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1. Introduction

In the huge trucking market, valued at $600 billion in the

United States alone (American Trucking Association, 2002;

Caplice and Sheffi, 2003) procuring transportation services is

crucial to shippers who must secure high-quality carrier

services while controlling supply chain costs. In buying

transportation services, a shipper typically tenders a request

for quotes (RFQ) for a network of lanes following a bid

preparation stage (Rhinehart, 1989; Foster and Strasser,

1991; Gibson et al, 1993; Caplice and Sheffi, 2003; Sheffi,

2004), where a lane is a one-way movement from an origin to

a destination with an associated set of shipments for the

period covered by the RFQ (Caplice and Sheffi, 2003). Once

bids are received, a bid-analysis exercise is used to allocate

lanes to carriers.

Foster and Strasser (1991) studied RFQ auctions where

the shipper provides a list of lanes to carriers to bid for, and

decides the winners using a single price criterion. RFQ

auctions continue to be used in transportation procurement

as reported by Sheffi (2004). In combinatorial auction

(Sheffi, 2004) mechanisms, used by many shippers and third-

party-logistics providers to encourage more aggressive

bidding, shippers request bids for groups of lanes, in

addition to individual lanes. This allows carriers to form

bid packages based on their economics—existing client base,

driver domiciles, maintenance networks, etc—and therefore

cut costs and pass on part of the savings to the shipper. In

deciding the winning bids for lanes, the shipper uses an

optimization carrier assignment model (CAM) to minimize

transportation costs while ensuring that all lanes are

covered. Set covering models, including those with combi-

natorial input, have been well studied in the literature

(Ledyard et al, 2002; Song and Regan, 2002; Caplice and

Sheffi, 2003; Elmaghraby and Keskinocak, 2003; Vohra and

de Vries, 2003; Sheffi, 2004).

Recently, Caplice and Sheffi (2003) and Sheffi (2004)

studied non-price and level-of-service factors in transporta-

tion procurement. These include shipper restrictions on the

number of lanes a carrier can win, favouring incumbents,

keeping specific carriers off certain lanes, restricting carriers

from serving parts of the network, and incorporating

performance as a factor in carrier selection. This has led to

specialized RFQ auctions where winner determination

CAMs are required to deal with these factors, other than

price alone. Sheffi (2004) reports that many leading

companies, including Colgate-Palmolive, Ford Motors,

Lucent Technologies, Proctor and Gamble, and Wal-Mart

Stores, have used combinatorial auctions successfully to

obtain low transportation costs and high levels of service.

Here, a level-of-service performance requirement can be

announced by the shipper in his RFQ as a non-price

attribute, and evaluation criteria given for it. The carrier

responds with a description of his service quality level and a

bid price. The shipper can then set a value for this service

level and can, for example, choose to select the carrier with

the largest surplus margin between service level and bid

price. This illustrates the fact that the RFQ process is a

sealed bid auction with independent private values. As

determining the winner is a combinatorial problem with

many objectives, a CAM must be used. In the example of

service level input, a penalty cost can be modelled in the
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CAM, inverse to the value set by the shipper for the carrier’s

level of service or the shipper can adjust the fees charged by

the carrier to reflect the service level for the carrier on each

lane (Caplice and Sheffi, 2003). Transportation and logistics

solution providers such as Manugistics Inc. (http://www.ma-

nu.com/solutions/transportation_logistic.aspx) offer electroni-

cally distributed e-RFQs with which shippers can ‘utilize

configurable algorithms to further analyse and optimize

carrier bids across a number of business constraints.’ Using

online bidding platforms, carriers are able to adjust to the

shipper’s requirements. For example, if the shipper imposes

a cap on the number of lanes the carrier can win, then the

carrier will most likely respond by strategically increasing its

bids over the network using many combinatorial bids

(Sheffi, 2004). If, for example, the carrier is aware that his

level of service is low in view of the shipper’s criteria, it might

choose to reduce its bid price. In the case of shippers

insisting on low package prices while awarding only a single

lane or partial packages, a carrier will submit bids for single

lanes and partial packages to protect itself (Sheffi, 2004).

Depending on specifications of the RFQ provided by the

shipper, carriers respond by adjusting their bid strategy. As

most shippers use only a single round in the process (Sheffi,

2004), combinatorial bidding is important to carriers who

cannot use multiple rounds to signal each other as to which

lanes they want and must hedge against uncertainty in

response to the bidding method used by the shipper (Caplice

and Sheffi, 2003). In all cases, carriers have to make

assumptions whether they will win lanes which interact with

lanes in their network and estimate the probability of

achieving economies of scope arising from line interdepen-

dencies etc, where the cost of hauling on one lane is affected

by other serviced lanes.

In this work, we focus on optimization models and extend

CAMs to address shipper’s non-price business objectives

mentioned above. Further to this, we develop a model that

incorporates carrier transit point costs, in addition to lane

costs. This provision originates from the authors’ study with

Royal Philips Electronics (a shipper) which used carriers that

incurred varying costs at transit points. These costs included

stopover, parking/berthing, warehousing, taxes and accom-

modation costs. Combinatorial auction models available do

not address these shipper and carrier considerations since

combinations studied are concerned with packets of lanes

and not with the points lanes transit. In reality, however,

carrier quotes and shipper supply chain planning are

connected to both transportation routes and transit/terminal

locations, and interdependencies of costs resulting from

economies of scope (Caplice and Sheffi, 2003; Sheffi, 2004)

are not only derived from connecting served lanes but also

on the locations that connect lanes.

The work is organized as follows: In the next section, the

bid analysis process is described. In section 3, two new

models that incorporate shipper’s objectives and transit

point costs are given. Solutions for the models are then

provided. In section 4, computational experiments to

compare the solution approaches are described. The work

is concluded in section 5.

2. Background

2.1. CAMs in bid analysis

In the bid analysis stage in the transportation procurement

process, a CAM helps the shipper minimize total costs while

ensuring that each lane is served and its required capacity

satisfied. Generalized CAMs specify that allocated lanes and

volumes are feasible for both shippers and carriers.

In CAM models, decision variables are binary, whereas

more general forms are mixed integer programs (MIP) for

which solution approaches are available (Nemhauser and

Wolsey, 1999; Caplice and Sheffi, 2003) using MIP solvers.

There has been much interest in combinatorial auctions used

in bid analysis in transportation procurement. In an early

work, Moore et al (1991) employed MIP for carrier selection

without conditional bids, while, more recently, Ledyard et al

(2002) allowed for conditional bids without consideration of

capacity limitations and performance factors.

Shippers often use optimization models in ‘What-if’

sensitivity analysis (Gibson et al, 1993): ‘What if I assign

only incumbents and do not allow new carriers’; ‘What if I

reduce the number of carriers servicing city X’, etc. It is

preferable therefore that shippers can analyze contingencies

directly in CAMs.

2.2. Shipper considerations

As pointed out, shipper input is usually absent from

traditional CAMs, including those of a combinatorial

nature. The inclusion of shipper non-price considerations

has been found to be ‘one of the strongest added values to

the whole process’ as reported recently by Caplice and Sheffi

(2003). The authors list the following as some of the

considerations that enhance the practical value of CAMs:

� Setting minimum/maximum carrier numbers: Shippers

would require that no more and no less than a certain

number of carriers can win lanes to determine optimal

sizing of a carrier group.

� Favouring incumbents: Because of the additional costs of

new carriers, the shipper can apply a penalty to non-

incumbents (or reward incumbents). In strategic supply

management, shippers want to ensure they have the right

set of suppliers.

� Setting maximum/minimum coverage: Shippers may wish

to restrict the amount of traffic a carrier can win on a lane

or in the system.

� Restricting carriers: Shippers may wish to restrict carriers

or groups of carriers from serving part of the network.

For example, a shipper may want to restrict a carrier from

serving certain nodes in the network in an international
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network for political reasons or may want to penalize a

shipper at a city where its staff are unfamiliar with the

carrier’s operations. In international transportation,

carriers foreign to countries through which lanes transit

may be less preferred.

� Factoring in performance factors: Level of service

provided by carriers can be a factor leading to awarding

lanes. One way to do this, suggested by the authors, is to

modify cost coefficients.

2.3. Carrier considerations

Carriers traditionally submit quotes only for lanes. It is

common, however, that carriers have strengths (or weak-

nesses) in certain cities, regions or groups of cities and incur

varying costs by operating through different points. For

example, carriers can have hubs at certain cities through and

from which they can operate with lower costs. In other

situations, carriers may have to invest in start-up costs at cities

new to their network. Yet in other situations, carriers may be

liable for operating costs, including ad hoc ones, for example,

taxes and levies in international carriage at transit points.

Take the case where a carrier wins a lane connecting A

and B, and a lane connecting A and C but will incur separate

costs at A, B and C. It will be preferable to both the carrier

and the shipper if the quote given for lanes AB and AC did

not include operating costs due to A, B and C, since,

otherwise, they would accrue twice from A, resulting in a

higher total bid for lanes AB and AC. In designing CAM’s,

the use of explicit transit point costs can therefore only

benefit both carriers and shippers. Carriers can better

identify optimal lane packages and provide more realistic

bids when lane costs are clearly separated from transit point

costs, rather than subsumed into one set of lane costs.

3. Extended carrier assignment models

Although it is impractical to include every shipper non-price

and level-of-service factor in one model, we address some of

these factors here. To achieve this, we provide two models.

The first addresses the issue of restricting the number of

lanes a carrier can win.

Although this is determined by the shipper, carriers can

suggest the maximum lane coverage threshold they wish to

impose on themselves. The model is an integer program, for

which a network flow solution is provided. The second

model addresses other factors which include favoring

incumbents, restricting carriers to lanes and service perfor-

mance factors. From the carrier’s point of view, the model

allows for explicit costs at transit points to be managed

separately from lane costs. We call these separate costs,

carrier transit point costs. This model is shown to be NP-

complete for which metaheuristic solutions are developed.

3.1. Model 1: a CAM with shipper’s business constraints

Shipper’s perspective. As we have seen, shippers may wish to

have a maximum (minimum) number of carriers on each

lane or wish to restrict the number of carriers in parts or all

of its network. One way this can be achieved is by

controlling the number of lanes awarded to each carrier.

From the shipper’s point of view, the number of lanes a

carrier can ultimately win is dependent on several factors;

typically, these include the shipper’s perception of the carrier

capability, track records, synergies with the shipper and

spread requirements. This can be addressed in various ways.

Enforcing a cap on the total number of winnable lanes can

ensure a better spread and larger carrier participation

resulting in better choices for the shipper. Conversely, the

shipper can wish to award a minimum number of lanes to a

preferred carrier.

Carriers perspective. In competition for contracts, small

transportation companies often submit lower bids compared

to their larger counterparts. However, these carriers often

have smaller capabilities and, as a result, usually service only

a limited number of lanes. Because of this, they are restricted

to bid for smaller numbers of lanes although they would be

better off bidding for many packets of lanes to increase their

chances of winning routes that maximize profits. A carrier

with a five-lane capability will want to bid for a number of

five-lane packages hoping to win one with the best profit.

The possibility, however, of winning more lanes than it can

handle is a consequence that the carrier may not be able to

bear. Carriers therefore will want to limit the number of

winnable contracts to be within their capabilities, but

otherwise attempt to bid for as many combinations of lanes

or packages as possible.

The following shipper’s integer programming model

addresses both these shipper and carrier objectives. As

pointed out, lane caps can be shipper determined, or

provided to the shipper by the carrier.

Parameters:

L= the number of lanes,

S= the number of carriers,

M= a sufficiently large number,

bkj= 0, 1, 2, 3,y is the bid value carrier k places on lane j;

bkj¼M if carrier k does not bid for lane j (1pkpS,

1pjpL),

kmin= the minimum total number of lanes assignable to

carrier k (1pkpS) determined by the shipper (or the

carrier if desired),

kmax=the maximum total number of lanes assignable to

carrier k (1pkpS) determined by the shipper (or the

carrier if desired).

Decision variables:

xkj¼ 1 if lane j is assigned to carrier k (1pkpS, 1pjpL);

0 otherwise
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Objective:

minimizeC ¼
XS

k¼1

XL

j¼1
bkjxkj ð1Þ

subject to

XS

k¼1
xkj ¼ 1; 1pjpL ð2Þ

XS

k¼1
bkjxkjpM � 1; 1pjpL ð3Þ

kminp
XL

j¼1
xkjpkmax; 1pkpS ð4Þ

Constraint (2) ensures that each lane is assigned to

exactly one carrier and constraint (3) ensures that when

lane j is assigned to carrier k, the bid bkj value cannot beM.

In (4), we note that when the maximum values kmax are

set to L (with kmin set to 0), the model reduces to a basic

CAM where there is no cap on the number of lanes. In the

model, greater spread of lanes among carriers can be

achieved by reducing kmax, where in the extreme case

kmax¼ 1 for all k.
In the case that carriers wish to restrict the number of

lanes that can be won by any carrier in a particular region,

constraint (4) can be modified to have only the set of lanes

present in the region used and k restricted to that particular

carrier. Here constraints (4) would be transformed to:

kminp
P

jARxkjpkmax, where R denotes the region or subset

of lanes in question.

3.1.1. A network maximum flow solution. A minimum

cost maximum flow solution is given for this problem.

Without loss of generality, take kmin¼ 0 and apply a

transformation to the graph which represents the problem.

In the graph, edges are created for every lane bid a carrier

submits.

To illustrate the network, we use a simple example with

two carriers and three lanes, and where B in Figure 1 denotes

the corresponding carrier-lane bid matrix. Nodes a and b

represent carrier 1 and carrier 2, respectively, whereas nodes

c, d and e represent the three lanes. The pair i/j on each edge

represents the cost i of a unit flow and the capacity j of that

edge. Carriers 1 and 2 are allowed to serve at most 2 and 1

lanes, respectively.

In constructing the network in Figure 1, two additional

nodes are added: a source and a sink. Phase 1 consists of the

capacity constraints of each carrier, where edges are

constructed from the source node to the carrier nodes.

Here, 0/2 indicates that carrier 1 can serve a maximum of

two lanes. In phase 2, edges between carrier nodes {a, b) and

lane nodes {c, d, e} are constructed. Here, 3/1 indicates the

cost to carrier a to cover route c is 3 and flow capacity 1 for

consistency between phases 1 and 3. In phase 3, edges

connecting lane nodes to the sink are constructed with cost 0

and capacity 1 to ensure each edge is served by a carrier only

once.

It is now easy to see that the minimum cost maximum

flow in the network solves the problem. First, edge capacities

in phase 1 ensure that no carrier is assigned more than the

number lanes allowed and flow in phase 3 ensures every edge

is served by a carrier once. Next, any solution with cost less

than the minimum cost maximum flow, can be transformed

to a network flow as described implying a cost lower than

the minimum cost maximum flow, which is a contradiction.

Hence, the minimum cost maximum flow must solve the

problem.

Algorithms for finding the minimum cost maximum flow

in a network have been well-studied (Oldham, 2001). By

applying the transformation above, the problem can be

solved in O((LþS)3*L) time.

3.2. Model 2: a CAM with penalty and transit point costs
(CAMPC)

Shipper’s perspective. Shipper non-price business considera-

tions include favouring incumbents, restricting carriers to

lanes, excluding or penalizing carriers at transit points and

including carrier performance factors, such as level of

service. To deal with these objectives, we propose a CAM

that includes penalty costs. In the case where an attribute is

desirable, as with level of service, ‘penalty cost’ can be taken

as the inverse value of the level-of-service price assigned to

the carrier by the shipper. The model can easily be extended

to have more than one penalty cost. Alternatively, the model

can be used to achieve each of these objectives separately.

For example, if the shipper wished to exclude a carrier from

a lane, then high penalty costs can be assigned to the carrier

0/2

0/1

3/1

5/1

7/1

0/1

0/1

0/1

2/
1 9/1

4/1

Source Sink
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b

c

d

e

Phase 1 Phase 2 Phase 3

B =
3

2

5
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4

7

Figure 1 Network flow example.
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at locations adjacent to the lane. If the shipper wished to

restrict or exclude a carrier at a transit location, he would

assign a high penalty to the carrier at that point. By

adjusting penalty costs, the shipper can determine the carrier

allocation which is best suited to his business objectives.

Carrier’s perspective. Carriers and shippers will benefit if

lane bids can be separated from transit point costs which

provides for more realistic bidding. Carriers can adjust bids

according to varying costs incurred at different transit

locations.

A model (CAMPC) which addresses these shipper and

carrier objectives is given in the integer program:

Parameters:

n= the number of nodes

L= the number of lanes

S= the number of carriers

M= a sufficiently large number

aij= 1 if and only if node i is adjacent to lane j (1pipn,

1pjpL); 0 otherwise

bkj= 0, 1, 2,y is the value carrier k bids for lane j;

bkj¼M if carrier k does not bid for lane j (1pkpS,

1pjpL)

bki
K

= 0, 1, 2,. is the carrier k ‘s bid cost at transit node i

(1pkpS, 1pipn)

pki= 0, 1, 2, y is the shipper’s penalty cost assigned to

carrier k at node i (lpkpS, 1pipn)

Decision variables:

xkj¼ 1, if lane j is assigned to carrier k (1pkpS, 1pjpL);

0 otherwise,

yki¼ 1, if carrier k wins a lane adjacent to node i (1pkpS,

1pipn); 0 otherwise

Objective:

minimizeC ¼
XS

k¼1

XL

j¼1
bkjxkj þ

XS

k¼1

Xn

i¼1
b�kjyki

þ
XS

k¼1

Xn

i¼1
pkiyki ð5Þ

subject to

XS

k¼1
xkj ¼ 1; 1pjpL ð6Þ

XS

k¼1
bkjxkjpM � 1; 1pjpL ð7Þ

XL

j¼1
aijxkjXyki; 1pipn; 1pkpS ð8Þ

XL

j¼1
aijxkjpMyki; 1pipn; 1pkpS ð9Þ

Constraint (6) ensures that each lane is assigned to exactly

one carrier and constraint (7) ensures that when lane j is

assigned to carrier k, the bid bkj is not M. Constraint (8)

ensures that when yki is 1, there is at least one edge j

connecting node i to carrier k and (9) ensures that when yki is

0, no edge connecting node i is assigned to carrier k.

The CAMPC is NP-complete and a proof of this can be

found in the Appendix.

3.2.1. Benchmarking the CAPMPC using branch-and-
bound solutions. A branch-and-bound (B&B) complete

search can be used to examine all possible assignments of

the lanes to carriers for small test sizes, where the time

performance of the algorithm depends largely on the

bounding function used (Viswanathkumar and Srinivasan,

2002).

The B&B algorithm begins with an empty solution set and

divides the problem into L recursive stages, where a lane is

assigned to a carrier in each stage. At stage k, when lanes 1

to k�1 have been assigned, carriers who bid for lane k are
examined. Given a carrier s’ from this set, lane k is assigned

to s0 if the current best solution is larger than the lower

bound (see below); otherwise, the search branch is discarded

and the search moves to consider the next carrier. The

process moves recursively to stage kþ 1 to assign a carrier to
lane kþ 1.
To calculate the lower bound: Let s(i) (1pipL) be the

carrier that edge i is assigned to. If s{i) is determined for

1pipk and undetermined for kþ 1pipL, the lower bound

for the total cost is the sum of three components: L1, L2 and

L3, where L1 is the bid cost for edges 1 to k, already assigned

to some carrier, L2 is the bid lower bound for edges kþ 1 to
L, yet to be assigned to any carriers, and L3 is the least

possible total penalty cost. Letting B denote the S�L carrier

bid matrix, we have

L1 ¼
Xk

i¼1
BsðiÞ;i

L2 ¼
Xk

i¼kþ 1
minfBj;i1pjpSg

L3 ¼
Xn

i¼1
pi

where pi is the penalty cost incurred at node i. If there is an

edge j with 1pjpk which is connected to node i, pi is the

sum of penalty costs assigned to carriers who serve some

edge between 1 and k; if there is no edge j with 1pjpk

connected to node i, then pi is the minimum penalty assigned

to any carrier that can cover any edge connected to node i.

Thus, at any point in the B&B process, the bounding

function used is L1þL2þL3.
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3.2.2. Using metaheuristics to solve the CAMPC. Heuris-

tics have been used for combinatorial auctions problems

(Sandholm et al, 2002; Sandholm, 2002; Vohra and de

Vries, 2003) and for other difficult combinatorial optimiza-

tion problems (eg Foster and Strasser, 1991; Lim et al,

2004). As the CAMPC is an NP-complete problem,

metaheuristic solutions are developed based on widely used

genetic algorithm and tabu search techniques, which have

been successful in other comparable applications. A hybrid

of these is then constructed which provides a third heuristic

approach to the problem.

A genetic algorithm Genetic algorithms have been widely

used for combinatorial optimization problems (Dowsland,

1996); for example, they have been applied to task allocation

problems (Song and Regan, 2002; Wen and David, 2001).

Here, a genetic algorithm (GA) is used for the CAMPC

which is described as follows:

Outline. For each distinct chromosome pair in a subset of

a randomly generated initial population with size pop_size,

perform crossover operations and mutate newly generated

chromosomes according to a mutation probability. By

evaluating the objective function value of the new and old

chromosomes, retain pop_size best chromosomes. In the

implementation, termination is effected when the best

solution does not improve in a given number of iterations

or if a maximum number of iterations is reached.

Chromosome representation. Solutions are encoded as

chromosome strings s¼ (s(l), s(2), ys(L)) containing L

integers, where L is the number of edges to be covered. Each

s(i) (1pipL) is an integer which represents the carrier index

that is assigned to edge i, so that 1ps(i)pS. Initial solutions

are generated so that bs(i),ioN is ensured.

Crossover operation. For chromosomes s and s0, a random

number k is generated between 1 and L�1 and the genes are
cut at position k. The subsequence (s(kþ 1), s(kþ 2),y,

s(L)) is placed after (s0(l), s0(2),y, s0(k)) and (s0(kþ 1),
s0(kþ 2),y, s(L)) is placed after (s(l), s(2),y, s(k)) to

generate two new chromosomes. With this operation, newly

formed chromosomes are always feasible, given their parents

are feasible since the positions of carrier assignments are not

shifted when performing the crossover.

Mutation operation. For each chromosome in the off-

spring generation, a mutation probability q is used.

Generating a random number in rA[0, 1] for each i, if

roq, s(i) is changed randomly to another value thus

changing the carrier assigned to edge i.

In implementation, the following parameters were used:

pop_size¼ 1000, q¼ 0.5. The convergence criteria were 50
generations reached or more than 20 generations with no

improvement to current best solution.

A tabu search. Tabu search is a search strategy which

moves iteratively from one solution to another in a

neighbourhood search space using an adaptive memory.

The method declares tabu, solutions with attribute changes

recorded in the short-termmemory from being reused, where

the time a restriction is in effect depends on a tabu tenure

parameter (Glover and Laguna, 1997).

Tabu search is applied to the CAMPC, with the solution

representation used in GA, that is, a string of integers. A

neighbourhood move is denned as a change in carrier-edge

assignment in the solution (similar to the mutation operator

in GA) and, to avoid recycling, tabu lists consist of the recent

tabu tenure solutions.

The heuristic (TS) is outlined as follows: Find an initial

solution xnow. Set xbest¼ xnow. If the termination condition is

satisfied, quit with xbest. The termination condition is

satisfied if either more than 200 iterations have been

executed or there is no improvement in the current best

solution in the most recent 100 iterations. Otherwise,

generate the neighbourhood N(xnow) of xnow with 1000 new

neighbourhood solutions by randomly selecting three lanes

among the L lanes in xnow and reassigning them to other

feasible carriers randomly. Evaluate the cost of xtrial for each

new candidate trial solution xtrial. Select xnext¼minXtriaieN
(Xnow)Cost(xtrial) for xtriai not in the tabu list. Update the

tabu memory by adding the new current solution xnext into

the tabu list. Set xnow¼ xnext. If cost(xnow)ocost(xbest), set

cost(xbest)¼ cost(xnow). In implementation, 1000 recent solu-

tions were maintained in the tabu list.

A genetic algorithm with tabu search (GAþTS) As initial

solutions can contribute to the quality of solutions provided

by the metaheuristics, we developed a third heuristic using

initial solutions from GA in TS.

4. Computational experiments for the CAMPC

In order to gauge the performance of the solution

approaches, a series of experiments were conducted. The

B&B method and three heuristics (GA, TS, GAþTS) were

coded using Cþþ and run on a Pentium IV 1.4G PC with

256Mb of memory.

The experiments consisted of two parts. The first set of

experiments used small-size test instances as optimal

solutions could be found with the exact enumerative B&B

method for these sizes. Solutions obtained by the heuristic

approaches were compared with the optimal solutions

found. The second set of experiments compared the

heuristics for larger-size problems against the best solutions

obtained from the heuristics.

Test instances were generated using the following steps:

Step 1: Given the input data: n nodes, S carriers and L

edges, construct a graph from an initial graph

with n nodes and no edges by connecting

randomly selected nodes with no edge between

them. Repeat this until all L edges are added to the

graph.

Step 2: Assign carrier costs to nodes: For each carrier and

each node, pick a number from {1, 2, 3} randomly
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to indicate the range the carrier cost will be in—1

for a low range, 2 for a middle range, and 3 for a

high range. Take each cost range to be given by an

interval. With this, assign a cost value randomly

from the range.

Step 3: Assign carrier costs to edges: Assign costs as in

Step 2.

4.1. Comparisons with branch-and-bound

In total, 300 small size instances were generated with

the number of edges ranging from 3 to 21. The exact

optimal cost value was found by B&B, and the running

time (in seconds) calculated for each algorithm, for each

instance.

From the experiments, we found that the heuristics

performed well when instances were small, which is expected

of a good heuristic. All three methods provided optimal

solutions for most of the 300 instances. The mean values of

the percentage difference between each heuristic solution and

the exact solution found by B&B were very close to 0 for all

the heuristics. The mean values and standard deviations are

provided in Table 1. Mean values were 0.082 for GA, and

0.004 for TS and GAþTS, and the standard deviations were

24.482 for GA, 1.056 for TS and 1.056 for GAþTS. The

time required for B&B varied with size and among the

heuristics, the GA algorithm consumed more time than the

other two heuristics for most instances since it depends on

the population size of each generation. The times required

for B&B were large since its performance depended on input

size and graph structure. In contrast, the heuristics were

more likely to be independent of these inputs and had more

stable running times than B&B.

Running time statistics are provided in Table 2. In the

table, mB&B
t , mGA

t , mTS
t , mGA

t þTS is the mean running time for

B&B, GA, TS and GAþTS respectively, and st is the time
standard deviation in each group.

From the table, B&B required considerably more time

than the other heuristics when the number of edges was 13

and higher. Moreover, B&B had a large deviation for

running times.

Although the heuristics performed well for small cases,

this is not sufficient to guarantee good performance for

larger-size cases. In the next section, we provide a best case

analysis for the heuristics for larger cases.

4.2. Comparisons between the heuristics

To determine the performance of the heuristics for large test

sizes, a total of 250 instances were tested in five groups which

were generated with sizes of up to 500 edges. Statistics for

the experiments are provided in Tables 3 and 4.

In Table 3, the instance size is in the form: number of

edges_number of nodes_number of carriers, and mGAþTS
C ,

mTS
C and mGA

C denote the solution objective function mean

value obtained using GAþTS, TS and GA, respectively,

whereas mGA
t , mTS

t and mGAþTS
t is the mean time required by

Table 1 Performance of heuristics for small test sizes

No. of edges No. of instances mB&B sB&B mGA sGA mTS sTS mGAþTS sGAþTS

3–21 300 0.0 0.0 0.082 24.282 0.004 1.056 0.004 1.056

Table 2 Performance of heuristics for small test sizes—time statistics

No. of edges No. of instances mB&B
t sB&B

t mGA
t sGA

t mTS
t sTS

t mGAþTS
t sGAþTS

t

1–8 60 0.0 0.0 127.3 4.2 7.2 6.7 7.2 6.7
9–12 110 1.8 2.8 133.4 43.7 17.5 4.2 17.1 0.6
13–17 90 432.7 905.4 130.5 3.9 17.9 1.6 19.4 3.0
18–21 40 1675.4 3260.8 131.2 3.0 18.6 2.2 17.9 0.1

Table 3 Lane experiments

Size mGAþTS
C mGAþTS

t mTS
C mTS

t d1 mGA
C mGA

t d2

100_50_10 5022 64.23 5028 68.17 0.13 5238 506.11 4.31
200_70_10 9118 69.44 9118 71.76 0 10564 565.43 15.86
300_80_15 13299 74.65 13334 75.22 0.27 16821 639.21 26.49
400_90_20 18001 80.27 18076 80.93 0.42 24283 771.74 34.90
500_100_20 20812 85.19 20886 87.96 0.35 29762 860.76 43.00

1478 Journal of the Operational Research Society Vol. 57, No. 12



the algorithms to find solutions. The values d1 and d2 denote
the ratio of difference between mTS

C and mGA
C with mGAþTS

C as a

percentage. From this table, GAþTS and TS can be seen to

perform equally well, with results differing by no more than

1%, all of which were found within 90 s. On the other hand,

the GA algorithm did not perform well when compared to its

performance for smaller test cases. The relative performance

difference between GA and GAþTS increased from about

4% to 43% as size increased. In addition, GA required 8–10

times the running time required by GAþTS.

Table 4 provides additional statistical information on

these experiments. In the table, bGAþTS, bTS, and bGA,
denote the number of best solutions obtained in each group

by the algorithms GAþTS, TS and GA, respectively, and

sGAþTS
C and sGAþTS

t , etc, is the standard deviation of the

solutions and running times, respectively. Again, there was a

marginal advantage of GAþTS over TS in the number of

best solutions obtained, while GA failed to provide results

that are competitive with the other heuristics. Both GAþTS

and TS solutions had a small standard deviation in the

objective function values and running times. The GA

algorithm, on the other hand, had standard deviations

significantly higher than GAþTS and TS.

The heuristics were further tested using instances with

different lane densities. Fixing the number of lanes to be 200

and number of carriers to be 15, 300 instances were

generated in six groups according to the number of nodes.

Statistics from the experiments are given in Table 5

and Table 6. The attributes used in the tables are similar

to those used for Tables 3 and 4. In Table 5, l is the lane
density calculated by L/((n/2) (n�1)), where the denominator
is the maximum possible number of lanes in a graph with n

nodes.

From Table 5, it can be seen that the performance of the

heuristics methods was not sensitive to the lane density, as

the solution quality and time requirements of each method

were similar. TS results were very close to GAþTS with no

more than 1% difference on average, whereas the GA

algorithm solutions deviated from 17 to 22% from the other

algorithms.

In Table 6, additional statistics on the lane density

experiments is provided, similar to those given in Table 4.

Table 4 Lane experiments—statistics

Size bGAþTS bTS bGA sGAþTS
C sTS

C sGA
C sGAþTS

t sTS
t sGA

t

100_50_10 29 21 0 162.01 158.10 178.84 2.44 1.42 14.70
200_70_10 24 26 0 195.67 192.08 250.67 3.01 1.74 13.15
300_80_15 29 21 0 177.22 167.98 406.65 1.87 2.41 22.80
400_90_20 33 17 0 167.81 181.82 380.08 1.96 1.18 59.93
500_100_20 32 18 0 252.31 273.04 650.52 2.62 0.77 14.16

Table 5 Lane density experiments

n l mGAþTS
C mGAþTS

t mTS
C mTS

t d1 mGA
C mGA

t d2

25 0.67 7576 69.71 7604 70.03 0.38 9186 553.07 21.26
30 0.46 7886 70.45 7898 69.90 0.15 9480 557.03 20.22
40 0.26 8323 71.35 8337 71.49 0.17 9845 566.35 18.30
50 0.16 8670 72.33 8674 72.17 0.05 10284 600.10 18.62
60 0.11 8907 72.80 8925 72.96 0.20 10570 577.88 18.68
70 0.08 9166 93.03 9177 73.86 0.12 10759 612.57 17.37

Table 6 Lane density experiments—statistics

n bGAþTS bTS bGA sGAþTS
C sTS

C sGA
C sGAþTS

t sTS
t sTS

t

25 34 16 0 136.08 139.79 263.99 2.15 2.32 15.16
30 30 20 0 143.57 140.72 285.93 2.09 1.82 12.60
40 25 25 0 154.34 167.94 256.37 1.74 1.69 14.40
50 29 21 0 154.44 152.05 234.50 1.86 1.73 30.61
60 29 21 0 176.30 158.98 269.53 1.83 1.57 11.04
70 26 24 0 121.41 139.78 268.80 8.64 1.50 37.02
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5. Conclusions

In this paper, optimization models used in winner determi-

nation processes in transportation procurement were intro-

duced. Although traditional combinatorial auction models

focus on carrier input using lane bids, these models deal with

shipper non-price business considerations such as carrier

spread, and allowed for the added benefit of including transit

point costs. In one model, the shipper is able to cap the

number of lanes any one carrier can win. This integer

program was solved as a network flow problem and a

polynomial-time algorithm provided. In a second model, a

CAM with penalty and transit point costs was given to

encourage more realistic bidding by carriers. The problem

was shown to be NP-complete, and branch-and-bound and

heuristics were developed to find solutions. Computational

experiments were conducted to evaluate the algorithms

on a range of test instances. It was found that among the

heuristics, a hybrid genetic algorithm with tabu search

provided the best solutions.

This work provides a basis for the design and develop-

ment of models that address shipper non-price attributes and

system constraints in CAMs, and which include carrier cost

input. The use of metaheuristics, particularly a genetic

algorithm with tabu search, has been shown to be effective

for these problems and could be useful in other similar

optimization models, especially when mixed integer pro-

gramming commercial solvers cannot be applied.
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Appendix

Theorem The CAMPC is NP-complete.

Proof Transit point costs can be neglected and taken with

penalty costs in the objective function. In order to show that

the CAMPC is NP-complete, we show that the decision form

of the problem is NP-complete. The decision form can be

stated as: Given S carriers, a bid cost matrix B, a penalty cost

matrix C, and an integer k, can we find a carrier-edge

assignment in the representative graph with total cost k?

In order to prove this problem is NP-complete, it suffices

to prove the problem is in NP and it is NP-hard. Obviously,

given a carrier-edge assignment, it is possible to determine

feasibility in polynomial time, so the problems in NP.

Proof that the CAMPC is NP-hard: To show the problem

is NP-hard, we reduce the vertex-cover problem (VCP)—a

well-known NP-complete problem—to the CAMPC. A

vertex cover of an undirected graph G¼ (V, E) is a subset
V0DV such that if (u, v) is an edge of G, then either uAV0 or

vAV0 (or both). The VCP is to find a subset V0 with the

minimal cardinality (Cormen et al, 2001). Let G(V, E) be an

instance of the VCP. We construct an instance of CAMPC

in polynomial time. For the CAMPC, an instance consists of

a graph G0(V0, E0) of node-edge relationships, a matrix for

the carrier-edge bids costs, and a matrix of penalty costs.
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We construct the input from G(V, E) as follows: Let

G0(V0, E0)DG(V, E) (ie V¼V0 and E¼E0), and n the

number of nodes, L the number of edges and S the number

of carriers. We have n¼ |V| and L¼ |E|. Letting S¼ n, con-

struct a S�L carrier-edge bid cost matrix B with bij¼ 0 if
node i is adjacent to edge j, and bij¼N otherwise (1pipS,

1pjpL). Construct a S� n carrier-node penalty cost matrix

C¼ [pij] with pij¼ 0 if iaj, and pij¼ 1 otherwise (1pipS,

1pJpn). As S¼ n, the matrix is the unit square matrix. An

example is given in Figure 2:

These can be completed within polynomial time. Next we

show that the VCP has a solution with k vertices if and only

if the CAMPC has a solution with cost k. First, we prove

that, if the vertex-cover problem has a feasible solution of k

vertices, then the CAMPC has a feasible solution with cost k.

Let the set of chosen vertices for the vertex-cover problem be

V1, so that |V1|¼ k and let h(i) (1pipk) be the index of the

ith node in V1. In the CAMPC, we choose k carriers

s(1)ys(k) to be the edges, where s(i)¼ h(i)(1pipk) which is

possible as S¼ n. By the definition of the VCP, for any edge

(u, v) in G(V, E), there is a node hi in V1 which is connected to

(u, v); similarly, in the CAMPC, an edge (u, v) in G0(V0, E0)

can be assigned to the carrier with index s(i). This is a

feasible solution if we set the bid cost to be 0 for carrier

s(i) and edge (u, v) when node h(i) is adjacent to (u, v).

Furthermore, the penalty cost assigned to carrier s(i) at

node h(i) in matrix C is 1 since s(i)¼ h(i). Thus, this feasible

solution has cost k since each of the k carriers can only incur

the cost of 1 and no other cost is involved.

Conversely, we prove that if the CAMPC has a feasible

solution of cost k, the VCP also has a feasible solution with k

vertices. From the definition of the CAMPC, the only way to

obtain the feasible solution with cost k is to choose k pairs of

elements (h(i), h(i)) (1pipk) in the diagonal of P. In the

VCP, choose k vertices to be h(i) for 1pipk as in the

CAMPC with s(i)¼ h(i). In the CAMPC, each edge is

assigned to one of the k carriers s(i)ys(k), and if edge (u, v)

is assigned to carrier s(j), then edge (u, v) is connected to

node h(j) where h(j)¼ s(j) because the bid matrix B must be

0; otherwise the feasible solution for the penalty cost

problem with cost k is not possible. Thus, if the set of

carriers s(1)ys(k) can serve the edges with a cost k in the

CAMPC then the set of nodes h(1)yh(k) form a vertex

cover with k vertices in the VCP.

Hence, we have shown that the VCP can be reduced to the

CAMPC by a polynomial-time transformation so that the

CAMPC is NP-hard. &
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