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Abstract—This paper studies carrier aggregation between
multiple mobile network operators (MNO), referred to as
inter-operator carrier aggregation (IO-CA). In IO-CA, each
MNO can transmit on its own licensed spectrum and
aggregate the spectrum licensed to other MNOs. We focus
on the case that MNOs are distributedly partitioned into
small groups, called IO-CA pairs, each of which consists of
two MNOs that mutually agree to share their spectrum with
each other. We model the IO-CA pairing problem between
MNOs as a stable roommate market and derive a condition
for which a stable matching structure among all MNOs
exists. We propose an algorithm that achieves a stable
matching if it exists. Otherwise, the algorithm results in a
stable partition. For each IO-CA pair, we derive the optimal
transmit power for each spectrum aggregator and establish
a Stackelberg game model to analyze the interaction
between the licensed subscribers and aggregators in the
spectrum of each MNO. We derive the Stackelberg
equilibrium of our proposed game and then develop a joint
optimization algorithm that achieves the stable matching
structure among MNOs as well as the optimal transmit
powers for the aggregators and prices for the subscribers of
each MNO.

Index Terms—Carrier aggregation, cellular network,
cognitive radio, stable roommate, stable marriage, matching,
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I. INTRODUCTION

With the fast growing demand for mobile data service,

it becomes more and more difficult to allocate a wide and

contiguous frequency band to support high speed data

communication for each user equipment (UE). A new

technology proposed in LTE-Advanced (LTE-A) [2],

referred to as carrier aggregation (CA), allows network

operators to support high data rates over large bandwidths

by aggregating frequency resources that lie in different

frequency bands or which may not be contiguous. The
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next generation of mobile technology will rely on CA to

achieve its promised peak data rates. In a typical network,

a mobile network operator (MNO) may aggregate

frequency resource blocks contiguously or

non-contiguously within a single frequency band, i.e.

intra-band CA, or it may aggregate resources which are

located in separate frequency bands. While much of the

current work on CA investigates the aggregation of

exclusive blocks of spectrum from the perspective of

typical macrocell topologies [3]–[5], we study carrier

aggregation (CA) for cellular networks from a cognitive

radio (CR) network perspective.

In this paper, we investigate a framework that allows

multiple MNOs to access and aggregate each other’s

licensed spectrum for the purpose of providing more

spectrum for the low power elements of their network

topology. As such, we propose a system that allows for

the dynamic aggregation of spectrum resources over both

the MNO’s own spectrum holdings and the spectrum

holdings of other MNOs. In this scenario, an MNO may

operate high power macrocells in its own exclusively

licensed spectrum and may dynamically aggregate

additional sub-bands, for lower power use, in another

network’s licensed spectrum. We refer to this type of

carrier aggregation as inter-operator CA (IO-CA), i.e. a

heterogeneous mix of users, having different rights and

employing different transmit powers, exploits the same

frequencies over the same area.

From a CR network perspective [6]–[8], each MNO

and its corresponding subscriber UEs, who are spectrum

license holders, are also referred to as the primary users

(PU). The subscriber UEs of each MNO have priority to

use their own licensed spectrum, but they can also tolerate

a certain interference increase caused by subscriber UEs

from other MNOs. These subscriber UEs from other

MNOs, also referred to as secondary users (SU), can

access the spectrum licensed to the MNO as long as the

resulting interference is lower than the tolerable level of

the spectrum license holders, i.e. the PUs. We propose

two IO-CA approaches: a direct extension of the

traditional CA in LTE Advanced into the inter-operator

scenario, called regular IO-CA, and a spatial spectrum

sharing-based IO-CA framework for multi-operator

cellular networks, called sharing IO-CA. In both

approaches, each MNO and its subscriber UEs are



2

regarded as PUs in its own spectrum. Some UEs from

each MNO can also access and aggregate the spectrum of

other MNOs, where they will be regarded as the SUs and

should always control their access to keep the resulting

interference under a given tolerable level.

There are several challenges to enable IO-CA between

MNOs. Specifically, in the traditional CA within the

spectrum of one MNO, the MNO’s infrastructure (e.g.,

eNB in LTE Advanced) controls and manages the

spectrum aggregation behavior of its UEs in a centralized

fashion. In cellular networks with multiple MNOs,

however, there is no central controller and, because of

privacy and business reasons, each MNO cannot disclose

its private information (such as the payoffs and preference

of its UEs and the performance improvement brought by

IO-CA) to other MNOs. In addition, since each MNO has

already been licensed an exclusive spectrum band and

does not have to always rely on IO-CA to achieve the

basic quality-of-service (QoS) for its subscriber UEs, each

MNO will only allow its spectrum to be aggregated by

others when it has an incentive to do so.

One approach that has been proposed in the existing

literature is for all the operators to merge their licensed

spectrum to form a common spectrum pool [9]–[12].

However, the spectrum pooling system generally requires

all operators to give up their exclusive use of spectrum. In

addition, the coordination and competition for the

spectrum usage among all the operators and their

corresponding UEs does not always lead to an efficient

solution, especially when the size of the coverage area

and the number of operators and UEs becomes large [12].

A tradeoff between spectrum pooling and intra-operator

CA can be achieved by partitioning all MNOs into small

groups, each of which consisting of a limited number of

MNOs that are willing to coordinate and share their

spectrum with each other. However, as observed in [8],

there may not always exist a stable coalition formation

structure in a distributed multi-agent system and even if it

exists, there is still a lack of an effective algorithm to

allow all MNOs to distributedly negotiate and form this

structure. That is, finding a coalition formation structure

in a distributed multi-agent system has been proved to be

NP-hard [13], [14].

In this paper, we study the joint optimization for an IO-

CA-based cellular network with multiple MNOs. We focus

on solving four optimization problems:

1) IO-CA Pairing Problem: in this problem, we focus

on the case that all MNOs can be partitioned into

different groups, called IO-CA pairs, each of which

consists of two MNOs. In our model, all MNOs can

establish a preference over each other and an IO-CA

pair can only be established when two MNOs

mutually agree to share spectrum with each other.

We model this problem as a stable roommate market

and seek a stable matching structure among all

MNOs such that no MNO or a pair of MNOs has the

intention to unilaterally deviate. We allow each MNO

to dynamically join or leave an IO-CA pair and

introduce two operations: deletion and addition, for

cellular networks. Specifically, if an MNO observes

increasing traffic demands in its network and would

like to seek extra network capacity by forming an

IO-CA pair with others, it will join the roommate

market by using the addition operation to decide its

IO-CA pairing partner and still maintain the stability

of the existing partitions. Similarly, if the service

demand for an MNO in an IO-CA pair decreases to

a level that can be satisfied without using IO-CA, the

delete operation will be applied to remove this MNO

from the existing IO-CA pair. We observe that a

stable matching structure may not always exist. We

derive a condition for which a stable matching

structure exists and propose an algorithm that can

detect whether this condition is satisfied and, if it is,

achieves this matching structure.

2) Price Adjustment Problem: in this problem, each

MNO charges a price to the subscriber UEs from

other MNOs that aggregate its spectrum. We observe

that for each MNO, charging a high price to the

aggregators will deter the potential MNOs that are

willing to form an IO-CA pair. On the other hand,

charging a low price will decrease the profit and

increase possible interference between pairing

MNOs. We hence propose a Stackelberg game-based

hierarchical framework to investigate the case where

one MNO and its subscriber UEs are the leaders in

their own licensed spectrum, with the ability to set

prices for secondary use of the spectrum, and

subscriber UEs, also called the aggregators, of other

MNOs are the followers who can optimize their

performance under the prices imposed by the leaders.

3) Power Control Problem: in this problem, each

subscriber UE using sharing IO-CA can optimize its

transmit power to further improve its performance

without causing intolerably high interference to the

subscriber UEs of the primary operator.

4) Joint Optimization problem: we consider the joint

optimization of the above three problems and

develop a distributed algorithm to jointly optimize

the resulting decisions.

To the best of our knowledge, this is the first work that

studies the optimization of IO-CA in cellular networks,

adopting a framework that combines the stable roommate

market problem and a Stackelberg game.

We observe that not all network systems can support

the optimization of all the above problems at the same

time. Therefore, in addition to presenting numerical

results for our joint optimization algorithm, we also

compare the performance improvement brought by each

individual solution in our proposed optimization

framework.

The remainder of this paper is organized as follows.

The background and related works are presented in

Section II. The network model and problem formulation

are established in Section III. The game theoretic analysis

is presented in Section IV. We provide numerical results
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and discussions in Section V and conclude the paper in

Section VI.

II. BACKGROUND AND RELATED WORKS

Most existing works in inter-operator spectrum sharing

focus on cases in which multiple operators share or

compete for a common pool of spectrum resources. For

example, the authors in [15] have studied power

allocation problem for multiple competitive operators

coexisting at the same time in the same spectrum. The

authors in [16] have applied the two-player non-zero-sum

games to study the spectrum allocation problem for

multiple operators that share a common spectrum. In [17],

the authors have focused on the spectrum allocation

problem by assuming all the operators are centrally

coordinated and studied a multi-carrier wave-form based

inter-operator spectrum sharing concept. In [12], spectrum

pooling has been modeled as a hierarchical game and a

joint optimization framework has been proposed. Different

from these existing works, in our paper, each operator has

been licensed an exclusive portion of the spectrum and

can autonomously decide whether to share its licensed

spectrum with others.

We study the joint optimization problem for cellular

networks with multiple MNOs from the game theoretic

perspective. Game theory has been widely applied to

study distributed optimization problems for spectrum

sharing-based CR networks. More specifically, the authors

in [18], [19] have introduced a non-cooperative game

theoretic model to study the sub-band competition among

SUs in a CR network. Stackelberg game-based models

have been proposed in [8], [12], [20], [21] to study the

interaction between SUs and PUs. In [22], [23], the

authors have applied a coalitional game theoretic model to

analyze the possible cooperations among different users

who share the same spectrum. A detailed survey of game

theory and its application into CR networks has been

presented in [24]–[26].

We model the pairing problem among MNOs as a

stable roommate market. The roommate market and its

variations have been extensively studied from both

theoretical and practical perspectives [27]–[31]. More

specifically, the stable roommate market with ties and

incomplete lists has been analyzed in [27]. In [29], the

stable roommates market with parallel edges and multiple

partners has been considered. A detailed survey for

different variants of the stable marriage problem and

stable roommate problem has been presented in [30].

III. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model

Consider a cellular network consisting of a set of

closely located MNOs, labeled as K = {M1, M2, . . . ,
MK} as shown in Figure 1. Each MNO Mi is licensed an

exclusive frequency band consisting of a set of

component carriers (CCs) each of which can be allocated

to support the MNO’s UEs. Note that the term “UE” may
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Fig. 1. Network model for an IO-CA-based cellular network with 4
MNOs.

have different meanings in different systems. For

example, if each MNO corresponds to a cellular

telecommunication network operator, a UE is equivalent

to a cellular UE and the corresponding communication

channel connecting itself and the infrastructure (e.g., base

station). If each MNO corresponds to a device-to-device

communication network, each UE then becomes the

communication channel between a pair of

device-to-device source and destination. Let the set of all

UEs currently using the service of MNO Mi be Si. It has

been recently proposed in [32] that each UE should be

able to access more than one CC to support high data rate

transmission. In this paper, we use the term “sub-band” to

denote the subset of CCs that can be allocated to each

UE. Let the set of all sub-bands of MNO Mi be Bi. The

list of notation used in this paper is provided in Table I.

We consider an inter-operator carrier aggregation

(IO-CA) system in which a subset of sub-bands of each

MNO Mi, denoted as Li for Li ⊆ Bi, is aggregated by

subscriber UEs from other MNOs and, in exchange, a

subset Ni ⊆ Si of UEs from MNO Mi can aggregate the

sub-bands licensed to other MNOs. We refer to the UEs

that subscribe to each MNO as the subscribers and those

UEs from other MNOs aggregating the spectrum of an

MNO as the aggregators. Let Sk
i be the subscriber

occupying the kth sub-band of MNO Mi. Let Ŝl
ij be an

aggregator of MNO Mi that accesses the lth sub-band of

MNO Mj for i ̸= j and l ∈ Lj . Each MNO needs to first

obtain permission from other MNOs before aggregating

their spectrum. In most existing network systems, each

MNO controls the usage of its sub-bands through its

infrastructure (e.g., eNB in LTE systems). Once an MNO

Mj agrees to allow other MNOs (e.g., MNO Mi) to

aggregate its spectrum, it will allocate each aggregator a

specific sub-band, i.e., there is a function mapping each

aggregator Ŝk
ij to sub-band k of MNO Mj . This function

can be centrally decided by the pairing MNOs or it can

be the result of sub-band competition between aggregators

inside an IO-CA pair [33], [34]. The detailed analysis of

the sub-band cooperation or competition among

aggregators is outside the scope of this paper. Interested

readers can see [8], [18], [19], [33]–[35] for the details.

In this paper, we consider the following two IO-CA

approaches:
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1) Regular IO-CA: This approach directly extends the

CA in existing LTE-Advanced into the multiple

MNOs case where each MNO assigns each

aggregator a vacant sub-band that is unoccupied by

its subscribers.

2) Sharing IO-CA: In this approach, each MNO Mi

allocates each aggregator to a sub-band that is

currently occupied by a subscriber. To maintain the

quality of service of the subscriber, Mi should be

able to limit the resulting interference caused by

each aggregator from other MNOs using a pricing

mechanism which will be described in detail in

Section IV-B.

In regular IO-CA, the transmission of each aggregator

cannot affect the performance of subscribers to the primary

MNO, and hence the transmit power of each aggregator Ŝk
ij

does not need to consider interference constraints. The main

shortcoming of regular IO-CA is that the maximum number

of aggregators cannot exceed the number of vacant sub-

bands. Sharing IO-CA, on the other hand, allows sub-band

sharing between aggregators and subscribers and hence can

provide further performance improvement even when there

are no vacant sub-bands available. The main challenge for

sharing IO-CA is that the cross-interference will adversely

affect the performance of both sub-band sharing aggregator

and subscriber. Therefore, one of the most important issues

for sharing IO-CA is interference control [6], [7], [12]. That

is, each aggregator Ŝk
ij should always maintain its resulting

interference to the sub-band sharing subscriber Sk
j below a

tolerable level denoted as qj .

We assume that each IO-CA group can only be formed

by two MNOs and refer to a group of MNOs that allow

each other to aggregate their sub-bands as an IO-CA pair.

This assumption is reasonable in practical

implementations to make it easy for each MNO to

manage interference of the aggregators in its licensed

spectrum. More specifically, whenever an MNO detects

intolerable interference caused by an aggregator in its

sub-band, it will inform the other paired MNO that it

should perform interference control or even stop

aggregating the sub-band in question. We also assume

each sub-band (occupied or unoccupied by a subscriber)

can be aggregated by at most one aggregator.

Let the channel gain between source and destination of

aggregator Ŝk
ij be hk

ij for i ̸= j and k ∈ Lj . Let Rij be the

set of sub-bands of MNO Mj that aggregators from MNO

Mi will access using regular IO-CA, with Rij ⊆ Lj . We

consider the following power constraint of each sub-band

k for k ∈ Rij :

0 ≤ ŵk
ij ≤ q̃kij , (1)

where q̃kij is the maximum transmit power that can be

supported by aggregator Ŝk
ij . ŵk

ij is the transmit power of

aggregator Ŝk
ij in the kth sub-band of MNO Mj . Suppose

the rest of the sub-bands in Lj are aggregated by

aggregators from another MNO Mi using sharing IO-CA.

We can write the power constraints of sub-band

TABLE I
LIST OF NOTATION

Symbol Definition

K Set of MNOs
Mi ith MNO
Si Set of UEs for MNO Mi

Bi Set of sub-bands licensed to MNO Mi

Li Subset of sub-bands of MNO Mi allowing
aggregation from other MNOs

Ni Subset of UEs of MNO Mi that can aggregate the
spectrum of other MNOs

Sk
i Subscriber occupying the kth sub-band of MNO Mi

Ŝk
ij Aggregator from MNO Mi aggregating the kth sub-

band of MNO Mj

Dk
i Corresponding destination of Sk

i

Bk
i Bandwidth of the kth subscriber of Mi

hk
ij Ratio of the channel gain between aggregator Ŝk

ij

and subscriber Sk
j to the additive noise received by

Sk
j

wk
i Transmit power of subscriber Sk

i

ŵk
ij Transmit power of aggregator Ŝk

ij

qj Maximum tolerable interference in each sub-band
of MNO j

βk
i Pricing coefficient charged to the aggregators in the

kth sub-band of MNO Mi

ϖi(j) Part of the payoff of MNO Mi obtained by allowing
its spectrum aggregated by aggregators from MNO
Mj

ϖ(i)j Part of the payoff of MNO Mi obtained by
aggregating the spectrum of MNO Mj

ϖij Total payoff of MNO Mi obtained from an IO-CA
pair between Mi and Mj

k′ ∈ Lj\Rij :

0 ≤ ŵk′

ij ≤
qj
hk′

ij

, (2)

where qj is the maximum tolerable interference of MNO

Mj .

In a regular IO-CA system, each aggregator Ŝk
ij can

transmit at the maximum power ŵk
ij = qki in its assigned

sub-band k and we assume the price paid by Ŝk
ij to MNO

Mj is a linear function of its transmit power denoted by

ζk(i)j = βk
j ŵ

k
ij

1. We can hence write the payoff of Mi

obtained from regular IO-CA as

ϖR
ij =

∑

k∈Rij

[

Bk
j log

(

1 +
hk
iiŵ

k
ij

ϱki

)

− ζk(i)j

]

, (3)

where Bk
i is the bandwidth of the kth sub-band of MNO

Mi and ϱki is the additive noise received by Ŝk
ij in sub-

band k. Note that, in regular IO-CA, each aggregator can

only access the vacant sub-band and hence there is no cross

interference between the aggregators and subscribers.

In a sharing IO-CA system, the subscribers always have

priority to access the sub-bands of their MNOs. More

specifically, a subscriber Sk
i in sub-band k ∈ Li can

choose its transmit power wk
i without considering the

settings or parameters of the potential aggregators in its

1The linear pricing function is motivated by the fact that many
existing telecommunication mobile systems charge UEs according to their
communication data rates, which are monotonically increasing functions
of their transmit powers.
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sub-band. The price charged by each MNO to aggregators

from other MNOs can be in real currency, such as the

spectrum rental fee charged by an MNO [36], or it can be

in a virtual currency used by each MNO to manage or

regulate the interference and accessibility of the

aggregators [7], [37].

We assume that each MNO can only control the price

of its own sub-bands and should always follow the prices

decided by other MNOs when it aggregates their spectrum.

In this way, the utility function of each MNO contains two

parts:

1) The first part consists of the payoff obtained from its

own spectrum. We assume each MNO tries to

maximize its transmission rates and follow the

widely adopted revenue function [8], [12], [35], [38]

to define the revenue of MNO Mi obtained from its

subscriber Sk
i which shares sub-band k ∈ Li with an

aggregator Ŝk
ji as

πk
i(j)

(

wk
i , ŵ

k
ji

)

= αiB
k
i log

(

1 +
hk
iiw

k
i

ϱki + hk
jiŵ

k
ji

)

. (4)

where αi is the unit price charged by MNO Mi from

its subscriber for sending each bit per second of data.

Each MNO can also obtain revenue by charging the

aggregator in each of its sub-bands. Let the revenue

of MNO Mi obtained by charging aggregator Ŝk
ji for

causing interference to its subscriber Sk
i in sub-band

k be π̂k
i(j)

(

βk
i , ŵ

k
ji

)

= βk
i h

k
jiŵ

k
ji where βk

i is the

pricing coefficient of MNO Mi for the aggregator in

the kth sub-band for causing each unit of

interference on subscriber Sk
i .

We hence can write the first part of the payoff function

of MNO Mi in a sharing IO-CA pair formed by Mi

and Mj for Mi ̸= Mj as follows:

ϖ′
i(j) (βi,wi, ŵji)

=
∑

k∈Li\Rji

ϖk
i(j)

(

wk
i , ŵ

k
ji, β

k
i

)

, (5)

where ϖk
i(j)

(

wk
i , ŵ

k
ji, β

k
i

)

=

πk
i(j)

(

wk
i , ŵ

k
ji

)

+ π̂k
i(j)

(

βk
i , ŵ

k
ji

)

, βi =
{

βk
i

}

k∈Li
,

wi =
{

wk
i

}

k∈Li
and ŵji =

{

ŵk
ji

}

k∈Li
. Note that if

there is no aggregator sharing sub-band k which is

currently occupied by subscriber Sk
i , we can write

the payoff of MNO Mi obtained from its subscriber

in the kth sub-band as ϖk
i(j)

(

wk
i , ŵ

k
ji = 0, βk

i

)

.

2) The second part of the payoff function of MNO Mi

consists of the payoff obtained by aggregating sub-

bands of others. We can write the revenue of MNO

Mi obtained from aggregator Ŝm
ij using the mth sub-

band of Mj as

π̂m
(i)j

(

wm
j , ŵm

ij

)

= α′
iB

m
j log

(

1 +
hm
ii ŵ

m
ij

ϱmj + hm
jiw

m
j

)

, (6)

where α′
i is the price charged by Mi to its subscriber

for aggregating sub-band m of MNO Mj .

Each MNO Mi also needs to pay a price when its

aggregators access the sub-bands of other MNOs. We

hence define the cost of each aggregator Ŝm
ij ∈ Ni of

MNO Mi accessing the mth sub-band of MNO Mj as

ζm(i)j
(

βm
j , ŵm

ij

)

= βm
j hm

ij ŵ
m
ij .

The second part of the payoff function of MNO Mi

in a sharing IO-CA pair can then be written as

ϖ′
(i)j

(

βj ,wj , ŵij

)

=
∑

Sm
i

∈Ni,m∈Lj\Rij

ϖm
(i)j

(

βm
j , wm

j , ŵm
ij

)

, (7)

where ϖm
(i)j

(

βm
j , wm

j , ŵm
ij

)

=

π̂m
(i)j

(

wm
j , ŵm

ij

)

− ζm(i)j
(

βm
j , ŵm

ij

)

.

Note that if there is no subscriber currently occupying

sub-band k, i.e., wk
i = 0 and hk

ij = 1, the resulting

payoff ϖm
(i)j

(

βm
j , wm

j , ŵm
ij

)

will become equivalent to

the payoff of regular IO-CA in (3), i.e., we can also

write ϖR
ij =

∑

k∈Rij

ϖm
(i)j

(

βm
j , wm

j = 0, ŵm
ij

)

.

By combining (5) and (7), we can write the total payoff

of MNO Mi when it forms an IO-CA pair with MNO Mj

as

ϖij

(

βi,βj ,wi, ŵji,wj , ŵij

)

= ϖi(j) (βi,wi, ŵji) +ϖ(i)j

(

βj ,wj , ŵij

)

. (8)

where

ϖi(j) (βi,wi, ŵji) =
∑

k∈Rij
ϖk

i(j)

(

wk
i , ŵ

k
ji = 0, βk

i

)

+
∑

k∈Lij\Rij
ϖk

i(j)

(

wk
i , ŵ

k
ji ̸= 0, βk

i

)

and

ϖ(i)j

(

βj ,wj , ŵij

)

=
∑

Sm
i

∈Ni,m∈Rij

ϖm
(i)j

(

βm
j , wm

j = 0, hm
ij = 1, ŵm

ij

)

+

∑

Sm
i

∈Ni,m∈Lj\Rij

ϖm
(i)j

(

βm
j , wm

j , ŵm
ij

)

.

Note that if an MNO Mi decides to use neither regular

nor sharing IO-CA, the resulting payoff is only related to

the transmit power of each subscriber, i.e., we have

ϖii (ϖi) = ϖij (wi, ŵji = 0,wj = 0, ŵij = 0) . (9)

It can be observed that sharing IO-CA is particularly

useful in heterogeneous networks with multi-tiers in

which the network of each MNO consists of both

macro-cells with high-power infrastructure and low

powered operator- or user-deployed small-cells or

femto-cells. In this case, allowing the high-power

infrastructure of an MNO to share the same spectrum as

the small-cell infrastructure of the same MNO will have

the potential to cause large interference to both the

macro-cell and small-cell users. On the other hand,

allowing the low power infrastructure of one MNO to

aggregate the spectrum used by the high power

infrastructures of another MNO can alleviate the cross-tier

interference. We will provide a more detailed discussion

of this scenario using simulation results in Section V.

B. Problem Formulation

In cellular network systems, different MNOs have

different infrastructure and spectrum resources and always
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have the incentive to maximize their performance by

taking full advantage of the aggregated spectrum of other

MNOs. This makes it natural to study the IO-CA from

the game theoretic perspective. In this paper, we assume

each MNO is selfish and can strategically decide its

parameters to optimize its performance and will only seek

cooperation with other MNOs when this cooperation can

provide mutual benefits. In this paper, we focus on the

following problems,

1) Pairing Problem: In an IO-CA-based cellular

network, each MNO is selfish and can always make

autonomous decisions about its IO-CA partner. More

specifically, each MNO Mi needs to send a request

to another MNO (e.g., Mj) and an IO-CA pair

between Mi and Mj can only be established when

the request is accepted by Mj . To attract other

MNOs to aggregate its spectrum, each MNO should

also reveal some information such as the set of

sub-bands allowed for aggregation and the prices

charged to each aggregator, for other MNOs to

evaluate the achievable performance in an IO-CA

pair. If MNO Mj in an IO-CA pair can further

improve its payoff by pairing with a different MNO

(e.g., Mk for k ̸= i, j) which will also accept the

request from Mi, the IO-CA pair between Mi and

Mj will not be stable. Therefore, it is important to

decide a stable IO-CA pairing structure in which

every MNO sticks to its IO-CA pairing partner and

has no intention to unilaterally deviate. Note that the

pairing request signals sent by each MNO only need

to include the identity information of each MNO and

therefore, the communication overhead caused by

sending and responding to the pairing request

between two pairing MNOs can be regarded as a

small constant which is neglected in this paper.

2) Pricing Adjustment Problem for Each MNO in Its

Licensed Spectrum: Each MNO can control the price

charged to the spectrum aggregators in its licensed

spectrum. Therefore, the pricing adjustment problem

for each MNO Mi in an IO-CA pair formed between

Mi and Mj can be written as

max
βi

ϖij

(

βi,β
∗
j ,wi, ŵji,wj , ŵij

)

. (10)

where β∗
j is the optimal price of MNO Mj .

3) Power Control Problem for Each MNO in the

Spectrum of Others: When accessing the spectrum of

other MNOs, each MNO can use power control

methods to further improve its performance given the

prices imposed by the spectrum license holders. The

power optimization problem for each aggregator of

an MNO Mi can be formulated as

max
ŵij

ϖij

(

βi,βj ,wi, ŵ
∗
ji,wj , ŵij

)

. (11)

where w∗
ji are the optimal transmit powers of the

aggregators from MNO Mj .

4) Joint Optimization Problem: In this paper, we

consider the joint optimization of the above three

Pairing Problem

IO-CA Pairs

Pricing Adjustment Problem

for Subscribers

Power Control Problem

for Aggregators

A Stackelberg Game

β w

(w
*
, β

*
)

Γ

A Joint Optimization Framework

KMNOs

A Stable Roommate Market

Fig. 2. Relationship among different problems and game models in an
IO-CA-base cellular network.

problems. More specifically, we model the pairing

problem as a stable roommate market and seek a

stable matching structure among all the MNOs. We

then establish a Stackelberg game-based hierarchical

framework [8] within each IO-CA pair in which, in

the licensed spectrum of each MNO Mi, Mi and its

corresponding subscribers are the leaders (or primary

user, seller, etc.) and the aggregators from the other

pairing MNO Mj for j ̸= i are the followers (also

called secondary user, buyer, etc.). Using this

framework, we propose an algorithm to jointly

optimize the transmit power, prices, and pairing

partner of each MNO and its corresponding

subscribers and aggregators.

IV. A JOINT OPTIMIZATION FRAMEWORK FOR AN

IO-CA SYSTEM

In this section, we discuss the solutions of the problems

described at the end of Section III. We first study the power

control problem for an IO-CA pair in Section IV-A. We

then discuss Stackelberg game modeling and the joint price

and transmit power optimization problem in Section IV-B.

Finally, we establish a stable roommate market to study the

IO-CA pairing problem for a network with three or more

MNOs in Section IV-C. The relationship between different

models in our joint optimization framework is illustrated in

Figure 2.

A. Optimal Power Control for each MNO

Once an IO-CA pair has been established and a sub-band

has been aggregated by an aggregator, it is important for

each aggregator to maintain the resulting interference below

the tolerable levels defined in (1) and (2). In this subsection,

we assume an IO-CA pair has already been formed between

MNOs Mi and Mj for i ̸= j and Mi,Mj ∈ K and pricing

coefficients βi and βj for both MNOs are constants. Let
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us consider the power control of an aggregator Ŝk
ij from

MNO Mi aggregating the kth sub-band of MNO Mj . The

optimization of the pricing coefficients and pairing partners

for MNOs will be discussed in the next two subsections.

Following the same line as Section III, we can rewrite the

optimization of the power control problem for MNO Mi as

follows:

max
ŵij

ϖij

(

βi,βj ,wi, ŵ
∗
ji,wj , ŵij

)

s.t. hk
ijŵ

k
ij ≤ qj , h

l
jiŵ

l∗
ji ≤ qi, ŵ

k
ij ≤ q̃kj

and ŵk
ji ≤ q̃ki ∀k ∈ Lj , l ∈ Li

wl
i, w

k
j , ŵ

k
ij , ŵ

l∗
ji ≥ 0,

∀k ∈ Lj , l ∈ Li, S
l
i ∈ Ni, S

k
j ∈ Nj . (12)

As the transmissions in different sub-bands are

independent with each other and the payoff function

ϖk
(i)j

(

wk
j , ŵ

k
ij , β

k
j

)

of aggregator Ŝk
ij from MNO Mi is

concave in ŵk
ij for a given βk

j and wk
j , we can then derive

the following optimal transmit power ŵk∗
ij of each

aggregator Ŝk
ij of MNO Mi by setting

∂ϖk
(i)j(w

k
j ,ŵ

k
ij)

∂ŵk
ij

= 0

where ŵk∗
ij is given by,

ŵk∗
ij = (13)
(

min

{(

Bk
j

βk
j h

k
ij

−
ϱki + hk

jiw
k
j

hk
ii

)

, q̃kj ,
qj
hk
ij

})+

,

where (·)+ = max{0, ·}. We can write the optimal transmit

power of all aggregators of MNO Mi as ŵ
∗
ij =

{

ŵk∗
ij

}

k∈Lj

where ŵk∗
ij is given in (13).

It can be observed that aggregator Ŝk
ij can only

calculate the optimal transmit power by knowing the

pricing coefficient βk
j , the channel gain and transmit

power wk
j . In a practical system, each MNO Mi will rely

on the other paired MNO Mj to provide this information.

If Mj refuses to disclose such information to Mi, Ŝk
ij

cannot determine the optimal transmit power but has to

send signals using a pre-defined fixed power. In Section

V, we compare the performance of an IO-CA-based

cellular network with and without using optimal power

control.

Another observation from (13) is that the optimal

transmit power ŵk∗
ij of aggregator Ŝk

ij decreases with the

pricing coefficient βk
j . In other words, each MNO Mj can

control the interference level of the aggregator Ŝk
ij in each

of its sub-bands by adjusting the corresponding pricing

coefficient βk
j . We will provide a more detailed discussion

on how each MNO decides the optimal pricing coefficient

in the next subsection.

We can prove the following result:

Proposition 1: If ∃k ∈ Lj , ŵk∗
ij > 0, then ϖ(i)j > 0.

Proof: See Appendix A.

The above proposition says that if the optimal transmit

power of at least one of aggregators from MNO Mi is

positive, MNO Mi can always obtain benefits by

aggregating the kth sub-band of MNO Mj . Note that if

wk∗
ij = 0, it means that Ŝk

ij cannot aggregate the kth

sub-band of MNO Mj .

B. Optimal Price and Stackelberg Game for each MNO

Let us consider the joint optimization of the transmit

powers and pricing coefficients for an IO-CA pair formed

between MNOs Mi and Mj for Mi ̸= Mj and

Mi,Mj ∈ K. By substituting the optimal transmit powers

ŵ
∗
ij and ŵ

∗
ji in (13) into ϖij

(

wi,wj ,βi,βj , ŵ
∗
ij , ŵ

∗
ji

)

,

we can observe that the payoff of each MNO depends on

the pricing coefficients of both paired MNOs. This means

that the pricing optimization problems for both MNOs are

correlated. Specifically, the optimal β∗
i decided by Mi

affects the optimal transmit powers of the aggregators

from MNO Mj , which also determines the pricing

coefficients and the incentive of Mj to form an IO-CA

pair with MNO Mi. However, each MNO can only

control the price of its own spectrum. Recall from Section

III, the payoff of each MNO Mi consists of two parts:

ϖi(j) (βi,wi, ŵji) and ϖ(i)j

(

βj ,wj , ŵij

)

. The pricing

coefficient βi decided by Mi can only affect the first part

ϖi(j) (βi,wi, ŵji), and the second part

ϖ(i)j

(

βj ,wj , ŵij

)

depends on the pricing coefficient βj

controlled by Mj .

As each MNO has the autonomy to decide and manage

the spectrum usage in its own sub-bands, it can determine

the price charged to each aggregator in each of its

sub-bands considering that all aggregators will use the

optimal transmit powers discussed in Section IV-A. The

interactions between users that must decide what actions

to take in a sequential manner make it natural to model

the above pricing and transmit power optimization

problem as a Stackelberg game as follows: in its own

licensed spectrum, each MNO is a leader and its action is

to select the pricing coefficient when the strategic

aggregators access its spectrum. Each aggregator is a

follower and its action is to optimize the transmit power

according to the prices imposed by the MNOs. We seek a

Stackelberg equilibrium solution for our proposed game

which is formally defined as follows.

Definition 1: [39, Definition 3.26-3.28] Suppose MNOs

Mi and Mj form an IO-CA pair. In the spectrum of MNO

Mi, Mi is the leader and aggregators from MNO Mj are

the followers. An action pair
(

β∗
i , ŵ

∗
ji

)

is a Stackelberg

equilibrium if ŵ
∗
ji satisfies

ϖij

(

β∗
i ,β

∗
j , ŵ

∗
ji, ŵ

∗
ij ,wi,wj

)

(14)

≥ ϖij

(

β∗
i ,β

∗
j , ŵji, ŵ

∗
ij ,wi,wj

)

, ∀ŵji ∈ R
|Li|,

where β∗
i satisfies

β∗
i = arg max

βi∈R
|Lj |

ϖij

(

βi,β
∗
j , ŵ

∗
ji, ŵ

∗
ij ,wi,wj

)

.

We can prove the following results about the Stackelberg

equilibrium for our proposed game.

Theorem 1: For each IO-CA pair formed by MNOs

Mi and Mj ,
(

β∗
i , ŵ

∗
ji

)

is a Stackelberg equilibrium in the

licensed spectrum of Mi where ŵk∗
ji is given in (13) and

β∗
i =

{

βk∗
i

}

k∈Li
for βk∗

i is given as follows: If
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(

2− 2ρki + θki
)2

< θki
(

θki − ρki
)

, βk∗
i = βk−

i where βk−
i

is given by

βk−
i =

hk
iiB

k
i

hk
iiqi + hk

ii + hk
ji

2
ŵk∗

ji

. (15)

and ρki =
hk
ji(1+hk

ijw
k
i )

hk
jj

, θki = hk
iiw

k
i . If

(

2− 2ρki + θki
)2

≥

θki
(

θki − ρki
)

, then

βk∗
i = arg max

βk∗
i ∈{βk1∗

i ,βk2∗
i ,βk−

i
,βk+

i }
β∗
i ∈[β

k−
i

,βk+
i ]

{

ϖk
i

(

βk∗
i , ŵk∗

ji

)}

, (16)

where βk+
i =

Bk
i

ρk
i

and βk1∗
i is given by

βk1∗
i =

Bk
i

√

ρki θ
k
i

(

(

2− 2ρki + θki
)2

+ θki
(

ρki − θki
)

)

2ρki
(

ρki − 1
) (

ρki − 1− θki
)

−
Bk

i ρ
k
i

(

2− 2ρki + θki
)

2ρki
(

ρki − 1
) (

ρki − 1− θki
) , (17)

βk2∗
i =

Bk
i ρ

k
i

(

2− 2ρki + θki
)

2ρki
(

1− ρki
) (

ρki − 1− θki
) (18)

−

Bk
i

√

ρki θ
k
i

(

(

2− 2ρki + θki
)2

+ θki
(

ρki − θki
)

)

2ρki
(

ρki − 1
) (

ρki − 1− θki
) .

Proof: See Appendix B.

Similarly, we can also observe that
(

β∗
j , ŵ

∗
ij

)

is the

Stackelberg equilibrium solution in the spectrum licensed

to MNO Mj where β∗
j and ŵ

∗
ij can be obtained by

swapping i and j in Theorem 1 and equation (13).

Note that the optimal pricing coefficients Theorem 1

are calculated by assuming all aggregators use the optimal

power control methods derived in (13). If the aggregators

use constant power to send signals, both MNOs should

charge the highest prices they can in each of their

sub-bands to maximize their revenue, i.e., βk
i → βk+

i

∀k ∈ Li.

The optimal pricing coefficient pair
(

β∗
i ,β

∗
j

)

for both

paired MNOs Mi and Mj derived in the above theorem

also corresponds to the Bertrand equilibrium solution if we

model the price competition between the pairing MNOs

as an oligopoly market where two market dominant firms

compete with each other with different prices [38], [40],

[41].

C. A Stable Roommate Market for the IO-CA Pairing

Problem

Let us consider the pairing problem for a cellular

network with three or more MNOs. In our model, an

IO-CA pair can only be formed when two MNOs

mutually agree to share their spectrum with each other.

This makes it natural to model the interaction among

MNOs as a roommate market, also known as one-sided

matching market [42] or non-bipartite matching market

[43], in which K students (or, in our model, MNOs) will

try to be assigned into ⌈K
2 ⌉ rooms (or, in our model,

IO-CA pairs) each of which accommodates two students.

Let us first define the roommate market as follows.

Definition 2: [44, Chapter 4.1] A roommate market is

specified by a set K of K students and a preference list Pk

for each student k for k ∈ K. A preference relation for the

roommate market is a tuple R = ⟨K,P ⟩ where P is the

preference table of all students defined as P = ⟨Pk⟩k∈K.

We define the IO-CA pairing problem for a cellular

network as a stable roommate market, referred to as the

IO-CA market, in which the students are modeled as

MNOs and each MNO Mn has a preference over all the

other MNOs that can improve its payoff by forming a

IO-CA pair, i.e., we use Pn (Mi) to denote the rank of

MNO Mi in the preference list of Mn and

Pn(Mi) < Pn(Mj) means

ϖni (wn,wi,β
∗
n,β

∗
i , ŵ

∗
ni, ŵ

∗
in) >

ϖnj

(

wn,wj ,β
∗
n,β

∗
j , ŵ

∗
nj , ŵ

∗
jn

)

for Mi,Mn,Mj ∈ K.

Note that IO-CA cannot always improve the payoff for

both paired MNOs and, if an MNO Mi cannot improve

its payoff by forming IO-CA with any MNOs in the

market, it will not share its spectrum with others but only

use its own exclusive spectrum to support services for its

subscribers, i.e., if Mn occupies the lth position in the

preference list of itself, it means that

ϖni (wn,wi,β
∗
n,β

∗
i , ŵ

∗
ni, ŵ

∗
in) > ϖnn (wn) for all

Mi ∈ K satisfying 0 < Pn(Mi) < l.
Different MNOs generally have different peak hours.

We hence can assume, in a cellular network, MNOs

sequentially join or leave the IO-CA market2. If an MNO

Mi decides to join the market, it will send a message to

inform all the MNOs in the current IO-CA market that

the spectrum of Mi will be available to share. MNOs in

the market can use the message sent by Mi to evaluate

the performance of Mi and insert Mi into the proper

positions in their preference lists. All MNOs will also

feedback a confirmation message to Mi which can be

used by Mi to establish the preference list over all the

MNOs. Let Pi be the preference of Mi. Let M̃k
i be the

kth most preferred MNO in the preference list of MNO

Mi.

One of the main solution concepts for the roommate

market is the matching which is defined as follows.

Definition 3: [44, Chapter 4.1] A (one-sided) matching

Γ for a roommate market is a function from sets K to K

such that Γ (Mi) ∈ K, Γ (Mj) ∈ K, and Γ (Mi) = Mj ⇔
Γ (Mj) = Mi for every Mi,Mj ∈ K.

Note that Γ (Mi) = Mi means that Mi cannot form an

IO-CA pair with any of the other MNOs. It can be observed

that there are
K/2
∏

i=1

(

K−2i
2

)

/K
2 ! number of possible matchings

where
(

m
n

)

is the number of m combinations from a set of

2If multiple MNOs decide to join the market simultaneously, a random
duration of delay can be introduced for these MNOs. That is, if an MNO
Mi decides to join the IO-CA market, it will delay for ηi amount of time
before sending the joining request where ηi is a bounded random variable.
We have included this random delay in Algorithm 1.
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of n elements. In this paper, we seek a matching structure

that is stable which is defined as follows.

Definition 4: A stable matching is a partition of set K

into ⌈K
2 ⌉ disjoint IO-CA pairs such that no two MNOs who

are not in the same IO-CA pair but each of whom prefers

the other to its partner in the matching.

It has already been observed in [44] that a stable

matching for the stable roommate market may not always

exist. This is because the preference of each MNO over

each other may form a cyclic sequence. For example, it

can be easily shown that if the preferences of four MNOs

M1, M2, M3 and M4 are given by P1 = ⟨M2,M3,M4⟩,
P2 = ⟨M3,M1,M4⟩, P3 = ⟨M1,M2,M4⟩, and

P4 = ⟨M1,M2,M3⟩, respectively, it is impossible for find

a stable matching, e.g., any MNO, for instance Mi, that is

matched with M4 will be able to find another more

preferable MNO which also prefers Mi to its current

matching MNO.

Another concept called stable partition, which can be

regarded as a generalization of the stable matching, was

first proposed in [45], [46]. It has already been proved in

[45] that a stable partition always exists in any instance of

the roommate market. Let us present the formal definitions

as follows.

Definition 5: [46, Section 2] A stable partition P for

a roommate market is a permutation Π of the set K such

that (i) for every Mi ∈ K, either Π(Mi) = Π−1(Mi) or

Mi prefers Π(Mi) to Π−1(Mi), (ii) if Mi prefers Mj to

Π−1(Mi) then Mj prefers Π−1(Mj) to Mi. We refer to

Π(Mi) and Π−1(Mi) as the successor and predecessor of

Mi, respectively, relative to Π. We refer to a cycle in Π of

odd (or even) length as an odd (or even) party.

Note that the stable partition is in fact a permutation

instead of a matching structure that is stable [47], [48].

In the rest of this paper, we will first establish the

condition for which a stable matching exists in our

IO-CA market. We will then develop an algorithm that

achieves a stable matching structure if it exists.

Otherwise, the proposed algorithm results in a stable

partition among MNOs.

As mentioned previously, in practical systems, each

MNO can decide to join or leave the IO-CA market under

different situations. If an MNO that is not in the current

IO-CA market applies to join the market due to the

increasing of the traffic in its network, it needs to go

through a procedure, referred to as addition operation, to

decide its potential IO-CA pairing partner before it starts

to share the spectrum.

Let us present the detailed operation as follows.

Operation 1: Addition

Suppose an MNO Mi /∈ K tries to join the IO-CA market.

i) Mi broadcasts the pairing request and price information to
MNOs in K. Each MNO Mj ∈ K then evaluates the
resulting payoff when forming an IO-CA pair with Mi. Each
Mj ∈ K inserts Mi into its own preference list and then
feedbacks a confirmation message to Mi. Mi can use this
received feedback message to evaluate the performance and
establish its preference over all MNOs in K. All MNOs
update K = K ∪ {Mi}.

ii) Mi then sends the IO-CA pairing request to its most preferred
MNO in K. If the request sent by Mi is rejected, Mi sends a
request to the next most preferred MNO in its preference list.
This process is repeated until Mi has been matched with an
MNO Mj ∈ K or been rejected by all MNOs in K. There are
four possible results of the above process:

a) If the request sent by Mi has been rejected by all MNOs,
then Mi will not form any matching pair with MNOs in
K,

b) If the request sent by Mi has been accepted by an MNO
Mj and Mj has not sent the IO-CA pairing request to
another MNO before, it will have the following two results:

b-i) Mj is currently not matched with any other MNO, then
Mi and Mj will form a matching pair with each other,

b-ii) If the request sent by Mi has been accepted by an MNO
Mj that is currently matched with another MNO Mk ,
then Mi and Mj will form a matching pair with each
other. Mk will repeat the same Step ii) as Mi,

c) If the request sent by Mi has been accepted by an MNO
Mj who has sent an IO-CA pairing request to another
MNO before, it means that both Mi and Mj belong to a
cycle sequence and there is no stable matching for these
two MNOs.

Let us consider the case that the MNOs sequentially

join the IO-CA market using the above operation. More

specifically, at the beginning of the IO-CA market, there

is only one MNO (e.g., Mi) in the market. When the

second MNO Mj joins the market for Mj ̸= Mi, its

preference list only consists of two elements Mi and Mj

and if Pj(Mi) < Pj(Mj), Mj will send an IO-CA

request to MNO Mi and a stable matching pair can only

be formed when Mi also observes Pi(Mj) < Pi(Mi). If a

third MNO Mk tries to join the market for

Mk /∈ {Mi,Mj}, it will sequentially send pairing requests

to the MNOs in its preference list. If Mi is the first MNO

that accepts the request of Mk, it means that Mk is more

preferred by Mi than Mj , i.e.,

Pi(Mk) < Pi(Mj) < Pi(Mi). Since MNO Mk sends

requests to MNOs according to its preference list, Mi is

also the most preferred MNO that accepts the request of

Mk. In this case, Mi and Mk will be paired with each

other and Mj will be left without any IO-CA pairing

partner. When a fourth MNO Ml tries to join the market

for Ml /∈ {Mi,Mj ,Mk}, Ml will send a pairing request

according its preference list which will result in the

following possible cases: 1) if the request of Ml has been

rejected by all three MNOs in the market, Ml will not be

paired with any MNO, 2) if MNO Mj is the first MNO

that accepts the request of Ml, then an IO-CA pair will be

formed by Ml and Mj , 3) if MNO Mi (or Mk) accepts

its request, an IO-CA pair will be formed by Ml and Mi

(or Mk) and Mk (or Mi) will again restart the requesting

process by sending an IO-CA request to its next preferred

MNO. If during the requesting process of Mk, Mj is the

first MNO to accept the request, then the resulting IO-CA

market will consist of two stable matching pairs ⟨Ml,Mi⟩
and ⟨Mj ,Mk⟩. However, it is also possible that Ml will

be the first MNO that accepts the request of Mk (For

example, during the previous requesting process of Ml,

Ml prefers Mk to Mi. However, Mk rejects the request

sent by Ml because Mk prefers Mi to Ml.). This means

that Ml,Mk and Mi form a cyclic sequence and the

requesting process will be infinitely repeated among
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MNOs Ml,Mk and Mi. In this case, no stable matching

exists. We therefore can have the following results.

Proposition 2: Suppose all MNOs sequentially join the

IO-CA market following the procedure described in the

addition operation. The resulting structure is a stable

matching if the IO-CA market consists of a stable

matching. Otherwise, the resulting structure will be a

stable partition.

Proof: See Appendix C.

We can prove the following complexity results about the

addition operation.

Proposition 3: The complexity of the addition operation

is O(K2) in the worst case, where K is the number of

MNOs3.

Proof: See Appendix D.

Similarly, if an MNO that is currently in the market

decides to retrieve its exclusive spectrum and quit the

IO-CA market due to the decrease of the traffic in its

exclusive spectrum, it also needs to inform all other

MNOs that its spectrum will no longer be available. Let

us present the deletion operation as follows.

Operation 2: Deletion

Suppose an MNO Mi ∈ K decides to leave the IO-CA market.
Then we have

i) Mi broadcasts a leaving message to MNOs in K\{Mi} and
then each MNO Mj ∈ K\{Mi} will remove Mi from its
preference list and update K = K\{Mi}.

ii) If Mi is currently in an IO-CA pair with Mj = Γ(Mi) and
Mi ̸= Mj , Mj will send requests to the remainder of the
MNOs in K following the exactly the same line as steps ii) in
the addition operation.

Following the same line as Proposition 2, we can prove

the following results.

Proposition 4: Suppose an MNOs has been deleted

from the IO-CA market following the procedure described

in deletion operation. The resulting structure is a stable

partition.

Proof: See Appendix E.
Let us now present the following algorithm that can

jointly optimize the transmit powers, pricing coefficients
and pairing of MNOs.

Algorithm 1: A Joint Optimization Algorithm

Initialization: Let Pi be the preference list of Mi and Ri be the
domain of Pi.
Phase I — Price Adjustment and Power Control

WHILE ∃Mi ∈ K, |Ri| ≤ K − 1,

1) Each MNO Mi randomly chooses another MNO Mj /∈ Ri to
form an IO-CA pair.

2) Once an IO-CA has been formed, the pairing MNOs inform
each other regarding their sets of sub-bands allowing
aggregation. Each MNO also sends a short training signal in
each of these sub-bands for the other pairing MNO to
estimate the channel gain between the licensed subscribers
and aggregators as well as the transmit powers of the
subscribers in each of these sub-bands.

3) Both of the pairing MNOs inform each other of their optimal
pricing coefficients calculated by Theorem 1 and each
aggregator transmits using the transmit power calculated by
(13).

3In this paper, we follow Bachmann-Landau notations: f = O(g) if

lim
n→∞

f(n)
g(n)

< +∞.

4) Each MNO Mi obtains the resulting payoff ϖij and updates
Ri = Ri ∪ {Mj}. Mi also updates the preference list by
ranking all MNOs in the updated Ri from the highest to the
lowest payoffs.

ENDWHILE
Phase II — IO-CA Pairing
WHILE ∃Mi ∈ K who did not receive any pairing request or did
not send any pairing request to other MNOs,

5) Each MNO Mi ∈ K waits for a bounded random amount of
time before using the addition operation to join the IO-CA
market.

6) Whenever an MNO Ml wishes to join or leave the market,
it uses the addition or deletion operation to join or leave the
market.

Proposition 5: Algorithm 1 either reports no stable

matching exists and achieves a stable partition or

generates a stable matching for the IO-CA system. For

any IO-CA pair between MNOs Mi and Mj for

Mi ̸= Mj , the transmit power of each aggregator achieves

the optimal transmit power derived in Section IV-A. The

pricing coefficient βi and the transmit power ŵji in the

spectrum of each MNO Mi achieve the Stackelberg

equilibrium.

Proof: The second part of the above theorem directly

comes from (13) and the results of Theorem 1. In the

Phase II of Algorithm 1, each MNO enters or leaves the

IO-CA market by using the addition and deletion

operators introduced in Operations 1 and 2, respectively.

Following the results in Propositions 2 and 4, the first

part of Proposition 5 can be proved.

From the above proposition, if Algorithm 1 reports a

stable matching structure, we can claim the existence of

at least one stable matching structure. However, if a stable

matching does not exist, then Algorithm 1 will result in a

stable partition. Note that a stable partition is actually a

permutation and is not necessarily stable because of the

existence of odd parties. It has been proved in [49] that

for each odd party, if an MNO can be removed from this

odd party, the rest of the MNOs can form a stable

matching with each other. In other words, a possible

solution to reach a stable structure among MNOs can be

obtained by choosing an MNO from each odd party and

forcing it to quit the market. However, which MNO

should quit and how to design a distributed mechanism to

incentivize the quitting process of these MNOs is out of

the scope of the current paper.

It can be observed from Algorithm 1 that the resulting

matching structure among MNOs is closely related to the

preference relation of each MNO, which also depends on

the resulting payoff, by forming different IO-CA pairs

with each other. In addition, from the discussion of

Section IV-A, we can observe that the resulting payoffs as

well as the preference list of each MNO, are directly

determined by their transmit powers and pricing

coefficients. By using the optimal transmit power in (13)

and optimal pricing coefficients derived in Theorem 1,

each MNO can obtain the highest payoff when forming an

IO-CA with another MNO in the market and hence each

MNO cannot further improve its payoff by unilaterally

changing its price, transmit power or pairing partner.
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V. DISCUSSIONS AND NUMERICAL RESULTS

Before presenting the simulation results of our

proposed joint optimization framework, let us first verify

the performance improvement measured by transmission

rate brought by the IO-CA in a two-tier heterogeneous

network with two closely located MNOs M1 and M2, i.e.,

we apply the utility function given in (8) with αk
j = 1 and

βk
j = 0 ∀k ∈ {1, 2, . . . ,K} and j ∈ L. We assume the

network of each MNO consists of a macro-cell overlaid

with a small-cell, and that the macro-cells and small-cells

associated with the same MNO operate in different

spectrum. We consider the downlink transmission and

assume only the macro-cell of each MNO can share the

spectrum licensed to the small-cell of the other MNO.

With sight abuse of notation, we denote the macro-cell

BS and small-cell BS for each MNO Mi by Mi and M ′
i ,

respectively for i ∈ {1, 2}. We assume the locations of the
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Fig. 5. Average transmission rate for each subscriber with different
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macro-cell BSs and small-cell BSs for the two MNOs are

symmetric as shown in Figure 3. We assume each (macro-

or small-) BS has been associated with the same number

of subscribers which are uniformly randomly distributed

within the circular coverage area of its BS with radius of

2 km and 200 m for macro- and small-cell, respectively.

We set the maximum transmit powers for macro-cell BS

and micro-cell BS as 40 and 20 dBm, respectively [50],

and assume each BS can adjust its optimal transmit power

using (13) when possible.

We first present the average transmission rates of each

subscriber achieved by regular IO-CA and sharing IO-CA

and compare it with the system without IO-CA in Figure

4. It can be observed that if all the sub-bands in the

small-cell are vacant, sharing IO-CA and regular IO-CA

will result in the same performance. However, if all the

sub-bands are fully occupied by small-cell subscribers,

regular IO-CA cannot provide any performance

improvement compared to the system without IO-CA. We

can also observe that the sharing IO-CA can always

improve the transmission rate of the subscribers even

when there is no vacant small-cell sub-band available. In

Figure 5, we compare the average transmission rate of the

subscriber for each MNO with and without sharing

IO-CA under different distances dMiM ′
j
. It can be easily

observed that when dMiM ′
j

approaches zero, our sharing

IO-CA can be regarded as special case of the traditional

carrier aggregation between a small-cell and macro-cell of

the same MNO sharing the same spectrum. We can

observe from Figure 5 that if dMiM ′
j

is close to zero,

IO-CA cannot improve the transmission rate for its

subscriber compared to the case without IO-CA. This is

because the high-power macro-cell subscribers and the

low-power small-cell subscribers can cause large

cross-interference when they are closely located within

the same macro-cell. However, with the increasing of the

distance between the macro-cell BS of one MNO and

small-cell BS of the other MNO, the transmission rate for

each subscriber can be significantly improved. This

confirms our previous observation that IO-CA has the
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potential to significantly improve the performance of

cellular networks compared to carrier aggregation within a

single MNO’s network. In sharing IO-CA, the aggregators

from one MNO should always control their transmit

powers to avoid intolerable interference to the subscribers

in the small cell of the other MNO. Therefore, in Figure

6, we assume the small cell subscribers have the same

maximum tolerable interference levels and each

macro-cell subscriber adapts its transmit power to the

maximum tolerable interference level of its sub-band

sharing small-cell subscriber. We compare the average

transmission rate for our simulated network system under

different tolerable interference levels. We can observe that

the transmission rates of the small-cell subscribers

decrease with the maximum tolerable levels. On the other

hand, the increasing of the transmission rate for the

aggregators from the other MNO can compensate the

performance degradation of the small-cell subscribers and

the total average transmission rate for each subscriber can

increase with the maximum tolerable interference level.

In Figures 4-6, we assume all subscribers are uniformly

randomly located within a fixed coverage area and

compare the performance of cellular networks with and

without IO-CA. The performance of each subscriber is

also closely related to its relative distance to the

corresponding BS. We will provide a more detailed

discussion about this in examining Figures 13 and 14 at

the end of this section.

In this paper, we consider the joint optimization of

three problems: pairing problem, pricing adjustment

problem and power control problem. We derive solutions

for each of these problems and propose a joint

optimization algorithm that simultaneously achieves all

these solutions. Our algorithm is general in the sense that

each separate part of our algorithm can be individually

applied to optimize IO-CA-based cellular networks under

different situations. For example, if each aggregator

cannot keep track of the channel gains between itself and

the subscribers, it will fix its transmit power. However,

MNOs can still use Phase-II of Algorithm 1 to decide

their IO-CA pairing partners. In the rest of section, we

present numerical results to access the performance of our

proposed optimization algorithms. We mainly compare the

following approaches for our IO-CA-based cellular

networks,

1) Random pairing: all K MNOs are randomly

partitioned into ⌈K
2 ⌉ groups each of which consists

of two MNOs. If both of MNOs in a group can

improve their payoffs using IO-CA with predefined

fixed powers and prices, they will form an IO-CA

pair. Otherwise, both MNOs will only use their own

licensed spectrum to transmit signals without

aggregating the spectrum of each other.

2) IO-CA: each MNO fixes the powers and pricing

coefficient and only uses Phase-II of Algorithm 1 to

decide its IO-CA pairing partner.

3) IO-CA with power control: each MNO uses the

optimal transmit power calculated from (13) and

Phase-II of Algorithm 1 to decide its IO-CA pairing

partner.

4) IO-CA with power control and optimal price: each

MNO uses Algorithm 1 to decide its transmit power,

pricing coefficient and the pairing partner.

From the discussion in Section III, we can observe that

in regular IO-CA, there is no incentive for each MNO to

control the transmit powers of the aggregators by

optimizing its price. In addition, regular IO-CA can be

regarded as a special case for sharing IO-CA when the

interference caused by the sub-band sharing aggregator is

lower than the maximum tolerable interference of the

subscriber even when the aggregator uses its maximum

transmit power, i.e., q̃kij ≤
qj
hk
ij

. Therefore, in this section,

we mainly focus on the sharing IO-CA. We first simulate

IO-CA-based cellular network with two MNOs, each of

which corresponds to a cellular network with a base

station located at the center of the coverage area. Each

MNO also contains a set of subscribers and a set of

aggregators uniformly and randomly located in the

overlapped coverage area of both MNOs as is shown at

the top of Figure 3. Each subscriber or aggregator

corresponds to the uplink communication channel from

each UE to the base station. Assume that the channel gain

hk
ij is given by hk

ij =
ĥk
ij

dk
ij

ξ for i, j ∈ {1, 2} where ĥk
ij is

the average channel fading coefficient, dkij is the distance

between aggregator Ŝk
ij and the base station of Mj and ξ

is the fading exponent. We also use dM1M2 to denote the

distances between base stations of M1 and M2. Let us

focus on the performance of both source-to-destination

pairs with different values of dM1M2 .

We first consider the effects of the changing pricing

coefficients on the payoff of the MNOs. In Figure 7, we

assume each MNO applies the same pricing coefficient to

all of its sub-bands. We then fix the pricing coefficient of

one MNO and compare the payoffs of MNOs when the

other MNO changes its pricing coefficient. It is observed

that the payoff of both MNOs will be affected even when

the price of only one MNO changes. This is because in

our model each MNO can use the price to control the

payoff obtained from its own spectrum as well as that

obtained from aggregating the spectrum of the other

MNO. Another observation is that the IO-CA with power

control significantly increases the payoff of both MNOs,

and more importantly, it also reduces the payoff

difference between the MNOs caused by the price change.

The payoffs of both MNOs with different optimization

algorithms under different values of dM1M2 are compared

in Figure 8. It is observed that the payoffs of both MNOs

decrease with the distance dM1M2 . This is because when

the distance between MNOs becomes large, each MNO

will decrease its pricing coefficient to attract more

aggregators from the other MNO which also reduces the

revenue obtained from the other MNO. We can also

observe that the payoff improvement brought by IO-CA

with power control and/or optimal price is larger than

those brought by other two approaches.
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To study the payoff obtained by MNOs from each

subscriber, we present the optimal pricing coefficient of

each MNO in one of its sub-bands occupied by

subscribers S2
1 and S1

2 under different dM1M2 in Figure 9.

We observe that the optimal pricing coefficients charged

in both sub-bands of MNOs M1 and M2 decrease with

the distance dM1M2
. This is because when two MNOs are

further away, each MNO will need to provide more

incentive such as reducing its price to attract the other

MNO to aggregate its spectrum.

In Figure 10, we compare the optimal transmit powers

of two aggregators randomly chosen for both MNOs

under different distances between the base stations. We

can observe that with the increasing of dM1M2 , the

aggregator should always increase its transmit power to

further improve the payoff of its corresponding MNO

because the cross-interference for each sub-band sharing

subscriber and aggregator decreases with dM1M2 . Note

that the price decreasing process illustrated in Figure 9

affects the revenue for MNOs at a much faster rate, which

eventually lowers the payoffs of the MNOs as observed in

Figure 8.

We now simulate an IO-CA-based cellular network

with more than two MNOs by considering a

square-shaped coverage area in which each MNO has a

fixed number of subscribers and aggregators uniformly

randomly located in the coverage area. We follow the

same settings as the two MNO case introduced in the

beginning of this section.

In Figure 11, we fix the size of the coverage area and

compare the average payoff obtained by all MNOs under

different total numbers of MNOs. We can observe that

random pairing cannot provide any payoff improvement to

MNOs because the chance for each MNO to pick up a

high cross interfering pairing partner (e.g., another MNO

that is close-by) increases with the density of the MNOs

in the coverage area. However, the average payoff of

MNOs increases with the number of MNOs when IO-CA

is allowed. This is because all MNOs are randomly

located in the area and with the increasing of the number

of MNOs, each MNO will have more choice of its IO-CA

pairing partner using the Phase II of Algorithm 1. We can

also observe that as the coverage area becomes more and

more crowded, the payoff improvement brought by our

proposed IO-CA with power control and optimal price

becomes more significant. In other words, our proposed

joint optimization algorithm is more useful in a high

population/MNO density area such as city center or

during the peak hours of the data service demand. Note

that, in our model, we assume MNOs are selfish and we

focus on the distributed optimization for cellular networks

with multiple MNOs. In our setting, an IO-CA pair can

only be formed if both pairing MNOs can further improve

their performance by allowing their spectrum to be

aggregated by each other. This condition is referred to as

individual rationality in game theory. It can be observed

that the payoff sum of the MNOs can be further increased

if some MNOs sacrifice their performance and allow other

MNOs to aggregate their spectrum at a low price. We

refer to the solution that can maximize the total payoff

sum of all MNOs without the constraint of individual

rationality as the global optimal solution which is also

presented in Figure 12. As can be observed from Figure

11, although the global optimal solution is significantly

better than our proposed distributed optimization

approach, it cannot guarantee stableness and the

performance for each individual MNO, and hence cannot

always incentivize IO-CA among MNOs.

In Figure 12, we compare the numbers of IO-CA pairs

formed under different number of MNOs. It can be

observed that the number of IO-CA pairs between MNOs

achieved by random pairing does not vary much as the

number of MNOs increases. However, if the power

control and/or optimal prices have been applied, the

chance for each MNO to find another MNO to form an

IO-CA pair will increase with the number of MNOs. In

addition, when the number of MNOs is large enough

(e.g., exceeds 16 in Figure 12), IO-CA with power control

can achieve the maximum number of IO-CA pairs among

MNOs. In other words, if the main objective for each

MNO that adopt IO-CA is to maximize the total number

of spectrum sharing pairs, IO-CA with power control and

IO-CA with power control and optimal price achieve the

same results if the density of MNOs in the coverage area

exceeds a certain threshold.

In Figure 13, we compare the payoffs of the MNOs

under different sized coverage areas. We observe that the

average payoff of MNOs decreases when the size of the

coverage area becomes large. This verifies our previous

observation that our proposed optimization algorithm can

provide high performance improvement when the density

of the MNOs is high. We also observe that the average

payoff obtained only by IO-CA approaches that obtained

by random pairing when the length of the coverage area

becomes large. However, IO-CA with optimal price

and/or power control can still provide significant payoff

improvement compared to the random pairing.

In Figure 14, we compare the number of IO-CA pairs

between MNOs under different sizes of the coverage area.

We observe that if the size of the network is small, there

are always some MNOs that cannot find a pairing partner

to form an IO-CA pair. However, when applying IO-CA

with optimal price and power control, the number of IO-

CA pairs between MNOs will reach the maximum number
K
2 when the size of the network becomes large.

VI. CONCLUSION

This paper considers CA between MNOs in a cellular

network. In this network, an MNO can not only access its

own licensed spectrum, but can also aggregate the

spectrum licensed to other MNOs by paying a certain

price. We establish a stable roommate market to study the

pairing problem among the MNOs. We derive a condition

for which a stable matching structure exists. We propose

an algorithm to approach a stable matching structure if it
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exists. Otherwise, the algorithm results in a stable

partition. We then establish a Stackelberg game-based

model to study the interaction between the subscribers

and aggregators in the spectrum of each MNO. We derive

the optimal transmit power for each aggregator and the

Stackelberg equilibrium for each MNO. We propose a

joint optimization algorithm that can achieve a stable

matching structure among MNOs if it exists as well as the

optimal transmit powers and prices for each MNO. We

present numerical results to verify the performance

improvement brought by each of these optimization

methods under different situations.

APPENDIX A

PROOF OF PROPOSITION 1

Let us consider the payoff of subscriber Ŝk
ij of MNO Mi

obtained by aggregating the kth sub-band of MNO Mj as

follows,

ϖk
(i)j = Bk

j log

(

1 +
hk
iiŵ

k
ij

1 + hk
jiw

k
j

)

− βk
j h

k
ijŵ

k
ij . (19)

It is observed that ŵk
ij increases (or decreases) with ϖk

(i)j

when ŵk
ij < ŵk∗

ij (or ŵk
ij ≥ ŵk∗

ij ) where wk∗
ij is the optimal

solution of ϖk
(i)j given in (13). Because ϖk

(i)j = 0 if ŵk
ij =

0, we hence have ϖk
(i)j ≥ 0 when ŵk∗

ij ≥ 0.

APPENDIX B

PROOF OF THEOREM 1

Let us consider the optimization of the pricing

coefficients for the MNOs. Before the derivation of the

optimal price, we first need to calculate the range of βk
i .

It is observed that the value of βk
i is limited by two

constraints. The first one is the power constraints in (2).

The other one is the fact that the transmit power of each

aggregator should be a positive value. Otherwise Mi

cannot obtain any benefits by optimizing βk
i in the kth

sub-band, i.e., ŵk∗
ji > 0. Substituting ŵk∗

ji in (13) into (2),

we can obtain the lower bound βk−
i for βk

i which is given

in (15). Similarly, applying ŵk∗
ji > 0, we can calculate the

upper bound βk+
i of βk

i which is presented in the results

of Theorem 1. In other words, if the value of βk∗
i is less

than that of βk−
i , the transmit power of aggregator Ŝk

ji

will exceed the maximum tolerable interference level of

Mi. While if βk∗
i is greater than βk+

i , Ŝk
ji will not

aggregate the kth sub-band of Mi by transmitting with a

positive power and hence MNO Mi cannot obtain any

revenue from the kth sub-band of MNO Mj .

If we substitute ŵk∗
ij in (13) into the payoff function of

(8), we can find that ϖk
i(j)

(

wk
i , ŵ

k∗
ji , β

k
i

)

(or

ϖk
(i)j

(

wk
j , ŵ

k∗
ij , β

k
j

)

) is only related to ŵk∗
ji (or ŵk∗

ij )

which is controlled by βk
i (or βk

j ). Since MNO Mi can

only decide the value of βk
i , we assume βk

j has already

been chosen by MNO Mj and hence MNO Mi only

needs to focus on the optimization of βk∗
i to maximize

ϖk
i(j)

(

wk
i , ŵ

k∗
ji , β

k
i

)

. Let us denote ρki =
hk
ji(1+hk

ijw
k
i )

hk
jj

and

θki = hk
iiw

k
i . Substituting ŵk∗

ij and ŵk∗
ji in (13) into (8),

we have

ϖk
i(j)

(

wk
i , ŵ

k∗
ji , β

k
i

)

= Bk
i log

(

1 +
βk
i θ

k
i

Bk
i + βk

i

(

1− ρki
)

)

+
(

Bk
i − βk

i ρ
k
i

)+
(20)

To find the optimal value of βk
i that can maximize ϖk

i(j),

we have

∂ϖk
i(j)

(

wk
i , ŵ

k∗
ji , β

k
i

)

∂βk
i

= 0

⇒
Bk

i

(

1 + θki − ρki
)

Bk
i + βk

i

(

1 + θki − ρki
)

−
1− ρki

Bk
i + βk

i

(

1− ρki
) − ρki = 0

⇒
βk
i B

k
i ρ

k
i

(

2− 2ρki + θki
)

(

Bi + βk
i

(

1 + θki − ρki
)) (

Bk
i + βk

i

(

1− ρki
))

+
Bk

i
2 (

θki − ρki
)

− βk
i
2
ρki
(

1− ρki
) (

1 + θki − ρki
)

(

Bk
i + βk

i

(

1 + θki − ρki
)) (

Bk
i + βk

i

(

1− ρki
))

= 0.

(21)

From the above equation, it is observed that if
(

2− 2ρki + θki
)2

< θki
(

θki − ρki
)

, there is no solution for
∂ϖk

i(j)(w
k
i ,ŵ

k∗
ji ,βk

i )
∂βk

i

= 0. In this case,
∂ϖk

i(j)(w
k
i ,ŵ

k∗
ji ,βk

i )
∂βk

i

< 0

which means that ϖk
i(j)

(

wk
i , ŵ

k∗
ji , β

k
i

)

always decreases

with βk
i . Therefore, MNO Mi should choose the lowest

value of βk
i in the kth sub-band to maximize the payoff

ϖk
i(j)

(

wk
i , ŵ

k∗
ji , β

k
i

)

, i.e., βk∗
i = βk−

i . However, if
(

2− 2ρki + θki
)2

≥ θki
(

θki − ρki
)

, there exist two solutions

for the equation (21) which are given in (17) and (18),

respectively. These solutions can be the value of βk
i that

either maximizes or minimizes ϖk
i(j)

(

wk
i , ŵ

k∗
ji , β

k
i

)

. Note

that in (16), we also consider the boundary values of βk
i .

This is because the solution βk∗
i that maximizes the value

of ϖk
i(j)

(

wk
i , ŵ

k∗
ji , β

k
i

)

may not always within the range

of βk
i . In this case, we need to choose the lowest or the

highest value of βk
i to improve the payoff of MNO Mi in

the kth sub-band.

Note that the pricing coefficients of MNOs control the

optimal transmit powers of MNOs. We hence can claim that

the optimal pricing coefficient βk∗
i and the corresponding

transmit powers ŵk∗
ji achieve an Stackelberg equilibrium

for the Stackelberg game of the leader (subscribers) and

the follower (aggregators). This concludes our proof.

APPENDIX C

PROOF OF PROPOSITION 2

The proof of the above proposition follows directly from

the results proved in [27], [45]–[47], [51], [52]. We list

these results as follows:
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R1) [45, Theorem 6.6] For any stable roommate market,

there exists at least one stable partition and any two

stable partitions have the same odd parties.

R2) [45], [46, Theorem 6.7] There is no stable matching

available for a roommate market if and only if there

exists a stable partition with a set that has an odd party,

R3) Each even party can be broken into pairs of mutually

agreed MNOs preserving stability [45],

R4) If a stable roommate market contains at least one

stable matching structure, the set of all stable

partitions and the set of all the stable matching

coincide [47].

Let us briefly describe how to prove Proposition 2 using

the above results. From Step ii) in the addition operation,

we can observe that if a new MNO Mi sequentially sends

pairing requests to other MNOs in the market from the most

preferred MNO to the least preferred one, we can claim that

for each MNO Mj that rejects the request of Mi, there must

exist another MNO Mk that is strictly preferred by Mj .

In addition, any other MNO Ml which is more preferred

by Mi than Mj (e.g., satisfying Pi(Ml) < Pi(Mj)) has

already rejected the requests of Mi. The sequential requests

of Mi will have the following possible results:

1) If Mi has been rejected by all the MNOs in the

market that are more preferred by Mi than matching

with itself, it means that either MNO cannot find any

MNO that can improve its payoff by forming an

IO-CA pair, or every MNO that can provide

performance improvement for Mi by forming an

IO-CA pair has already been matched with another

MNO that is more preferred than Mi. In this case,

there is no stable matching for the IO-CA market

and Mi will not form an IO-CA pair with any other

MNO in the market. This results in the cases in Step

ii-a).

2) If there is one MNO Mj accepting the request of Mi

for Mj ̸= Mi and Pi(Mj) < Pi(Mi), it means that

Mj prefers Mi to its current matching partner Ml

and all the other MNOs that are more preferred by

Mi than Mj prefer their current matching partner to

Mi. Therefore, both Mi and Mj have the incentive

to form an IO-CA pair. Once an IO-CA pair has

been formed between Mi and Mj , Ml will start the

sequential requesting process as Mi. The same

results as described in 1) and 2) will also apply for

Mi. It is possible for Ml to also find anther MNO

Mm that accepts its request and form a matching

pair with Ml by separating from its current IO-CA

pairing partner. If this process continues, it will result

in a sequence of matching, separating and sequential

requesting processes of a set of MNOs. There are

two possible results. If this sequence of processes

will result in a new stable matching structure in

which all MNOs have found their new IO-CA

pairing partners, it means that the final matching is

stable. This results in the cases in Step ii-b). If an

MNO Mn accepting the request of another MNO has

previously sent a request, it means that there is a

cycle sequence and the MNOs involved in the

sequence of processes will repeatedly send requests

to each other, forming a pair and separating from

their matching partner and it is easy to verify that

the sequence of MNOs in the sequence of processes

forms an odd party. This results in the cases in Step

ii-c). Using the result R2), we can claim that there

will be no stable matching for the MNOs in the

sequence of processes. Also using result R1), we can

claim that the addition operation always results in the

same odd parties. Finally, using result R4), we can

claim that if there is no odd parity, the final result of

the addition operation is always a stable matching.

Based on the above analysis, we hence can claim that if

at least one stable matching exists, the addition operation

will achieve it. If no stable matching exists for the IO-

CA market, the addition operation will result in a stable

partition. This concludes the proof.

APPENDIX D

PROOF OF PROPOSITION 3

As can be easily observed from the addition operation,

the worst case happens when the new MNO Mi joins the

IO-CA market and finds a pairing partner (e.g., MNO Mj)

which is in an transposition with another MNO Mn. In

this case, MNO Mn will repeat steps ii) again. If the same

situation happened repeatedly for each of the other MNOs

in K, this will cause all K MNOs to send requests to each

of the other K−1 MNOs and hence results in a complexity

of O(K2) in the worst case.

APPENDIX E

PROOF OF PROPOSITION 4

Let us use the following result and Proposition 2 to prove

Proposition E.

R5) Suppose Π is a stable partition in a stable roommate

market and C = ⟨ai1 , ai2 , . . . , ai2k+1
⟩ is an odd party

in Π for k ≥ 1. Then

Π′ = (Π\C) ∪ ⟨ai1 , ai2⟩⟨ai3 , ai4 , . . . , ⟨ai2k−1
, ai2k⟩⟩

is a stable partition of Π\⟨ai2k+1
⟩ [45], [49].

From the above result, we can claim that if MNO Mi has

been deleted from the IO-CA market and Mi belongs to an

odd party, each of the remaining MNOs in the same odd

party as Mi will be able to find its IO-CA pairing partner

and form a stable matching pair.

If Mi has already been matched to another MNO Mj

for Mj ̸= Mi, then Mj will separate with Mi and find its

parting partner using the same procedure as the addition

operation. Therefore, we can use Proposition C to prove

that the resulting matching will be a stable partition. This

concludes the proof.
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