A(^'^)^-^0•
Moreover since ^vw^ i we have

J^A(<K, ^)^^4^xA(^^)^•

Therefore the elements ̂  all lie in a ball of fixed radius in ^(X, E). We can extract

a weakly convergent subsequence <p^e^(X, E). This means that for any
ae^^X, E) (and in particular for any ueQ^(X, E)) we have

^Jx^V "^ .̂(x^ ")^-

328



LAPLACE-BELTRAMI EQUATION ON COMPLEX MANIFOLDS 97

If supp(«)n{O^Co4-e}=0 we have also

f^A^,u)dx==o

This means that, as a distribution, ^ has support contained in the region {0.<^o+£}•

Finally since ^==/ we have in the sense of distributions (1) that

U=f

with supp ^C[xeX\<S>(x)<^CQ+e}.

We have therefore proved the following

Proposition 11. — Let E satisfy the assumption stated at the beginning of this number, that

gives Carleman's inequality in degree {p, q).

Let feQpq{X, E) with Sf=o. Then, given any s>o, there exists an element

^eJ§^?"~l(X, E) which satisfies the following conditions

(i) ^^=f in the sense of distributions;

(ii) supp(^)C{A;eX|0(A:)^ sup 0+e}.
supp (/)

10. Regulari^ation of the solution. — We first prove the following

Lemma 12. — Let ^ be a form of type {p, q— i) with values in E and distribution coefficients.

We assume that f= ̂  e C^(X, E).

Let G=supp ^ and let D be any open neighborhood ofG. Then there exists an ^eCy^'^X, E)

such that supp T] CD, <?T] ==f.

Proof. — We choose a covering of X with coordinate balls ^==(V,)^i with

the following property that

if V,nC+0 then V.CD.

This is possible, taking for instance, a covering of X—D by balls not meeting C, a

covering of G by balls not meeting X—D and a covering of D—C by balls contained
in D—C.

We will denote by A*" the sheaf of germs of G00 forms of type {p, r) with values

in E and by A^ the subsheaf of germs of those forms of A7' which are ^-closed. Analo-

gously by K/, K^ will be denoted the analogous sheafs of germs of distribution forms.

We note that A^^(E)^K^.

a) It follows from Sf==o that we can find ^•'^eC0^, A3"1) such that

yTC==^-1^;

(1) For any ye^P?(X,E) we have

a+M == (OM, +) = lim (Qu, ^ ) = (u,/) ==/[M].
v, -> + oo
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we have V-^Z^^, A^-1) and hence we can find cp^eC1^, A3-2) such that

S^-1^^-2.

In this way we proceed till we find

89°eZ^,A;i).

We note that the supports of cp9"1, 9s'~2, .. .3 can be chosen to be contained in D.

P) From ~8{^
q
~

l
—^

q
~

l
)==o we see that

^-i_^-ieG°(^Kr1);

hence we can find ^eG0^, K9-2) such that

^-l__<p<?-l=^-2^

We will have, since ^ ls global,

s^-^sa^-2.

We proceed remarking that ^ (cp9"2—S^~2) = o and make an analogous argument.

Continuing in this way we find an element ^
o
eC

q
~

2
{^, K°) such that

S^O__^Q?-1^^

We remark that the supports of ^~1, .. ., ^° can be chosen to be contained in D.

Moreover the element
h^u0—^

is a holomorphic co-chain.

y) We then have 8(90+AO)=o,

and since A° is a fine sheaf we can find ^eC9-2^, A°) such that

(pO+A0^^0.

We then have, since h° is holomorphic, 8^°==8Sl°, hence

8((pi_a/°)=o,

and we can find ^eC3-3^, A1) such that

(p1—^0^^1.

We continue in this way till we find ^eC0^, A^-2) such that

S^-i—^-^^o.

This means that Yf-
1
^^-

1
—'!)^-

1 is a global {p, y)-form on X.

We remark that by construction the elements /°, Z1, ..., Z9"1 can be chosen to

have support in D. Therefore the form rf~
1 is a G00 form with support in D, and

we have ^-^y.
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Corollary 13. — Let E satisfy the assumptions of proposition 11. Then for any

/e^(X, E) with 0/=o and for any e>o we can find an YjeC^-^X, E) such that

(i) ^==/

(ii) supp Y]C{A:eX|$(A:)^ sup 0+e}.
supp (/)

ii. Cohomology with compact supports. — a) We have the following

Theorem 3. — Suppose that E satisfies the assumptions of proposition 11. Suppose^ furthermore^

that the function 0 satisfies the condition

(iii) for any ceHL the sets 'B^={xe^\<S){x)<c} are relatively compact in X.

Then we have Hj(X, ̂ (E))=o.

Moreover, given any C^ form /e^^X, E) with Sf==o and any e>o, we can find a C°° form

^g^.g~i(X, E) ̂  that

a) ^=/,

P) supp Y} c{A:eX | 0(.y).< sup 0 + e}-
supp (/)

The proof of this theorem is a straightforward consequence of the above corollary 13.

b) We want now to prove that, under the above assumptions, the image of

^ : ̂ (X, E) -> ̂ '^(X, E)

is a closed subspace of ^'^(X, E).

The following remark will be useful.
0

Remark. — Let (KJ be a sequence of compact subsets, with K^cK^.^ and

UK^=X. Let ^(K^, E) be the space of C00 forms of type {p, q) with values in E and

support in K^,. This space, with the topology of uniform convergence of the forms and

of all their derivatives, is a Fr^chet space [9].

We have a natural injection

a,:^(K,,E)^^(K^,E)

The image of o^ is closed in ^^(K^^^, E) and the induced topology on ^(^^(K^, E))

coincides with the natural topology of ^^(K^, E). This shows that the space ^^(X, E)

is a strict inductive limit of Frechet spaces.

Theorem 4. — Under the same assumptions as in Theorem 3, ^^^(X, E) is closed in

^,3+1 ̂ x, E). In particular the group Hj|+1 (X, Q^ (E)) has a structure of a separated topological

vector space.

Proof. — In view of the above remark it will be sufficient to show that ^^^(X, E)

is sequentially closed [15, p. 228] in ^'^(X, E). Let (<pJ be a sequence in ^^(X, E)
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converging to an element (pe^^^X, E). We want to prove that 9G^^(X, E).

Now any Cauchy sequence in a topological vector space is a bounded set. By the

structure of ^^"^(X^ E) as strict inductive limit, any bounded set must be contained

in some Q
pfq

'
}
'
l
{'K^, E) [n, p. 257]. Thus the forms 9^ and 9 have all their supports

in a fixed compact set Kg.

Let 9,==^ with ^e^^(X, E).

Because of the assumption of W^-ellipticity we can find ^eW^(X, E) nC^X, E)

such that ^=n^=ae^+e;J^

Setting ^=6^^

we thus have 9^==^^*

Now applying Proposition 3 to the form x^=()[f^ we get

/i A \ - -
(k\ ̂ B(r)^(^ ?^B(R)+ -+7p—rj (^\ ^)X,B(R).

\(j ^iv—rj /

and letting R=2r and r^+oo we see that

^e^(X,E).

Moreover 6;̂  = o, a^ = 9^,.

Hence by proposition 5 we have the inequality

(^ ^)x^(yv, ?v)x.

(3) Now lim(9,, 9v)x= (?. ?)x-

If 9=0 there is nothing to prove. Otherwise we can select an index v^ such

that for V > V Q we have

(k\ ̂ )x^(9, 9)x.

From the sequence (^) we can extract a subsequence, that we denote again by (4'v),

which converges weakly to an element ^eJS^(X, E) having compact support.

Since 8^=^,

we have in the sense of distributions that

a^9(1).

By lemma 12 we can then find a ^e^^X, E) such that

9= "a T].

(1) In fact for any Me^^-^X, E) we have

^W = (OM, ^) ==lim(6y, ^) =lim(M, B^)
=lim(y, 9^) == (M, y) ==cp[y].
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§ 4. Criteria for W-eUipticity

12. Local expression of the Laplace-Belli'ami operator. — This and the following section

are not essential for the comprehension of the rest of this paper and may be omitted.

a) Any form of type {p, q) with values in E can be considered as a form of type (o, q)

with values in E®®*^. We have thus an isomorphism

cy^x, E) ̂  c^x, E®©^).

If (peG^X, E) is given locally by the forms

9={S(p^W?} (i^^m=rankofE),

then its image ^eC^X, E®®^) is given locally by the forms

^={S^P}.

By a direct computation one establishes the following formulae (1):

(22) iy=(-lW,

/^/

(23) ^^(—^^sae*^

/•"•a/

(24) DE?==DE®©*^-

Moreover one has

(25) Ag(9, 9) = A]^ 0^(y, ̂ ).

6^ By the above remark we can restrict our considerations to forms of type (o, q)

only.

Let (peC^X, E) be given locally by

<p={2^^^31A...A^}.

If h is the hermitian metric on the fibres ofE we use on E the connection given by h~
l
()h.

On ©* we use instead the riemannian connection given by the hermitian metric

on X (cf. n° 36^). We will use greek indices in the range i, . .., 7z=dmicX and latin

indices in the range i, . . .5 n, i, . . ., n. Since the riemannian connection is symmetric

one obtains the following formulae:

(26) (^^^^^^{^(-i)'-^^,^,,^,}^^..^^^,

(27) (69)°= S {2;V^,,^ZPlA...A^-l.
Pi < ... < ftq-l •*

(1) Only the formula (23) needs verification. Formula (22) is obvious, and formula (24) follows from (22)
and (23).
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Let B==((^ . . . ,^), B,=(^, . . . ,p , , . . . , i^), B^=(^ , . . . , p , , . . . , p , , . . . , p^ .

From (26) and (27) we obtain

(Dy)|——2/^.V3<p|+S^^|^V^|+2^(-I)-l(V,V-p.-V3.V,)^.

Using Ricci's identity for the last summand we finally get

(28) (a^g—s^v^ys+yrlgV-.yl+^y)!,

where ^(peG^X, E) has the following expression:

(29) (jr^ == ̂  (-1)^.^ + SR^^ + S(- i/R^y0^,},

and Rp^=SR^ is the Ricci tensor.

The endomorphism Jf : G^X, E) -> C^X, E) is hermitian, i.e. A(JT(p, 9) is real.

For ^==0, jf==o.

f:J We now use formulae (28) and (29) and the remarks made in a) to obtain

the corresponding formulae for any form (peC^X, E). Following the above procedure

we must use on E^Q^^O*3 the connection which is obtained from the metric connec-

tions h~
1
8h on E, g*~

1
^ on ©* (where ^*===^~"1 is the metric on the fibres of©*), and

the riemannian connection on ©*.

From (24) and (28) we then obtain

(30) (D <P)IB = -S^V.Vp 9:B + ̂  liv̂ li + (^9):B

where ^(peC^X, E) is defined by

^9=^^.

If we compute the curvature form of the metric connection of E®®^ in terms

of the curvature forms

. = {S^rf^}, L = {SL;^?^8}

of E and ©* respectively we obtain for Jfy the following expression:

(31) (^<P)AaB=,S(-I)'{S4.^^+^(-I)fcL^P^PB,+

+ SR^A3^ + S(-1)^^^^%^.}
with the usual conventions and A^==^y . . .5 a^, ..., oCp).

13. The operator *~1Q*—Q. For any 9eC03(X, E) one has the following

formulae
n-q

(V,*y)«,...^_J...„==(!>!V„9)^.,^_^...H-^2:S^(*y)^.,^...^_^-.,„,

n-q

(V3*v)a,...^.,i...n=(*Vpy)^.,^i,.,,+^Sr^(*(p)^.,^,.^_^.,,..
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If the hermitian metric on X is Kahler then S^==o and r^p==o; thus for any

(peC^X, E) one has

V^ 9=^9, Vp*9=*Vp9,

so that using the local expression of the Laplace Beltrami operator one obtains that

*- lD*—D=*~ l^s^ i—^

where jTcp simplifies into the following expression first given by Kodaira [14]:

(^IB-S {-lY{^s
a
^

b
^+I.R^

a
^+^ (-1)̂ ,3^^}.

Moreover computing ^~
1
^*—Jf one obtains the following expression

q p _ _

c f — 1 ,-y/. ^^\ \a v / \i— 1 v a 6 0 i V / \ 7 — 1 o ^a v a P 6
{(* jr*—jr)9}AB=^(—l) 2.^p9A^+.^(—l) ^a,?A,B—^ b^AB

Using the operators A and e{s) defined in § i we then have

^D^-D^A^-^A),

a formula which was first obtained in [7].

We remark that ^~
1
Q^==#~

1
Q^# according to formula (7).

b) If the hermitian metric is not Kahler, then one has a more complicated

expression of the form

(32) (*-lD*—D)9=(*~l^*-^)9+Fl9+F2V?+F3V9,

where F^ are linear combinations of the components of 9, V9^ V9 with coefficients

involving (linearly) the torsion tensor, the tensor F^p and its covariant derivatives.

From the formulae we have given it will be clear as to the connection between

the vanishing theorem we give here, which is a generalisation of the vanishing theorems

of Kodaira and Nakano.

14. A basic identity. — a) We first remark that for any scalar i-form on X

^s^^+s^p^
one has the following identity rf+^^SV,.^)^

when we take on the tangent bundle the riemannian connection. The expression 2V,.<{/

is called the divergence of the vector ^r.

b) Let 9eCO<^(X3 E) and let q>o. We construct from 9 the following tangent

vectors: ^ =={^== 2^(7^)?^ ^=o},

^={^=0, ̂ =S^V,9^^}.
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Computing the divergence of S and using the Ricci identity we obtain

div S = SA^V^ + ̂  {^Y-^W' + (V-^KVp^).

Analogously we have

div ̂ ^(V.V^^y^+^^B^V^).

Therefore

div S-div ̂ ^{^^^(^^-(V^'BO^^^

By formula (26) we have

^^^^^^-(^-i)! (A(V9, V9)-A(a9, a<p)),

while by formula (27) we have

^{V^)1y^)= {q-1)! A(69, 69).

We obtain therefore the following identity:

(33) ———— (div ̂ -div
 ̂  -A^, Vy) +A(JT9, y)—A(a9, ^9) -A(69, 69).

(y—i) !

15. fl^ We now suppose that the metric on X is complete. Let oeX and let

p(^) == af(o, jc) be the geodesic distance ofx from o. We set as before B(r) == {^eX [ p(A") < r}.

With the same notations as in n° 6 y)? we now consider the following expression

F==————(div w^—div w^).
( y — i ) !

Since ( Fdx=o, we deduce from (33) the following equality:
u J\.

—^J(S^^)^X--^J(S^^^)rfX+ W, ^p)+
{q—i)^ ^ ( ?— I ) ! ^

+ (J^wy, ^<p) — (^cp, w^y) — (^69, ^69) == o.

Now we remark that one has

, Bw » 8w ——
|2J(I:w-^^)rfX|=l2JwS^^(V,^-)v^B'</X|

2C'

^^||wVy[|||y||B(R)

^^K^ip+ijyii^)},

c' being an absolute constant. Analogously one has

i. 8w - ^'

|2J(S^^)^X|^^^{|[^69||2+||9||2B(R)}-
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Hence, using the fact that (JTaxp, w<p) is real we obtain the inequality:

- / c' \

1 1 ̂  11^) [1 -( ),(R_J + (Jf ̂  w^

^l|g<Pll2B(B)+||ey|||(R)+^_^^ ^__J2||'P^|2B(B)+H6y^||(H)}.

Letting R—r-^oo and r->oo we obtain the following:

Lemmal4.—If'the hermitian metric on^K is completed/or anyform (peG^X, E), with ^>o,

^A ̂  9e^(X, E), ^e^'^^X, E), Gye^^-^X, E),

one has the following inequality.

HV^II^ limsup (^•^^^ll^ll'+lieyll^1).
(R-r)^+oo

&^ Let us consider now any form cpeC^X, E) (<7>o). Applying Lemma 14 to

the form ^eC^X, E®®*^) and taking into account (22), (23), (25) and (31) we get

the following

Proposition 15. — If the hermitian metric on X is a complete metric^ then^ for any

form yeC^X, E) (y>o) such that [|9J|<+ooJPy||<+<^ ||6<pl|<+oo, the following

inequality holds

l|V<p[|2+ limsup (Jf^, ̂ B^^ll^l^+jie^ll2.
B—r-».-{. oo

Suppose, in particular, that at any point ^eX and for every yeG^X, E),

A(Jf<p, 9)^0.

Then, under the hypothesis of Proposition 15, it follows that

lim sup (JTw(p, w^) B^y)
r->+ oo

and [|V(p|| are bounded. Since, moreover

o^ (^9, 9)a(r)^ (^w<p, wcp)^),

we have (^9,9)= lim (.^9,9)Bfr)<^+oo•
r-»- 4-00 l /

We have therefore the following

Corollary 16. — If the hermitian metric on X is a complete metric and if at each point A:eX

and for any (peG^X, E)(y>o)

A(JT(p,9)>o,

(1) The proof of this lemma is independent of prop. 5. One could instead obtain directly from (33) that
for any cpe^°?(X, E) (q > 6) one has

I I V y l ^ + ^ ^ l l ^ p l P + l ^ l l 2 ,

and then, using proposition 5, deduce lemma 14 by a « closure » argument.

237

14



106 A L D O A N D R E O T T I AND E D O A R D O V E S E N T I N I

then, for any (peC^X, E) (y>o) such that

(peJS^(X, E), ^pe^^-^X, E), eye^^-^X, E),

||V(p|[ fl%fif (JT(p3 cp) are finite, and moreover

IIVcpi^+^^^^ii^i^+iieyii2.

Corollary 17. — If the hermitian metric on X is a complete metric and if there exists a positive

constant k such that at each point xeX and/or every cpeC^X, E) (y>o)

A(JTy,(p)^A(9,9)

then E is ^N^'elliptic. In fact for any form yeC^X, E) nW^(X, E) the following inequality

holds: IIVpll'+^llyll^ll^H^lieyll^

§ 5. Vanishing theorem for ^-complete manifolds

16. A lemma on hermitian forms. — a) On the complex manifold X (dinicX==n)

we consider two hermitian forms given locally on a covering ^<={Uj of X by

a = ̂ g^d^ = {^G,^,}, ^ = G,

73 = SA^W = {^.H^}, ^H, = H,

We will assume that

a is positive definite so that it defines a hermitian metric on X,

7) has at each point ;veX at least p positive eigenvalues.

IfJ^. are the transition functions ^(^)/^(^-) of the tangent bundle, then on U,nUy

^^J^Jyt and H^J^HJ,, so that the characteristic polynomial det(H,G,~l—XI)

is a C°° function on X. The eigenvalues ofHG~1 at each point x are real, let them be

^iW^...^^),

so that each e^) is a real continuous function on X. Because of the assumptions we
will have at each point A:eX

£^)^...^6^)>0.

Let ^i>o, c^>o be two positive constants and let

W=c^p{x)+c^mf{o, s^)).

Lemma 18. — Given the form T] we can find a complete hermitian metric on X such that

W>o ^ VxeX.

Proof. — a) Consider the function

/(M)=^-i)
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for X, t real. This function has the following properties:

\t
2
 \H

3

(i) /(X, t)=t-\-—-^-—-+••• is an entire function;
0 I Q I

„., 9f{\ t) 2- 3-
(u) -^- '̂>o;

(iu) If X^o then f{\t}^t.

(S) We choose a hermitian metric a on X which we may as well suppose to be a
complete metric (1). We set on U,

a.-.^^.+^M^+^t^^,^

where X=X(;v) is a non negative 0°° function on X. Then G, is a positive definite
hermitian metric; moreover on U^nU.

G—(J,AJ,..

Therefore G defines a hermitian metric on X.

Now HG-^/^HG-1).

Hence the eigenvalues t^x), ..., t^x) of HG"1 are given by

^aW-^W^aW).

From SaW^a+iW it follows (by (ii)) that

SaW^S^i(^).

Also by (iii) we have ^aW^aW-

In particular z
l{

x
)^

>
.' • •^£o(^)^>o•

y) Let oeX and let rf(o, ^) be the distance of o from x in the metric CT. Let

^={xeX\d{o,x)<^ v = i , 2 , ....

Then, since cr is complete, B^ is compact.

Let ^=}^^

Then ^v^^+i, ^v>o for each v.

We select a C^ function b{x) on X such that

b{x)>o VxeX,

b{x)<b, for A;eB,—B,_i.

(1) One may use the following remark: given a riemannian metric ds
2 on a manifold X we can find

a C°° function F(^) >o such that ¥(x)ds
2 is a complete metric. In fact if (K^) is a sequence of compact sets

on X such that K,,cK^+i, UK^=X, we set ^=dist(aK^4_i, Ky). Then c^>o and for any F such that
F2^)^/^ for A?eK^_(_i—Ky, Ffifj2 becomes a complete metric.
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Hence on all X we will have b{x)<.b^

bW^{x).

Finally we select a C°° function p(^) on X such that

p{x)>_d{o,x)

zk^
and we set Ux)==-__

where A> /—^r
N Ci

8) We have then for every ;ceX, since £y(A;)>o,

HX)^(X} , S2^)

W-fW,^))>-^=ke^ '
2 b\x)

>k^>L

SnW=/(XW, ^))=—— (^W-i)
K\X)

>___________^.J

- \{x) 2ke^ k '

^ I

Thus ^ e^x) + ̂  inf(o, e^M) > c^k—c^== -_ [c^—c^ > o.
K K

Then for the metric a defined by G we will have l^{x)> o. Now if we multiply a by a

convenient C00 positive function F{x), the condition /^W^0 ls preserved, while F(A:)S
can be made into a complete metric.

b) Let <I>:X-^R b e a C 0 0 function on X which is strongly y-pseudoconvex.

This means that the Levi form of $
y<s> —

^^•^^

has at least n—q-^-i positive eigenvalues (1).

Given a hermitian metric ds
2 on X we can evaluate the eigenvalues of oSf(<D)

with respect to ds
2
. Let £i(^)^ .. .^> SnW be these eigenvalues. By assumption

^W^ • • • r^n-g+i^0 at each point of X. We set ^==TZ—?+i .

Lemma 19. — If^ is strongly q-pseudoconvex, for any scalar form u^^u^d^d^ of

type (a, b) with b^q the following inequality holds at any point xe^K:

^0
S.^^^^^^W+^nf^ s,M)} S ^^AB.

C'<, 0 <, ai < ... < a^

3i<...<Pft

(1) (Added in proof) We prefer now to call strongly ^-pseudoconvex a function whose Levi form has at
least n—q positive eigenvalues.
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Proof. — At any point A:eX we have

^O -:— n ——
sa,3^'A'AYB^3s^w^'AeB'•

If b> q then ^ + %— ? + i > ̂  + 15 thus any block of b indices taken in (T, ..., ~n) must

contain one of the indices T, ..., n—q-\-i, i.e. one of the indices of the positive eigen-

values £iM? . • . , Sn-ff+iW- II follows that
n—g+l ___ __

S S.̂ 1^ 2 -̂.A-B

P == 1 <Xi < ... < a^

Pi<... <P&

From this the assertion of the lemma follows.

We will now apply lemma 18 to the form T] == ̂ (0) taking as lw^ the expression

^(0)==£n-<^+lW+^ inf(o. ^W)

(^i== i, c^==n, p==n—q-{-i). It thus follows that there exists on X a complete

hermitian metric ds
2 such that at any point xeX we have

(34) ^(O)M>O-

We will keep this hermitian metric ds2 fixed throughout the remainder of this section.

c ) A complex manifold X is called y-complete if there exists on X a G°° strongly

y-pseudoconvex function 0 : X->R such that the sets

B^{xeX\<S>{x)<c}

are relatively compact in X.

Adding, if necessary, a constant to 0, in view of the last condition we may assume

that O^o.

Let {ji==pi(^) be a G00 function on o^Q<oo which is increasing and convex

i.e. (JL'(^)>O, ^"(^^o. Consider the function (JL(O): we have

(35) ^W))= ̂ W^W + ̂ W I ̂  I2

>^(<D)JS?(0).

It follows then that, for any such choice of pi, the function ^(O) is again strongly ^-pseudo-

convex, and again the sets {pi ($)< const.} are relatively compact.

From (35) it follows also that (
1
)

(36) ^(0))>^W^(0)-

Lemma 20. — Let X be a q-complete manifold with respect to the strongly q-pseudoconvex

positive function 0 : X->R. Let g : X->R be any continuous function on X. We can find a

(1) Gf. R. COURANT and D. HILBERT, Methods of Mathematical Physics, Inferscience, N.Y., 1953, vol. I, p. 33.
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sequence (O^N of real numbers such that for any function [L=[L{t) defined on o<t<ao and

satisfying the conditions

(i'W>o, ^"(^o, ^(t)>a, for ^<v+i (v==o,i , . . .) ,

we have ^(O))M^W.

Proof. — Let <^>o be chosen so that

^^wW^W for v^0(^)<v4-i.

This is possible since the sets {v^O(A;)<v+1} are relatively compact. Then the
lemma follows from (36).

17. W-ellipticity conditions. — a) Let E be a holomorphic vector bundle on the

complex manifold X and let h be a hermitian metric on the fibres of E. Let

^{^^d^d^-} be the curvature form of A. If f=f{x) is a real valued 0°° function

on X, then e^^o and therefore e^h defines a new hermitian metric on the fibres of E.
Its curvature form is represented locally by (cf. 4 d})

{S^Of+s^}.

Let us now assume that X is ^-complete with respect to the positive strongly

y-pseudoconvex function $. Let [i=(i(^) be an increasing convex function on o^<oo,
and let us consider the hermitian metric ^"^A on the fibres of E.

We consider on X the hermitian metric ds
2 of the previous section. Accordingly,

if we use, on the fibres of E, the metric e~^h or h we will affect the symbols which

depend on that choice with the index —(JL. In particular, we will have for any
^peC^X, E) A_^(9, 9) =,-^A(y, 9),

^-.(9)=^(9)-[S (-172:^9^)^^

Lemma 21. — Let X be q-complete. There exists a sequence of positive real constants a^

such that for any increasing convex function [L{t)>o satisfying

^{t)^a^ for v<^<v4-i ^=0,1,.. .) ,

we will have the following inequality

A_,(JT_^p),(p)^A_,(9,9)

for any yeG^X, E) with s^q.

Proof. — First we can find a continuous function /:X-^R such that

A(jT(p, <p)>/(^)A((p, 9). Then we can write

yn((S>\ ——
A_,(JT_,<p, 9)^,-^)s^^^A^^ y).
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We now choose fibre coordinates at x such that h^== S^. It then follows from lemma 19

that we will have the inequality

A^jfL^ <P)^(^(O))+/W)A_^((P, <p).

Applying lemma 20 to the function g{x) = i —f[x) we obtain the statement of this lemma.

b) We now fix a function p'o=Plo(^) ^or o^Q<oo satisfying the conditions of

lemma 21 and we replace the metric h with e~
[i
^

)
h. If X==X(^)_>o is any C°° function

on o_<^<oo which is non decreasing and convex (^(^)>o, ^."(^^o) then [L == [LQ + X

satisfies again the conditions of lemma 21.

We can then state the following

Proposition 22. — Let X be a q-complete manifold and E a holomorphic vector bundle on X.

We can select a complete hermitian metric ds2 on X and a hermitian metric h on the fibres ofE such

that for any non decreasing convex function X==X(^)^>o on o^^<oo, we have with respect to

the metrics ds2 and e'^h that

A_^(JC_^ cp)^A_^ 9)

for any (peCV^X, E) with s^q.

c ) We apply the previous proposition to the vector bundle E* and to the form

^#^eC
n
-

rfn
^

s
(X,E'). If n—s>,q i.e. if s<,n—q we then will have

AE.,-x(^E*,-x(*#9).*^9)^A^^^^(p,*#<p),

i-e. AE^(y,(p)^AE^_^.rE*,-x(*^y), *#<?)-

Moreover we remark that

AE*,-x(^#?,a*^9)=AE.x(e<p,e9),

AE*, - x(e * # <p, e * # 9) == As, ,(̂  a<p).

Therefore by applying corollary 17 to E* and * # 9 we obtain the following

Proposition 23. — Let X 6^ q-complete and let E be a holomorphic vector bundle on X.

We can select a complete hermitian metric ds2 on X and a hermitian metric h on the fibres ofJL such

that for any non decreasing C°° convex function X==X(^) on o_<^<oo, we have with respect

to ds2 and e^h the inequality

||yil^^ll^Hl+||e^ll2^ c^absolute constant

for any (pe^^X, E), provided s^n—q.

This proposition enables us to apply the results of § 3 and we thus obtain the
following

Theorem 5. — If the complex manifold X, of complex dimension n, is q-complete, then for

any holomorphic vector bundle E on X we have

(i) H^X^E))^ for s^n—q and any r,

(ii) 'H.^~
q+l

{'K,O.
T
(E)) is a separated topological vector space for any r.
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d) We end this section with some remarks about the " a priori " estimates one

can derive, with the method used here, in the case of complex manifolds with boundary.

Let YCCX be an open relatively compact subset of the complex manifold X

with smooth (i.e. G00) boundary 3Y.

Let A^Y, E) be the image of the restriction map

G^X, E) -> C^Y, E).

Let t : A^Y, E) -> G^ (BY, E [^)

be the natural map induced by the natural imbedding of 8Y in X.

We set B^Y, E) -{cpeA^Y, E) ̂ 5^9=0}.

One verifies that if (peA^Y.E), ^eB^-^Y, E), then

(^(p,^)Y=(9,6^)y.

Let f be a real C00 function on X such that

Y={^X|/W<o},

df^o on 8Y.

The condition for 9 eA^Y, E) to belong to B'^Y, E) is given by

*(pA<y==o on 3Y,

i.e. in a neighborhood of every point ^e^Y we will have

frt^-AliF (^B'eC00).

Given any 9 eA^Y, E), we can consider ^eA^Y, E0Q*1") and we can construct

the tangent vectors ^ and T) as in n° 14 &J.

IfdS is the area element of ^Y we get from identity (33) and from Stokes5 theorem

,^J^(S-^)^S=[[V<p||^+(x9,9)Y-||'99||i^ao=||vyi|^+(x9,9)Y—|| a9|[^—||e9 ||̂

where for any vector X == (X01, X3) we set

^jr^-e
Now if 9eB^(Y, E) then one obtains from the boundary conditions that

•^^^^

^- (̂  ̂ ) 's ̂ v,5 ,̂̂
3^
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We set

(
r\ f r\ r\ 1 r\2 r _______

| 8f\ = S^-7- -J- 2, ^(/){9, v}= Sfc,——^^.'W1 '̂,
6^9^] ^n-V^f to^p^TABY >

^(/){V, ̂ S^V.I^/B^.

Hence we obtain the relation

11V9||^+(^9)+^^J^^^(/}{9,^S^

Assume that oS^(/) has 7 2 — y + i positive eigenvalues at each point of 8Y. We

can choose a hermitian metric on X such that

^(/)^ ^o

with CQ>O, at each point of ^Y (if ^ == i any hermitian metric will satisfy this condition).

This same relation will hold in a neighborhood U of ^Y in X. It will still hold if

we multiply the hermitian metric on X by a C00 positive function. By a suitable choice

of this function, we can find a positive constant q such that for every (peB^Y, E)

with s^-q we have

(̂  Liyl̂ -^ <p}^S^A(<p, y)<fS (1).

Replacing the metric h on the fibres of E by e^h we can also find a T()^ o and a

positive constant ^ (^o==o ^he metric on X is euclidean) such that, if T^ T(), we have

for any cpeB^Y, E) with s^q and supp<pCU

A,(^9, (p)^2TA^((p, 9).

Hence for T^T(), (peB^Y, E), suppcpCU, s^q, one obtains

l|V9||^+^l|y||?.Y+^J^A(9,<p)rfS^||09ll?,Y+||6,9[|2^.

We can incorporate ^^A into h, so that we may assume that the above inequality holds

for T>O.

(1) Let [jL=[L(t) be a positive C00 function on R such that [i(o) = i. We replace the hermitian metric ds
2

on X by yL(f)ds
2
, and we denote by -^j(,C/) {<p, 9} the hermitian form -?'(/){(?, y) calculated with respect to

this metric. We have on 8Y

^x(/) (?. ?) -^(/) (9. ?) + d ̂ w ̂ jyi^^^-^^sr^^^^B^61^)-
d\og^{t)\ ,^,o., „, .^/v-pa ?/',

Hence, by a suitable choice of — — w e can make the hermitian form ^{f) {9, <p} positive definite

on ^Y. We point out that this can be done regardless of the number of positive eigenvalues of the Levi
form ^ (/) on BY.
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Let V be a neighborhood of a boundary point and let us select an orthonormal

basis (o1, .. ., co" of (i, o) forms on V, with o^^g.cf, proportional to cf. If

CP== ^ 9ai...a Bi...0 cl)alA • • • ACO^AOJ^A . . . A oA
ai < ... < 0^ r " • s

PI<...<PS

is the local representation of <p in V, then the condition for <p to belong to B^Y, E)

can be expressed in V by saying that (p^ ^ •..^==0 on aY for P^ • • • ̂ s^-
Letting 6=60 we get

(6,9)a=(69)a-T*(a/A*<p)a=

=(6^+(-i)^+^ S 9aa,...ap....p .<Oa lA...AO)arAC^A.. .A(0^l .
1̂ <^ • * • ̂  0 .̂ r 8-

Pi<...<S,.i

Thus II^H^lieylky+TlHI^.

where ||cpl|%== ( ,, '_ , J^^y0^...^....^^65--5^--^"^^'.
v • ̂  i ) . /

Hence there exists a positive constant ^>o such that, for any (peB^Y, E)
with ^^^3

l|Vy||?,Y+^l|9||?,Y+^iJ^A(y,9)rfS^.3{||a9||^+||6y||^+T2||<p||^

This inequality is to be compared with a similar one given by J. J. Kohn for q = i

(Regularity at the boundary of the ^-Neumann problem, Proc. Nat. Acad. Sci., U.S.A.,
40 (^S)? 206-213; see alsoJ.J. Kohn, Harmonic integrals on strongly pseudoconvex

manifolds, II, Ann. of Math. (to appear)). The spaces B^Y, E) were first introduced

in general by H. Grauert in a lecture at a seminar in Bonn, Summer 1961. This

inequality can be considered as a generalization of estimates given for the first time by

G. B. Morrey for forms of type (o, i) on a strongly pseudoconvex manifold with

boundary (C. B. Morrey, The analytic embedding of abstract real analytic manifolds,
Ann. of Math., 68 (1958)3 159-201).

§ 6. Applications : finiteness theorems

18. Preliminaries on topological vector spaces. — a) Let F be a locally convex topological

vector space on which we will make the following assumptions.

(i) the topology of F is metrizable. This means that there exists a sequence

(yjneN of disked open neighborhoods of the origin which is a fundamental sequence

of neighborhoods and such that ft V^==o. It is not restrictive to assume that V ^ = V .

The second condition says that the topology of the space is HausdorfF. If

AW =inf{XeR[X> o, XV,^}
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then p^x) is a continuous seminorm on F ([6] Chap. II, p. 94). We have

V,=^eF[AW<i}.

The topology ofF can be defined by the sequence ofseminorms (A)neN*

Since it is not restrictive to assume

V,DV,^ VTZGN,

we have AW^A+iW V^eF, WeN.

As a distance defining the topology of F we can assume the expression

., , y i Pr^-y}
d{x^)==J.——————-.

—— o^i+A^-jO

(ii) The space F is complete. Thus F is a Frdchet space. Given any s> o the set

^e)={xeF\p^x-a)<^}

will be called a yz-ball of radius e and center a. We will make the following assumption:

(iii) Given e>o and n>_ i we can cover the unit yz-ball 'V^=={xe'F\p^x)< 1}

with a finite number of (n—i)-balls of radius ;<e.

A space satisfying the conditions (i), (ii), (iii) will be called a space of Fr^chet-

Schwartz.

b) We want to prove the following

Proposition 24, — a) A space F of Frechet-Schwark is a Montel space (i.e. every bounded

set of F is relatively compact);

P) ifN is any closed subspace ofF then N is again a space of Frechet-Schwart^, (with respect

to its natural topology);

y) if N is a closed subspace of F then F/N is again a space of Frechet-Schwark (with

respect to its natural topology).

Proof. — a) We have to prove that for any e>o we can find a finite set of balls

of radius ^ e for the distance d which covers a given bounded set B.
00 i

Choose TQ>O such that S -,.<s/3. Then if p^{x—j^)<s/3 we will have d{x^y)<e.
TO 4~ 1 ^

In fact since AW^A+iW we have

^) |̂̂ +i<£•

Since B is bounded there exists a Xo>o such that

Pr.^lW<\ V&6B.

We can then, by assumption (iii), cover B by a finite set of /o-balls of radius <s/3.

This proves our assertion.

[B) is a direct consequence of the definitions.
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y) For any xe'F we denote by x its image in F/N. Let

p^)==mf{p^x)\^xe'F with x=y}

Then {py} is a system of seminorms on F/N defining on it the quotient topology. We

know that this is the topology of a Fr^chet space. The unit /z-ball {^<i} in F/N

is the image of the unit 72-ball of F by the natural projection F->F/N. From this the

conclusion follows.

c ) Given the seminorm p^ the set {xe'F\p^{x)==o} is a closed subspace Ny, ofF.

Consider then the space F/N^ and on it the norm

] |^||^= value of pn(x) for all xeF with x==jy

x being the natural image of xef in F/N^.

Let F^ denote then the completion of F/N^ under the norm [| ||^. There is a

natural continuous map ?„ : F->F^

whose image is dense in F^; this associates to every xeF its image x in F/N^ as a point

of F^. We have also a sequence of natural maps

an+l : ̂ n+l—>'^n

which associates to every Cauchy sequence {^}eF/N^i for || \\n+i the same sequence

as a Cauchy sequence in the norm |[ ||^. This map is linear and continuous, and indeed

we have for every xeT || Pn+iW ||n+i^ll PnWIIn-

Hence for every j^eF^ l|an+i(^)|[n<|bl|n+r

We have, in fact, ^n+i°^n+i=^

Thus the image of a^n+1
 ls dense in F^«

The maps ^n+i are G0171?^ maps.

Proof. — Given s>o and the set [xe¥\p^^^{x)<i} we can find a finite |number

of ^.6F(i_<t^A) such that

^EF|A+lW<I}SU^£FIA^-^)<£/^•

Therefore we must have

^4-l{^Fn4-ll ll^lln+l<l}^U{^Fj \\x-X^<z}.

This proves that the image of the unit ball of F^^.^ under oc^i is a relatively compact

subset of F^.

As a consequence, the maps ^ are also compact maps.

Consider now the space

l jmF^={(^)en FJa^i(^+i)=^ for n=o, i, ...}.
^— n=0

CO

The topology being that induced by the product topology on FiF^.
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00

The space H F,, is a Frechet space and Urn F,,, as a closed subspace of it, is again
a Frechet space. "

We have a natural map y '• F-»-lim F,

which associates to each xe-F the sequence (^(^)eHmF^ The mapping y is linear

and continuous since every map J3,, is a continuous map.

Moreover Y is injective since P«W=o implies AW=o, and hence A;=O if
PnM^o for all n.

Finally y " surjective.

Proof.—Let (A-JelimF,,.

We select joeF such that || Po^o)—^ollo^-1;.
v

We select ^eF such that |j Pi0'i)— |̂|î ,

IKPiC^—.Vollo^-'a;

then A^i-^o)^^.

We select j^eF such that ll^^)-^!^-
24'

H^toi)—^!^-^

Then A(j2-J'l)^^.

In this way we construct a sequence (;»„) CF with the properdes

A,On+l——J>'»)^-n^i,
2

IIPn(A)-^||^

I

2»+2'

Now ^^A)=S1 A(7"^-^
2r ! +A(7»+i—A)

^j^1 A(j>'n+l—A) ^ _!_

- 0 2' I +A(jfn+l—A) "+1 2r

I f " I \ I co I

—2"^ 0 a^4''!?"^1";^

I

-2"-r

Therefore the sequence (jj is a Cauchy sequence and converges to an element jeF.
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We want to show that (V^)=^. We have, for v>^,

l|Pn(7)-^lln<ll^)-Pn(^)||n+llPn(jv)-^]|n

^A^-^+IIP.^)-^!!..

For v-^+°°5A(7—y^) ~
>0 3Ln<

^ | | (^(7\»)—^vllv—"0- This proves our assertion.

Using the theorem of Banach we conclude with the following

Proposition. — For any Frechet space F we can find a sequence (FJ of Banach spaces

and continuous maps o^n+i
 : ^n+i -> Fn wlt

^ dense images^ such that F r^ lim F^ (in the topological

sense).

If moreover F is a space of Frechet-Schwart^, then the maps ^n-\-i
 are

 ^mpact maps.

d ) Let F be a space of Frechet-Schwartz and let F' be the strong dual of F. We

have the following proposition ([i8], p. 404).

Proposition 25. — The strong dual F' of a space of Frechet-Schwart^ is the inductive limit

of a sequence (F^) of Banach spaces. For each n, F^ is a subspace of F^^, ^
e
 injection map

being compact.

Proof. — a) Let F==lim F^. Let F^ be the Banach space strong dual ofF^. The

map a^i :F^.^->F^ gives by transposition a compact injective map

' . V ^ TT'
^n - -^n-^n+r

Let G = U F^ == lim F^. A fundamental system of neighborhoods of the origin in G is

constituted by those convex disked sets V of G such that VnF^ is a neighborhood of

the origin in F^.

(B) There is a natural algebraic isomorphism G->F'.

In fact, if aeG, for n large enough aeF^ and thus ao^eF'. The element thus

defined a' eF' is independent of the choice of n.

If a'=o then a==o since (B^F is dense in Fy^. Finally if a'eF' for some n we

must have I'^'W 1-^AW-

Therefore vf defines an element aeF^ such that a'==ao(B^.

y) We have to show that the isomorphism G->F' is a topological isomorphism

Let B be a bounded set in F, then

B^oceF'lsup^a.B^i}

is a neighborhood of the origin in F' for the strong topology. When B describes the

system of bounded sets in F, B° describes a fundamental system of neighborhoods for

the strong topology of F'. Consider the set

B°nF^{a,eFJsup|<^, ^(B)>[<i}.

Since P^(B) as a subset of F^ is bounded, B°nF^ is a neighborhood of the origin in F^.

Therefore B° is a neighborhood of the origin in G'.
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Let now A be a disked set in G which is a neighborhood of the origin in G.

Consider the set A° =={xeF [ sup [ <x, A> | < i}.

The set A° is a bounded set in F. It is enough to show that A° is weakly bounded.

If aeF' we can find a X>o such that XeA. Thus for xeA° we have

|aW[< 1
i"^/i '^

and we have Ac(A°)0.

This proves that the topologies of F' and G coincide. Finally we remark that F'

as a dual ofFr^chet space is complete with respect to the strong topology ([15], p. 266).

It then follows that every bounded set BcF is contained as a bounded set in some

space F^ of the sequence of definition ([ii], p. 270).

e ) We consider the class V of spaces which are a product of a space of Frdchet-

Schwartz and of the strong dual of a space of Frechet-Schwartz.

Every element E of V has the following properties

(i) E is a complete Montel space of type oSf^" ([n], p. 248).

(ii) If (EJ^N is a sequence of definition of E, then every bounded set BCE

is contained as a bounded set in some Ey^.

(iii) There is a sequence of definition (EJ of E such that, if K is a compact set

of E, then, for some n, KCE^ and is compact for the natural topology of E^.

The properties (i) and (ii) follow from the remarks made in d ) . To prove (iii) we

proceed as follows. Let E = F' X G where G is a Frechet-Schwartz space and F' the dual

of a Frechet-Schwartz space. Let K^, Kg be the projections of K on F', G respectively.

Then K-i and Kg are compact. Let K=KiXKg. It is enough to prove the statement

for K. It is thus not restrictive to assume G=={o} and E==F'. Now, with the

notations used before, KCF^ for some n, and is bounded in F^, hence KcF^i. But K

is closed in F^i for the topology induced by F', hence closed also for the topology

of Fn+r Moreover, the injection F^->F^^ being compact, it follows that K, as a

subset of 'F^+19
 ls relatively compact, hence compact.

Let E and F be elements of ^ and u : E—^F a surjective continuous linear map.

Then we have

(iv) u is a homomorphism.

(v) every convex compact subset of F is the image by u of a convex compact set of E.

Proof. — The first assertion follows from ([n], p. 269). To prove the second

assertion we remark that, if (FJ is a sequence of definition of F then KCF^ for some n

and is compact in Fy^. Let (E^) be a sequence of definition of E then, for some m

we must have F^C^(E^), for the injection map is continuous for the topology ofFrechet

space of Fy^ and for the topology of Frechet space of u(E^) ̂  E^/(Ker u \ E^). It follows

that K, as a subset of ^(EJ, is compact and it is thus the image of a compact set

KCE^ by the mapping u.
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Now K is a compact set in E^ and a fortiori compact for the topology induced

on E^ by E which is weaker than the topology of E^.

If F(K) and F(K) are the closed disked envelopes of K and K these are also

compact, since E and F are complete and we have ^(F(K))== F(K).

By a theorem ofL. Schwartz [17] we then conclude with the following

Proposition 26. — Let u, v be two continuous linear maps ofTL into F, E and F being elements

ofV.

If u is surjective and v is compact^ then u + v has closed image of finite codimension.

19. a) Let X be a complex manifold of pure complex dimension n. Let 0.

be a relatively compact open subset of X.

Let E be a holomorphic vector bundle on X and let W== (U^.^ be a locally

finite covering of X with the following properties:

(i) for each zeN there exists a coordinate patch Vp3U^;

(ii) on V^, E[V^ is a trivial bundle.

Let © be the holomorphic tangent bundle; by condition (i) ©]V, is also a trivial

bundle.

Let D? a symbol of derivation of order \p\ with respect to the local ^ and ^ coor-

dinates in U,.

If we introduce a hermitian metric on X and a hermitian metric on the fibres

ofE we can also consider the symbols V^ of co variant derivation of order \p\ with respect

to the local coordinates ^ and .̂. Given a form (peC^X, E), <p can be represented

by a system (9^)1 ̂ N °^ G°° forms of type (r, j) on the sets U, satisfying the consistency
condition <p^===^.(py in U^nUy. For any compact set KCX we can consider the

seminorms

P^W== 8UP sup S [D^MI,
;,v^nK+0 rceu^nK \^\^k

^(cp)=supl S A(V^, V^J2.
xe'K\\r\^.k j

There exists a constant C(K)>o such that for any yeG^X, E) we have

(37) C(K)-^K(9)^<(9)^C(K)^(9).

b) We will consider the following topological vector spaces, ^'^the vector

space (^(X, E) with the topology defined by the family of seminorms TT^.
0

Let (K,.)^N be an increasing sequence of compact sets in X such that K^cKy.^^,

X= UKy; then, setting ^==7^ , the family {^r)rev defines on (f^
8 the same topology.

From inequality (37) it follows then that ^rts is a Frechet space; as a distance

defining its topology we can take

^^ -^-^ .
"a^+^p-^)
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We remark that the seminorms TTy verify the following inequality:

-^rW^r+lW

for any reN.

Lemma 27. — Let ^r+l
=
={

(
9

e
^

r1s
\
71:

r+lW<
l
}'

Given e>o we can find a finite number of points ^^By.^ such that

B^cU^e^lT^y-T^s}.

Proof. — If the contention of the lemma is not true, given ^^eB^i we can find

(pgeB^i such that Tc^((pi—(pg)^2- Also, we can find (pgeB^i such that 7r,.(cpi—ps)^6?

^(92—Ps)^8- By this procedure we find a sequence (pv^B,..^ such that for

v+^,7r,(<p,—<p^);>£.

Now by inequality (37) we see that the functions cp^,. on U^nK^ are uniformly

bounded with all their derivatives up to the order r + i. By Ascoli's theorem we can

thus select a subsequence (9^ ) which is a Cauchy sequence in the seminorm TT^. This

is a contradiction. In conclusion the space ^rls is a space of the class V, and in fact a

space of Frechet-Schwartz.

b ) Let ^lr1 s be the strong dual of ^r's. This space is again in %7 and can be identified

with the space of distributions with compact support and of type (r, s) if, for Te <?'*'*s,

we define the value of T on (pe^*8 by

T[9]=(^T).

Then the operator i : ̂ frfs
 -> ^

frfs+l

is given by 0T[y] == (69, T).

This is a continuous linear map. Hence the space

z'^^Ter^iar^o}

is a closed subspace of ^/r)s and therefore is in the category <
S'.

c ) Finally we consider the space C^(Q, E) of C°° (r, s) -forms with support

contained in Q. with the topology defined by the seminorms TTQ. It is easy to verify that

this space is also a space of the class ̂  and in fact a space of Frechet-Schwartz. We put

zr-^c^n.E)]^^}.

This is a closed subspace of C^8^, E), hence again a space of Frechet-Schwartz.

There is a natural map i : Z^ —^Z^'

which associates to every form reZ^'8 the distribution T, defined by

TJcp]=^A(cp,T)rfX.

Lemma 28. — The inclusion map i : Z^-^Z^'8 is a compact map.

Proof. — Let B-{TeZ^|^(T)< i}.
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This is a neighborhood of the origin in Z^ . For any cpe^'8 and reB we have

< i(^)y 9> = (9, r)o and therefore

<z(r), 9>^(y> ?)o-

This shows that z(B) is bounded in Z^*8, hence relatively compact (Note that

(z^y^^^z^)0).
d) From proposition 26 we then obtain the following

Theorem 6. — Consider the linear map

y« . /P^8-1^^8 __.7•rfs

W . 6 W/.j^ —> Li

defined by w{e'@^) ==^' + i (<$;).

If w is surjective, then dimcHĵ X, ̂ (E))< oo.

20« Finiteness theorem for q-pseudoconvex spaces.

a) We first prove the following

Lemma 29. — Let X be a complex manifold

Let 0 : X ->-R be a C°0 strongly q-pseudoconvex function on X such that the sets {0< const.}

are relatively compact in X.

Y=={^eX|(D(^)<supO}
Y

Then the natural map:

H^-^^Y, tV(E)) -> H^-^^X, ̂ (E))

is injective.

Proof. — Let ye^^'^^Y, E) with ^9=0. Let us assume that there exists

a •^^"-^X, E) such that 9=^73 on X.

We want to show that there exists a pe^'^'^Y, E) such that

9== "a p.

With the same notations as in § 3 n. 9, and using Proposition 23, we can find a

C00 A^eW^-^X, E) such that

T^ae^+M^x;

thus 9 ==^6^.^.

Let ^x^^x^x* Then ^^^==9, 6;^==o so that, by proposition 5 we have

(^k)^^?)^

with a positive constant c independent of X.

This is an inequality of Carleman type; therefore we can find a peG^^X, E)

with ^p=9;

supp pC^eX|0(^)^ supO+s}.
supp <p

Then pG^r'n-'g(Y, E) if e is sufficiently small. This proves the lemma.
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b) Lemma 30. — Let X be a complex manifold. Let p, <p be C00
 functions on X with

the following properties;

(i) p is strongly pseudoconvex;

(ii) 9 is strongly q-pseudoconvex;

(iii) the set 0.=={xeX\s\ip{p, <p)<o}

is relatively compact in X.

Then we can find a sequence of open sets A^CCO. for veN such that

(i) A,CA,^ for veN;

(ii) ^=UA,;

(iii) ^zcA A^, ^ a q-complete manifold.

Proof. — Let a = nun j&, b = mm y and let
o Q

p^^l^l o=l±i,

M 5 H •
^en ^={^eX|sup(P,0)<i}.

Let ^^P^+O".

We set A,^=^e^|^<i—lL

Then the sequence A^, v= i, 2, ..., has the required properties.

In fact ^ is C00 and strongly y-pseudoconvex. Moreover for x^eA^ we have

sup(P(^),0(^))=./i—1,
V v

and for x^eQ. and v sufficiently large

fW+^W<i-^.

c ) Using these lemmas and the arguments of § 21 of [2] one obtains the following

Proposition 31. — Let X be a complex manifold and 0 :X->R a C00
 strongly

q-pseudoconvex function >o such that the sets

X^=={xeX\^<d>(x)<c}

be relatively compact in X for every e>o, c>o.

Let T be the family of closed sets F in X such that

sup 0<oo.
F

Th€n H^(X, f/(E))=o /,r ̂ -y.

A manifold X is called strongly q-pseudoconvex if there exists a C00 function $ : X ->R

and a compact set KCX such that 0 is strongly y-pseudoconvex outside K and the
sets {0<const} are relatively compact in X.
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Corollary 32, — For a q-pseudoconvex manifold X

dimcH^(X, ^(E))<oo for s^n-q.

Proof. — By the above proposition every ^-closed distribution of type (r, s) with

compact support is ^-homologous to a B-closed G00 form with compact support contained

in {0<sup 0+ i}. This permits the application of Theorem 6 of the previous section.
K

21. Finiteness theorem for q-pseudoconcave spaces.

a) Let X be a complex manifold of pure complex dimension n. Let 0 be a C°°

strongly pseudoconvex function on X such that the sets

U,={^eX[(D(^)<£}

be relatively compact, for o<s<So. Let 9 be a C00 strongly y-pseudoconvex
function on X.

We set U={^eX[(D(^)<o},

V=^eU^)^o},

W=U—V=={^U|9^)>o}.

Let E be a holomorphic vector bundle on X.

Lemma 33. — H^(W, Q^E))^ for s>q+i.

Proof. — Letting V^=={xeU^^{x)<e} we see that

(i) U = f l U g has a fundamental system of neighborhoods U for which

H^U.n^E))^ for i>o.

(ii) V=nVg has a fundamental system of neighborhoods V for which

H^V, Q^E^^o for i>_q (use lemma 30 of n° 20 and Serre's duality [20]).

Hence ?(17, ^(E)) = o for z>o,

HP(V,fy(E))=o for i>_q.

From the exact sequence

,.. ->H^(W, iy(E))->IP(U, ̂ (E^H^V, nr(E))^H^+l(W, ^(E))-^...

we then deduce that

H^(W,Q r(E))»HS- l(V,ft r(E))-o if s-i^q.

b) Let X be a complex manifold and B an open set in X such that ^B is compact.

We say that B has a strongly ^-pseudoconcave boundary if we can find an open

neighborhood U of &B in X and a C00 strongly ^-pseudoconvex function 0 on U such that

BnU={A:eU|0(A:)>o}.

Let (U,)i^^ be a finite covering of BB with coordinate balls U.CCU and let p,,
1<1<

^ be G00 functions on U such that

P^o, suppp^CCU,, 2p,(A:)>o \/xe8Q.
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8

We set <D, == 0 + S e^.p,. If the s^>o are chosen sufficiently small, then the functions O,

are all strongly y-pseudoconvex in U.

We set W={K—U}u{xeU\(D^x)>o}.

Then B=BODB1^ . . . Dff since O^O.+i (<I>=Oo)-

Moreover B'—B'-^CCU,.^ for o _ < ^ < ^ — i .

And finally B^CB.

We thus have proved the following « bumps lemma »

Lemma 34. — Given on a complex manifold X an open set B with compact strongly

q-pseudoconcave boundary, we can find for any finite covering (U,)î <^ of 8K a sequence of open

sets B8, o^s^t with strongly q-pseudoconcave boundary such that

(i) B=BO^B1^...^B ( ,

(ii) B^B^CCU^i for o^s<,t—i

(iii) B^CB.

Analogously we can construct an increasing sequence of open sets B8, o<^_<^ with

compact strongly y-pseudoconcave boundary such that

(i) B^B^B^.^CB^

(ii) BS—B8-1CCU, for i<s<t,

(iii) BoCff.

c ) Let X be a complex manifold and let 0 : X->R be a strongly y-pseudoconvex

C00 function on X such that the sets

Xc,=^eX|C>$W>.}

be relatively compact for every Oo, c>o.

Let B,={xeX\a>{x)>c}

and let T* be the family of closed sets F of X such that infOo.

Proposition 35. — For any c>o there exists an s>o with c—e>o such that the

homomorphisms Hy(B,, ^(E)) -> Hy(B,_,, ^(E))

H^(B^, ^(E)) -> H^(B,, ^(E))

are surjective for any s>q-{-i.

Proof. — With the notations of lemma 34, setting B == B^, making use of lemma 33

we see that for s]> q -)- i

Hy(B1, ^(E)) -> H4.(B0, ^(E))

is surjective. Repeating the argument we see that for .?_> q + i

H^ff, ^(E)) -^ Hy(B, ^(E))
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is surjective. If e is sufficiently small B^CB^gCB, hence the second assertion. The

first assertion is proved in the same way.

Let e(c) be the sup. of all s such that c— s>o for which the conclusions of the above

proposition hold; then one verifies that £(^)J>£(^o)— \°—^ol? Le- ^at s(^) is a lower
semicontinuous function.

d ) Let X be a strongly q-pseudoconcave manifold. That means that we are given a

compact set K in X and 0>o a C00 function on X, strongly y-pseudoconvex on X—K,

such that the sets B, = [x e X [ 0 [x) > c}

are relatively compact in X. Let ^===inf0. We then have the following
K

Proposition 36. — For any (T>O, ^—o>o, the natural map

H^_,,^(E)) -^H^(X,^(E))

is surjective for j> q + i.

Proof. — Let S<=H^(X, ^(E)) and let supp^cB,. We can find a sequence

Ci = ̂ <^< ... with ^ -̂ o + <y/2 such that

H^^,^(E))->H^,^(E))

is surjective. Hence S can be represented by a cocycle with support in any B^. If v

is large enough B^ CB^_g. This proves our assertion.

Corollary 37. — For a strongly q-pseudoconcave manifold X and for any holomorphic vector

bundle E on X we have

dimcH^(X, Q^E^oo for s>q+1.

22. TA^ groups H^'^^X, ^(E)) o% a strongly q-pseudoconvex manifold.

a) Let X be a strongly y-pseudoconvex manifold of pure dimension n. Let K

be compact in X and let 0 : X-^-R a C00 function on X such that

(i) 0 is strongly y-pseudoconvex on X—K;

(ii) the sets 'B^=(xe^K\^{x)<c} are relatively compact in X for every ceR.

Let CQ = sup 0.
K

Using the vanishing theorems for ^-complete manifolds and the bumps lemma one

proves that for C'>CQ we can find an e>o such that

HS(B^„tlr(E))->H8(B„Qr(E))

is a surjective map for s^_q. From this one deduces the following [2]

Proposition 38. — Under the above specified assumptions one has, if s>_q,

dimcH^^E^+oo

for any C>CQ, and any holomorphic vector bundle E on X.

Corollary 39. — With the same assumptions the image of

~8 : ̂ -^(B^ E) -> ̂ -^(B,, E)

is a closed subspace of ^-^(B,, E).
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Proof. — We consider the sequence

C^-^B,, E) -^ C^B,, E) -^ C^-^B,, E).

By the assumptions, since H^Bp, ^(E)) is finite dimensional, the first map B is a topo-

logical homomorphism. Denoting by K^-^-^^B,, E), K71-^-^, E) the dual

spaces of C^-^B,, E), C^B,, E) respectively, it then follows that

"a : K^-^-^B,, E) -^ ̂ -^-^(B,, E)

has a weakly closed image.

This holds for any r and any vector bundle E. Now we consider S
r1n

~
q
(B^, E)

and ^^-^(B^E) as subspaces of K^-^B,, E), K^-^^B,, E) by associating

to any form <pe^*(B,, E) the distribution T^eK^B,, E)

T,M-(^9).

To prove the corollary it is enough to show that 8S
r1n

~
q
(K^ E) is sequentially closed

(cf. n° ii b), remark). Let (<?„) C^^-^B,, E) with <p^<p. Assume that <pv=^

with •^e^^'^B,, E). We have to show that there exists a ^e^^-^B^ E) such that

9= "a T].

By the assumption ^ -><p we have T^->T<p, but T^e^K^-^B,, E). Thus

TyeBK/'^^B^, E) by the above argument. Thus there exists a distribution S with

compact support in Bg such that
<p == as.

We now apply lemma 12 and we can find •^^"""^(B^, E) such that 9 ==07).

Proposition 40. — Let X be strongly q-pseudoconvex and let E be any holomorphic vector

bundle on X. Then the image of

~b : S^-^X, E) -> ̂ '"-^(X, E)

is closed. Thus H^^^X, fy(E)) has a natural topology of a separated topological vector space.

Proof. — We have to show that ^^""^(X, E) is sequentially closed. Let

(p^== aT^ea.^'^'^X, E) be a convergent sequence, y^"^?*

There exists a compact set K'CX such that

supp cp^cK/, supp cpCK'.

We select (;i>^o such that B^DK/.

Then on X—Bg , a^=o. By virtue of proposition 31, if n—^^i, there exist

forms Y^G^^'^X—B^E) such that

sup <!><oo, ^==8^ on X—B^.
supp Y ,̂
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Let [L be a C00 function with the properties

(i(^)==i if A:eX—B,^,

^)==o if A:eB^+^;

then (JiYv are compact supported forms and we can write

Pv^^v——^Yv))-

Replacing the forms ^ by the forms ^—^(^Tv) we see that we can assume that

suppT^CB^.

If n—q==o the same conclusion obviously holds.

Taking c = ̂  + i and applying corollary 39 we then conclude that there exists
an T^^-^X, E) such that

9=^.
This achieves the proof.

23. ^J As an application we prove now the following

Proposition 41. — Let X be a complex manifold of pure dimension n. Let E be a holomorphic

vector bundle on X.

We assume that

~8 : C^-^-^X, E) -> G"-^-8-1-^ E)

is a topological homomorphism. Let T be a distribution of type (r, s) with values in E (1) and

compact support^ such that 3T==o. The necessary and sufficient condition for the solvability of

the equation

T=="as

with a distribution S, with compact support of type (r, s—i) and with values in E, is that for

any ueCn~~rfn~s(X,E) with ~8u==o we have

TM=O.

Proof. — Let ^"^-'(E) be the sheaf of germs of C00, ^-closed forms of type

(n—r, n—s) and with values in E. We have the exact sequence

o->F(X, ^-^-^E^-^G^^-^X, E)-^^-^-84-^, E).

By the assumptions T[u] as a linear function on (^"^"^X^ E) defines a continuous

linear function on (^"'^"'(X, E)/F(X, ̂ -^-'(E)) with respect to the natural

Fr^chet topology of this quotient space. Since 8 is a topological homomorphism, then

"aC^-^-^E), with the induced topology of (^-^-^(X, E), is topologically

isomorphic with the previously considered quotient space. Thus T defines a continuous

(1) i.e. T is a continuous linear function on C'n~rfn~~s(K, E).
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linear function on ^(^"^"^X, E). By the theorem of Hahn-Banach we can extend

this linear function to a continuous linear function S : C^-^--84-1^, E)-^C. We thus

have
T[u]==S[8u]

for any ue^-^-^X, E). This means that

T==^S.

Moreover S as an element of the dual of G^^-^+^X, E) has compact support.

The necessity of the condition is obvious.

Remark. — If dim Hn-8+l(X, ̂ -'(E^oo then the assumption of the previous

proposition is satisfied.
Let B be open and relatively compact on X. We will assume that &B is smooth.

Let B^=[xeB\d{x, ^B)>s}. If e is sufficiently small then ^Bg is also smooth.

Corollary 42. — We assume that

dimcIP-^B, ̂ -'(E^oo

Let cpeC^X—B, E) with 8^==o be defined and 8-closed in X—B^. The necessary and

sufficient condition/or the existence of a form (peCV^X, E) such that

8y==o, ? | X — B = = 9

is that for any ueC^-^-
8
-

1
^ E") with ~Su==o we have

( (pA^==o for o<s<£o-
J 5Bg

Proof. — From the exact sequence

H°(X, ̂ (E)) ̂  H°(X-B, ^-(E)) -i H^(B, ^^(E))

we see that the existence of y is equivalent to the condition 8{<p}==o. Now

H^B, n^(E))^H^+l(B, ^(E)) and thus §{9} can be represented as follows. We

take any ^eG^X, E) such that ^ IX—B==<p$ then (f^f is compactly supported in B.

The condition S{(p}=o means that 8^ is the ^ o f a compactly supported distribution

with support in B. This is equivalent to the condition

f 1f^/\u=o for all ueC
91

-^-
8
-

1
^'^) with ^==0.

*/ B

But

j^u=f^^u)==j^{W==f^^u.

One will recognize the analogy of this result with a classical theorem [23] which asserts

that if/is a C°° function on the circle \^\ == i in C then/is the trace of a function

holomorphic in |^|<i if and only if

f f^d^==o for every A:eN.
J | 2 | == 1
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