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Carrier Phase Ambiguity Resolution for the Global Positioning 

System Applied to Geodetic Baselines up to 2000 km 

GEOFFREY BLEWITT 

Jet Propulsion Laboratory, California Institute of Technology, Pasadena 

The Global Positioning System {GPS) carrier phase data are biased by an integer number 
of cycles. A successful strategy has been developed and demonstrated for resolving these integer 
ambiguities for geodetic baselines of up to 2000 km in length, resulting in a factor of 3 improvement 
in baseline accuracy, and giving centimeter-level agreement with coordinates inferred by very 
long baseline interferometry in the western United States. For this experiment, a method using 
pseudorange data is shown to be more reliable than one using ionospheric constraints for baselines 
longer than 200 km. An automated algorithm exploits the correlations between the many phase 
biases of a GPS receiver network to enable the resolution of ambiguities for very long baselines. A 

method called bias optimizing has been developed, which, unlike traditional bias fixing, does not 
require an arbitrary confidence test. Bias optimizing is expected to be preferable to bias fixing 
for poorly configured networks. In order to enable ambiguity resolution for long baselines, it is 
recommended that future GPS networks have a wide spectrum of baseline lengths ranging from 
< 100 to > 1000 km and that GPS receivers be used which can acquire aluM-frequency P code 
data. 

INTRODUCTION 

The use of carrier phase data from the Global Positioning 

System (GPS) has already yielded geodetic baseline esti- 
mates with precisions of 1 part in 107 to 1 part in l0 s [e.g., 
Book et al., 1986; Beutler et al., 1987; LieMen and Border, 
1987; Tralli et al., 1988]. However, carrier phase data are 
biased by an integer number of wavelengths which must be 
estimated from the data [Remondi, 1985]. Unless a scheme is 
implemented which invokes this integer nature, the solutions 
of geodetic parameters are considerably weakened through 
their correlation with the phase biases. For example, except 

in regions of high latitude, the phase biases are more cor- 
related with the east component of baselines than with the 

north; consequently, the precision to which the east com- 

ponent can be estimated is degraded by factors of 2 to 5. 
The reason for this asymmetry relates to the north-south 

ground tracks of GPS satellites at the equator in the Earth- 

fixed reference frame [Melbourne, 1985]. 
The GPS P code pseudorange data type, which is a rang- 

ing measurement using known modulations on the carrier 

signal, does not have this weakness. However, presently 
available pseudorange data are contaminated by multipath 

signatures with amplitudes two orders of magnitude greater 
than for carrier phase, and therefore they must be weighted 

accordingly for parameter estimation. Lichten and Border 

[1987] have shown that the phase bias solutions can be 
constrained by processing pseudorange data simultaneously 

with carrier phase data, resulting in a factor of 2 improve- 

ment in precision of the east component of the baselines. 

Even so, the estimation of carrier phase biases still con- 

tributes significantly to the error in baseline components. 

Resolving the integer ambiguity in carrier phase biases 

effectively converts carrier phase data into an ultraprecise 

pseudorange data. The problem of resolving these ambigu- 
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ities, often under the names ambiguity resolution and bias 
fixing, has received theoretical attention by Bender and Lar- 
den [1985], Goad [1985], Melbourne [1985], Wabbena [1985], 
and others. Some of the ideas expressed in these papers 

serve as a starting point for this work. 

Results presented by Bocket al. [1985, 1986] and Abbot 
and Counselman [1987] show improved baseline precision 
due to bias fixing. Dong and Book [1989] have demonstrated 
ambiguity resolution for baseline lengths up to a few hun- 
dred kilometers. One method of ambiguity resolution, which 

has been implemented in various forms by these and other 
investigators, starts by imposing a priori constraints on the 
differential ionospheric delay to reduce the correlation of 
ionospheric parameters with the carrier phase biases. An 
excellent example of this method is described by Dong and 

Book [1989]. As explained by Bender and Larden [1985], 
this method fails at some baseline length which depends 

on the local horizontal gradient in the vertical ionospheric 
electron content. Maximum ionospheric gradients occur at 

the peak of the 11-year solar sunspot cycle (the next peak 
occurs around 1991); the annual maximum is during the 
spring equinox, and the diurnal maximum at 1400 hours 
local time. Tropical regions are worst affected, although 
ionospheric scintillations at high latitudes (> 60 ø) can be 
problematic even for short ((50km) baselines [Rothacher 
et al., 1988]. From this point of view, GPS data sets ac- 
quired over the last few years in North America should be 
almost optimal for the application of ionospheric constraints 
for ambiguity resolution. 

This paper emphasizes a method for resolving the car- 
rier phase ambiguities which is insensitive to the ionosphere 

[Melbourne, 1985; W•bbena, 1985] and which is applied to 
baselines up to 2000 km in length. This technique applies to 

dual-frequency P code receivers. A straightforward method 
for applying ionospheric constraints is also described, since 
P code receivers are not always available. 

It is shown that ambiguity resolution results in about a 

factor of 3 improvement in the agreement of baselines with 

very long baseline interferometry (VLBI). The treatment of 
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geodetic networks is addressed, where ambiguities may be 

sequentially resolved over successively longer baselines. The 

concept of bias optimizing is introduced, which is an alterna- 

tive approach to traditional bias fixing. Finally, recommen- 
dations are given for the design of GPS receiver networks. 

• P s OBSERVABLES 

Observable Types 

GPS receivers extract phase observables from carrier sig- 

nms transmitted by the GPS satellites at two L band fre- 

quencies [Rernondi, 1985]. These observables precisely track 
changes in electromagnetic phase delay with subcentimeter 

precision. Measurements at two frequencies allow for a first- 

order calibration of the dispersive ionospheric delay with 

subcentimeter precision [Spilker, 1980]. 
A certain class of receiver (of which the Texas Instruments 

TI-4100 is the most common), also extracts two pseudorange 
observables by correlating modulations on both carriers with 

a known code (P code) [Spilker, 1980]. P code pseudorange 
observables are measurements of satellite to receiver range 

plus timing offsets. With the TI-4100, the pseudorange pre- 

cision is about 70 cm in 30 s. Recent tests of the prototype 

Rogue receiver [Thomas, 1988] with various antenna con- 
figurations [Meehan et al., 1987] suggest that precisions 
least an order of magnitude better than this will soon be 

routinely available [Blewitt et al., 1988]. 
Many receivers cannot acquire the P code, and instead ex- 

tract a less precise single-frequency pseudorange observable 

by acquiring the C/A code. A third class of receiver is code- 
less, providing carrier phase measurements only. Important 

variations on these receiver types are being developed but 

are not presently in general use. This point will be addressed 
later. 

Observable Equations 

Consider the following model for the duM-band GPS car- 

rier phase and P code pseudorange observables acquired by 
receiver k from satellite i. All observables have the dimen- 

sions of length. Terms due to noise and multipath are not 

explicitly shown, and higher-order ionospheric terms which 
are assumed to be subcentimeter are ignored: 

= - _ + 

---- p} -- I• 112/(112 -- 122) q- •262• - Ap} (lb) 

= + 
= + _ 

where (I>1•: and (I>2•: are the raw carrier phases, L• and 
are the carrier phase ranges, P• and P2• are the P code 
pseudoranges, c is the conventional speed of light, and the 

GPS system constants are 

fl - 154 x 10.23MHz (2a) 

f2 - 120 x 10.23 MHz (2b) 

•1 = ½/fl """ 19.0cm (2c) 

hi = ½/f2 •-- 24.4 cm (2d) 

The term I• in (1) is by definition the difference in iono- 
spheric delay between the L1 and L2 channels and is propor- 

tional to N,i, the path integral of the ionospheric electron 

density [Spilker, 1980] between satellite i and receiver k: 

ß 15 ar i / --2 

__ x ) (s) 

The term p]: is the nondispersive delay, lumping together the 

effects of geometric delay, tropospheric delay, clock signa- 

tures, and any other delay which affects all four observables 

identically. The geometrical calibration term lXp accounts 

for the differential delay between the L1 and L2 phase cen- 

ters and is calculated using relatively crude values for satel- 

lite elevation t•} and azimuth •b•:, and the differential phase 
center vector (Ar,,Ar,,,Aro, which is defined (in local co- 
ordinates) as going from L2 to 

Api(•}, •i ) = -- cost•}(Ar, sin •i + Ar,• cos •i) 

-- Aresin 0} (4) 
The phase biases b•: and b2•: are initialization constants. 

These biases are composed of three terms' 

ß i 

= + - (5) 

The terms n• and n2• are integer numbers of cycles and are 
present because the receiver can only measure the fractional 

phase of the first measurement. The receiver can thereafter 

keep track of the total phase relative to the initial measure- 
ment. However, the integer associated with the first mea- 

surement is arbitrary, and hence the need for these integer 

parameters in the model. The terms 5(I)lk and 5(I)2k are un- 

calibrated components of phase delay originating in the re- 

ceiver (assu. reed to be common to all satellite channels); the 
terms 5(I)•' and •(I)2 i originate in the satellite transmitter. 
Empirically (by plotting appropriate linear combinations of 
the data), it is known that these offsets are stable to bet- 
ter than a nanosecond; however, their presence prevents the 

resolution of the integer cycle biases n lk and n2}. 

Double-Diff erenced Phase Ambiguity 

Double differencing of the phase biases between two re- 

ceivers (k, l) and two satellites (i, j) results in an integer bias 
[Goad, 1985]: 

where the band subscript (1 or 2) has been dropped from 
the notation because this equation applies to either band, 

or any linear combination of bands. Hence it is the double- 
differenced integer cycle ambiguity that can be resolved. 

Some investigators process double-differenced data, thus 

their carrier phase biases are naturally integer parameters. 

The approach taken here is to process undifferenced data 
and then form double-differenced estimates. The covariance 

matrix of the estimated parameters is used to select the 
set of double-differenced biases which are theoretically best 

determined (as will be explained in later sections and in 
Appendix B). 
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This method is preferable since, for example, it uses 
the extra information available from a receiver when there 

are data outages, or outlying data points, at the other re- 

ceiver. In addition, the analysis is simplified by not requir- 

ing complicated double-differencing algorithms at the data 

processing stage; for example, measurement residuals can 

be inspected for individual station-satellite channels which 

greatly enhances troubleshooting when a particular channel 

has a problem. 

PHASE BIAS ESTIMATION STRATEGY 

The Ionosphere-Free Combination 

The problem of how to estimate the phase bias b• is now 
ß 

addressed. The term p•, can in principle be modeled very ac- 

curately [$overs and Border, 1987]; however, the ionospheric 
parameter I• is generally unpredictable, though can some- 
times be constrained within reasonable limits. The standard 

ionosphere-free observable combination can be formed from 

. 
- iap/(n - 

where the phase bias term 

This direct approach has been suggested by Melbourne [1985] 
and W•bbena [1985]. Typical TI-4100 pseudorange has root- 
mean-square multipath delays of around 70 cm for 30 s data 

points, giving an error contribution of roughly 50 cm to (12). 
This contribution needs to be time-averaged to below half of 

the 86 cm ambiguity in the wide-lane phase observable; for 

TI-4100's, 20 minutes of data are usually sufficient. Tests 

by Meehan et al. [1988] using the prototype Rogue receiver 
show that 1 minute of data is more than sufficient. 

From (10) and (12) we can write 

(13) 

where Apl is given by (4). The coefficient multiplying Apl 
is -,, 4/(86cm), showing that if the length of the differen- 
tial phase center vector, (Ar• + ar• + aro) is no more 
than 1 or 2 cm, we may safely neglect this term. (This is 
particularly useful for applications with moving antennas). 
For routine static positioning, this term can easily be cal- 

culated. The linear combination in (13) is computed for 
each data point, and a time-averaged (real) value is taken. 
The'estimates are subsequently double-differenced, and (6) 
is used to give an estimate of the integer constant 

can be estimated as a real-valued parameter using a Kalman 

filter [Lichten and Border, 1987] or an equivalent weighted 
least squares approach. Double differencing these estimates, 

then applying (6) gives 

iy is computed as A formal error for the estimate of • 
follows: 

,2 .2 .2 2)1/2 
where we define 

Although the problem of eliminating the ionospheric delay 

parameter has been solved,..(9) alone does not give us in- 
,• ii This will now be dependent estimates of • and •2•. 

addressed. 

Resolving the Wide-Lane Bias: Pseudorange Approach 

From (1) we can form the following linear combination of 
the carrier phase data, which is often called the wide-lane 

combination because of the relatively large wavelength of 

,Xa -- c/(/x - f2) • 80.2 cm: 

(10) 

where the wide-lane bias 

To solve for bs •, we can calibrate the carrier phase data with 
the following pseudorange combination: 

•si - • ((bs}2>- (bsi> (16) 
and Nj is the number of points used in the time averag- 
ing. Points bai are automatically excluded as outliers from 

the above computations if they lie more than 3•ra} from the 
running value of 

Using this technique, wide-laning is independent of our 

knowledge of orbits, station locations, etc., and so can be 

applied to baselines of any length provided there is sufficient 
common visibility of the satellites. Pseudorange multipath 

errors (< 20cm) originating at the GPS satellites would 
tend to cancel less between receivers with increasing baseline 

length, thus giving a small baseline length dependence to 

wide-laning accuracy. The differential measurement error 

would be ,-, 1 part in l0 s of baseline length and is therefore 
negligible for purposes of wide-laning. For practical reasons, 

we can therefore call the pseudorange wide-laning method 
"baseline length independent." 

Resolving the Wide-lane Bias: Ionospheric Approach 

The pseudorange approach is not applicable to non-P 

code receivers. For completeness, an alternative approach 
to wide-laning is presented here. Let us define the iono- 

spheric combination of carrier phase data: 

i i 

ß P•/c = (flPlk "[- f2P2•)/(fl -[- f2) (12) 
-- Pl + I• flf2/(fl 2 -- f•2) _ Api f2/(fl -[" f2) = g + lbll - 2621 + (17) 
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where (1) was used. This equation can be rewritten in terms 
of the biases bs• of (11), and Bc• of (8)' 

L,•: - I• -4-[(f•2 _ f2•)!f•f•](:ksbs• - B½•) -4- Ap• (18) 

Double differencing this equation and using (6) gives the 
wide-lane bias: 

iy is the double-differenced ionosphere-free bias de- where B•t 
rived from the Kalman filter solution. Since the precision of 

B•t is typically much better than 10 cm, its contribution 
to the error in the wide-lane bias is usually insignificant. 

The largest error usually comes from the unknown value 

of the differential ionospheric delay I•{ which is nominally 
assumed to be zero. A value of II•{I > 21.7cm will give 
the wrong integer value for the wide-lane bias. The time 

at which (19) is evaluated should be when Ig{I i• expected 
to be at a minimum. We may reasonably expect this time 

to be approximately when the undifferenced ionospheric de- 

lay I• is at a minimum. From (19), this necessarily occurs 
when Lz} is at a minimum (assuming system noise on the 
measurement is negligib!e). Following this line of reasoning, 
the single difference L,i:t -= (Lz} - L•) is evaluated when 
(L• q- L•) is at a minimum, and similarly for L•. Hence 
the following approximation is made: 

kl - Ill) r,• (Lz•llm|n[LI i __ k-{-LI •1 m|n[L/k +Lit] 

and this expression is substituted into (19) to resolve 
iy Note that the above double-differenced combination is f'•S kl. 

formed from single differences taken at different times, which 

is more optimal than the traditional double-differencing ap- 

proach because the ionospheric delay is not generally at a 

minimum simultaneously for both satellites. 

;J is computed as The formal error in this estimate of ns•t 
follows: 

ii is the formal error in B•,t from the ionosphere- where •r•l 
•i is an estimate of the error free filter covariance, and •rz• 

in the approximation used in (20). We assume that this 
error scales with baseline length l and is the following simple 

function of satellite elevation angle 8' 

,• sl (22) o'zz:• = s•n-• 

where O is taken from the lowest satellite in the sky. The 

term 1/sin8 adequately accounts for the increased slant 
depth at lower elevations. For example, at 30 ø elevation, 

iY which is a factor of 2 larger than (22) gives a value for •r•t 
at zenith (an approximation which is good to about 10%). 

The term s is a constant scaling coefficient, which can 

be input by the analyst based on the expected ionospheric 

gradients, or adjusted empirically so that the deviation of 

wide-lane bias estimates from the nearest integer values are 

consistent with the expected systematic errors. This model 

assumes that s adequately applies for any baseline orienta- 

tion. It should be noted, however, that there are few sig- 

nificant minima/maxima in vertical electron content around 
the globe; therefore there will usually be a preferred base- 

line orientation for which the differential ionospheric delay is 

negligible (i.e., along the contours of constant vertical elec- 
tron content). Perhaps this could be used to significant ad- 
vantage in the baseline selection algorithm for ambiguity 
resolution. 

Under excellent ionospheric conditions we may expect ver- 
tical electron content to deviate on the order of l0 is m -• 

per 100 km in geographical location. Using (3) and (22), 
this corresponds to values of s ,-, 10 -7. This will allow for 
reliable wide-laning for baselines up to I ,,0 1000 kin. The 

ionospheric gradient can be at least an order of magnitude 

worse than this [e.g., Bender and Larden, 1985], reducing 
the effectiveness of this method under such conditions to 

baselines I ,,0 100 kin. 

Resolving the Ionosphere-Free Bias 

q has been resolved (using either (14) or (lS)), Once ns •t 

we can use (9) to solve for nx•t a•t independently. For 
example, using (2), (9) can be rewritten as 

" ii 

" _ 'i (23) = + 

where the narrow-lane wavelength Xc = c/(fx + f2) •- 
10.7 cm. Given the value of •, we must be able to estimate 

the ionosphere-free bias B•, iy with an accuracy of better than kl 

5.4 cm in order to adjust n2u• to the correct integer value, 
and with a preclsion of better than 2 cm to have 99% con- 

iy iy back substitution fidenee. Having resolved ns•t and n•t , 
.. 

in (23) gives the exact value of B• '• As will be described, kl' 

the adjustment to this bias can be used to perturb the esti- 

mates of all the other parameters which constitute py of (1), 
resulting in improved estimates of station locations, satellite 
states, clocks, and tropospheric delay. 

Use of Non-P Code Receivers 

For presently available non-P code receivers, an iono- 

spheric wide-laning approach must be applied. Moreover, 

as a result of the codeless technique, the La carrier phase 

ambiguity wavelength is exactly ,Xa/2, and this has the effect 
of reducing the wide-lane wavelength by a factor of 2 as well. 

Hence the tolerable error due to differential ionospheric de- 

lay is one half of the tolerable error than when using a P 
code receiver. This in turn reduces the maximum baseline 

length for wide-lane ambiguity resolution by a factor of 2. 

The narrow-lane wavelength for C/A code receivers is 10.7 
cm, the same as for P code receivers. However, for com- 

pletely codeless receivers, the narrow-lane wavelength is 5.4 

cm. A summary of these differences is given in Table 1. 

Looking to the near future, there may soon be new re- 

ceivers generally available, which can construct the full-wave 
carrier phases at both frequencies without explicit knowl- 

edge of the P code. Cross-correlating techniques imple- 
mented by the prototype Rogue receiver can be used to 

extract (P•- Pa) pseudorange observables without explicit 
knowledge of the P code, hence giving an absolute mea- 
surement of the ionospheric delay. An alternative pseudo- 

range wide-laning method could then be applied in which 

-(Px-Pa)•{ substitutes the term Ii{ in (19). This technique 
would be effective with good multipath control at the an- 

tenna. These codeless capabilities will be important should 
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TABLE 1. Ambiguity Resolution Properties for Various Dual-Frequency Receiver Types 

Receiver Example Wide-Lane Narrow-Lane Ionospheric Pseudorange 

Type :•, cm :kc, cm Method ? Method ? 

P code TI-4100 86.2 10.7 yes yes 

C/A code Minimac 43.1 10.7 yes no 
Codeless AFGL 43.1 5.4 yes no 

Precise P code a Rogue 86.2 10.7 yes yes 

C/A code •,c Rogue 86.2 10.7 yes yes 

aUnder well-controlled multipath conditions, a version of the pseudorange method may be 

directly applied to narrow-lane ambiguity resolution without orbit modeling, etc. [Melbourne, 1985]. 
•It is possible to construct degraded dual-frequency pseudoranges even if the P code is en- 

crypted. Depending on the codeless technique and the multipath conditions, the pseudorange 
wide-laning method may be applicable. 

CFull-wave L1 and L2 carrier phase observables can be constructed even during P code encryp- 
tion by using cross-correlation techniques. 

the P code become encrypted and therefore unavailable to 

the civilian community. 

AMBIGUITY RESOLUTION 

This section discusses how to utilize the integer nature 

of the double-differenced biases once they are estimated as 

real-valued parameters. It describes an implementation of 

the bias fixing method [e.g., Bocket al., 1985] and then intro- 
duces bias optimizing, which does not require the arbitrary 

confidence test of bias fixing. First, however, an important 

technique is explained: how to use GPS network solutions to 

best advantage when resolving ambiguities. The sequential 

adjustment algorithm allows for fast and accurate ambigu- 

ity resolution over very long baselines when nearby, shorter 
baselines are simultaneously estimated. 

Sequential Adjustment Algorithm 

The sequential adjustment algorithm is a means of adjust- 

ing a posteriori estimates and covariances and is applicable 

to the problem of forming new baseline and orbit estimates 

when new values for double-differenced carrier phase biases 

are obtained. An important feature of this algorithm is that 

if the true value of a particular bias can be resolved, its 

adjustment will in turn improve the estimates of other cor- 

related biases, thus enhancing ambiguity resolution. The 

sequential adjustment algorithm is described here in a gen- 

eral way, and we shall return later to its application to the 

specific problem of ambiguity resolution. 

Supposing a weighted least squares fit produces an es- 
timate vector X and a covariance matrix P. We wish to 

adjust the estimate •i and the formal error (•i of one of the 

parameters and calculate the effect this has on the estimates 

and formal errors of the remaining parameters. Employing 

the square-root information filter formalism (SRIF), P is 
factored as follows [Bierman, 1977]: 

P • R-IR -• (24) 

where R is upper triangular, and by definition R -•" = 

= 
We can transform X using the matrix R to give the nor- 

malized estimates g 

Note that the covariance matrix associated with Z is simply 

the identity matrix, I: 

Pz = RPR T 

= R(R- •R-•)R • 

= 
-I 

(26) 

Therefore the components of the normalized estimate vec- 

tor g are uncorrelated, allowing us to adjust the normalized 

estimates independently of each other. The normalized es- 

timates are, of course, linear combinations of the original 

estimates; however, the matrix R is upper triangular, thus 

the last component of g depends on only one parameter es- 

timate. For a system with n parameters, it can be easily 

shown for the last parameter: 

We can choose to arrange the order such that the param- 

eter to be adjusted is the last component of X. The adjust- 

ment (•, -* •') and ((•, -* (•) is equivalent to changing g• 
and P•.: 

= 

z.' ' 
For computational convenience, values are vector-stored in 

the following form' 

The new estimates of all the parameters can be found by 
simply inverting this matrix after revising the values ac- 

cording to (28)' 

[elzl- = 1 

= [R_lx] (so) 
Z =_ RX (25) and the new full covariance can be computed using (24). 
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Note that the inversion expressed in (30) only needs to 
be computed after all bias parameters have been adjusted. 

This algorithm is very fast and numerically stable because 

it operates on vector-stored, upper triangular matrices. 

Sequential Bias Fizing Method 

Bias fixing refers to constraining the phase biases to inte- 

ger values and effectively removing the biases as parameters 

from the solution. It is generally a poor strategy to indis- 

criminately fix every bias to the nearest integer value; this 

may degrade the geodetic solutions if there is a significant 

chance of fixing a bias to the wrong value. The method used 

here is to calculate the cumulative probability that all the 

fixed biases (wide-lane and ionosphere free) have the correct 
value and to subsequently fix another bias only if the cumu- 

lative probability stays greater than 99%. The order of bias 
fixing, which here is uniquely determined, is decided by al- 

ways choosing the next wide-lane/ionosphere-free bias pair 
most likely to be fixed correctly (i.e., by sequentially maxi- 
mizing the cumulative probability). The estimates and un- 
certainties of the remaining unfixed biases are continuously 

updated by the sequential adjustment algorithm to reflect 

the progressively improving solution as biases become fixed 
to their true values. 

The probability for fixing a bias correctly is derived from 
its distance to the nearest integer and its formal error. For 

wide-laning, the formal errors are given by (15) or (21), de- 
pending on the method used. For resolving the ionosphere- 

free bias, (9), the covariance matrix calculated during the 
weighted least squares fit provides the formal error. In the 

latter case, the formal errors scale with the assumed data 

noise. For TI-4100 data, which our preprocessing software 

smooths to 6 min normal points, we conservatively use I cm 

for carrier phase data and 250cm for pseudorange data. 

These values provide good agreement of the formal errors 

with baseline repeatability, and the reduced chi-square of 

the least squares fit is close to unity. 

This bias fixing method for a system with r• phase ambi- 

guities is summarized mathematically in the following equa- 
tions: 

j=integer 

t:•i- k, Qi > 0.99 (31a) 

• -- •i Qi _• 0.99 (3lb) 

cri- 0 q, > 0.99 (31c) 

•i = •i Qi • 0.99 (31d) 

where 

i = (1,3,5,...,n- 1) wide-lane bias index; 
i = (2, 4,6,..., a) ionosphere-free bias index; 
qi = cumulative probability (Qo ---- 1); 
•i = adjusted estimate of phase bias, i; 

ki = nearest integer to 5i; 

cri = formal error of •i; 

zi = new estimate of 

cri = formal error of z•. 

Given that i- 1 biases have been fixed, the next wide- 

lane/ionosphere-free pair (i, i + 1) is selected such that 
is maximized. For computational purposes, the summation 

in (31) is carried out over integers within the window 
10 •. In calculating the probability, the precaution is taken 

of setting cri =[ii - ki[/2 if it is initially smaller than this 
value. This provides a safety net in case a bias estimate is 

inconsistent with its formal error (which, fortunately, rarely 
happens). It is to be understood in these equations that it 
is not in general the initial estimate of the phase bias, but 

that it has been sequentially adjusted from its initial value 

due to its correlation with the biases (1,2,...,i- 1) that 
have already been resolved. 

For comparison with other bias fixing algorithms [e.g., 
Dong and Dock, 1989], Figure I shows contours of constant 
probability Q that the nearest integer is the correct one in 
the two-dimensional space defined by the formal error cr and 

the distance to the nearest integer, [i- k[. Note that the 
interpretation of this figure is slightly different to the one 

of Dong and Dock [1989], since it is understood that the cu- 
mulative probability be computed when deciding whether to 
round the next bias to the nearest integer. Dong and Dock 

[1989] appear to be more conservative in their acceptable 
values of or, and less conservative for [i- k I. A comparison 
of the two techniques at an analytical level is rather difficult, 

however, since our respective softwares implement different 

measurement models and estimation strategies. We gener- 

ally find the formal errors for the biases to be very consistent 

with the estimated distance to the nearest integer provided 

a realistic estimation strategy is selected. 

Bias fixing is a perfectly adequate means of using the inte- 

ger nature of the biases provided almost all the biases can be 

constrained at the integer value with very high confidence. 

However, we may have a situation where, for a given set of 

biases, the cumulative probability is too low to justify bias 

fixing, even though individual biases are quite likely to have 

the nearest integer value. There may also be the problem 

that the final solution is sensitive to an arbitrarily chosen 

confidence test. The bias optimizing method addresses these 

problems. 

Sequential Bias Optimizing Method 

Let us define the expectation value as the weighted-mean 

value of all possible global solutions in a linear system, where 

the weights are determined by the formal errors derived from 
a fit in which the parameters are estimated as real-valued. In 

the case of systems where all the parameters can intrinsically 

take on any real value, the expectation value corresponds to 

o 
rY 

rY 

o 

99% 

99.9% 

..... 99.99% 

o 

0 0.1 0.2 0.5 0.4 0.5 

DEVIATION, I•-'•1 (CYCLES) 

Fig. 1. For a given formal error and an estimated distance of 
a bias to the nearest integer, the contours show the probability 
that the true value of the bias is the nearest integer. 
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the initial fit value. It is shown in Appendix A that if the 

parameters are intrinsically integers, the expectation value is 
a minimum variance solution. The question of a confidence 

test never arises, and the implementation is automatic and 

requires no subjective decisions. 

In the limit that the initial solution has very small formal 

errors for all the biases, this approach becomes equivalent 

to bias fixing. In the opposite limit of very large formal 
errors, the initial solution is left unchanged. In between 

these limits, the expectation value approach gives a baseline 

solution which continuously varies from the initial to the 

ideal, bias-fixed solution. 

Using the same notation as in (31), the following equa- 
tions summarize the bias optimizing method (see also (A6) 
and (A8)): 

., I • (i-•,)'/z,,•' (32) 
./=integer 

j=integer 

where 

j=integer 

Since they are so well determined, each wide-lane ambigu- 

ity is first bias fixed before bias optimizing its corresponding 
ionosphere-free ambiguity. The same order of adjustment is 
used as was defined for bias fixing. 

Global Estimate/Covariance Adjustment 

The above descriptions of bias fixing and bias optimizing 

apply to double-differenced bias estimates, which must first 

be computed from the undifferenced estimates. The double- 

differenced biases are adjusted, then transformed back to 

undifferenced estimates before globally adjusting the param- 

eters of interest, including station locations. 

The initial weighted least squares estimate X and covari- 

ance P are used to compute JR]Z] as defined by (24), (25) 
and (29) (or alternatively, JR]Z] can be obtained directly 
from the data using a SRIF algorithm). The parameters are 
ordered such that the undifferenced ionosphere-free bias pa- 

rameters of (8) appear as the last components of X, so that 
[R]Z] can be partitioned as follows: 

--1 

(33) 

where the subscript b refers to the ionosphere-free bias pa- 

rameters, and a to any other parameters (e.g., station loca- 
tions). The lower partition [RsIZs] is then extracted: 

Rs Zs ) (34) --1 

As described in Appendix B, an operator D is used to 

transform the undifferenced bias estimates into an opti- 

mal set of double-differenced bias estimates. Equation (B6) 
gives the appropriate computation 

= m[R•D-•IZs] (35) 

where Hs is a series of Householder transformations which 

puts Ra into upper triangular form, and D is a regular 

square matrix. The derived set of double-differenced bias 

estimates is optimal in the sense that it is the linearly inde- 

pendent set with the smallest formal errors. 

Having computed the SRIF array [RalZa], the sequential 
adjustment algorithm can now be applied to the double- 

differenced bias parameters. Equation (28) is applied using 
either the bias fixing or bias optimizing methods described 

in (31) and (32). It is to be understood that the double- 
differenced ionosphere-free biases have been calibrated into 

units of cycles by substituting the resolved wide-lane biases 

n•l into (23). In the case of the bias fixing method, •r i 
cannot be set to zero in (28), so a value is chosen which is 
physically very small (e.g., 10 -ø cycles), yet not too small 
to induce numerical instability. 

As previously explained, the next bias pair selected for 

adjustment maximizes the cumulative probability in (31), 
and so an iterative reordering scheme is needed because our 

defined order of ambiguity resolution is not known beyond 

the next iteration. The procedure given in (28) can be se- 
quentially applied for the adjustment of several parameters 

by reordering R such that each bias is in turn represented 

by the last component. For computational efficiency, this is 
achieved by permuting the columns of the matrix R, then 

applying a series of Householder orthogonal transformations 

H to put R back into upper triangular form [Bierman, 1977]. 
Note that we choose not to use a (slightly more efficient) 
scheme which explicitly eliminates the fixed bias parame- 
ters, because it is convenient for purposes of bookkeeping to 
keep the fixed bias parameters attached to the solutions. For 

example, it allows the analyst to easily determine, after the 

fact, which biases on a particular baseline were fixed, even 

if that baseline's biases were not explicitly represented. 

Let us denote the sequentially adjusted SRIF array with 
primes: 

[R,•IZ, 4 --• [R•,IZ• ] (36) 

Once all biases have been adjusted, the SRIF array is ar- 
ranged into its original order and is transformed in order to 
recover the undifferenced biases: 

= Ha[R•DIZ•] (37) 

where the orthogonal transformation Ha ensures R• is up- 
per triangular. The new estimates of station locations, or- 

bital parameters, etc., can now be computed by substituting 

[R•IZg] in place of [RslZs] in (33) and inverting the full at- 

[R'-ix'i = [R, iz,] 

R• R•s = 

-1 

(38) 

The following equation explicitly relates the change •X,• = 

(X: - X,) in the remaining parameters (e.g., station loca- 
tions) caused by adjustments 6Xa in the double-differenced 
bias estimates, and similarly for the associated covariance 
matrices P• and Pa: 

6X,• = S 5Xa 
(39) 

&P,• = S &PaS :r 
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where the sensitivity matrix is given by 

S = -R•'iR•bD -x (40) 

Equation (39) is only shown for completeness; the computa- 
tions are implicit in (33)-(38), which allow for a convenient 
and numerically stable implementation. 

Using the algorithms described in this section, ambiguity 

resolution of a 6 satellite, 14 receiver network requires 10 rain 

of processing time on the Digital MicroVAX II computer. 

Sequential Ambiguity Resolution of Networks 

The sequential adjustment algorithm automatically en- 
sures that the best determined biases are resolved first, thus 

improving the resolution of the remaining biases. Formal 
errors in station locations as computed by the Kalman fil- 

ter tend to be correlated, since a random error in a satel- 

lite orbit parameter maps into a station location error in 

almost the same direction for nearby stations. Therefore 

longer baselines tend to have larger formal errors. Since 

the ionosphere-free biases are correlated with the baseline 

and orbit parameters, the shorter baselines in a network are 

usually the first to be selected for ambiguity resolution. 

There are two major factors which strengthen ambiguity 

resolution for networks in comparison to individual base- 

lines: (1) ambiguities for longer baselines are often resolved 
as the linear combination of ambiguities for shorter base- 

lines and (2) ambiguities are correlated, so by first resolving 
the best determined ambiguities, solutions for the remaining 

ambiguities are strengthened. Ambiguity correlations will 

always exist in a system with either station specific param- 

eters or satellite specific parameters, for example, station 

locations, zenith tropospheric delay, or satellite orbital el- 

ements. Intuitively, reason 2 can be explained in terms of 

the successive improvement in station locations, GPS orbits, 

tropospheric delay, etc., as biases are sequentially adjusted. 

It should be pointed out that wide-lane ambiguities are 
generally not as strongly correlated with each other as the 

ionosphere-free ambiguities, and so sequential adjustment is 
of lesser importance for wide-laning. The reason for this is 

that the ionosphere-free ambiguities are strongly correlated 
with the baseline and orbit parameters which are sequen- 
tially improved; however, the wide-lane ambiguities are inde- 

pendent of these parameters using the pseudorange method, 
and are only weakly dependent on them using the iono- 

spheric method (through Bc• of (19)). It is likely that the 
ionospheric method could be significantly enhanced by se- 

quential adjustment of a network if the term I• in (19) were 
modeled and estimated as a function of time, longitude, and 
latitude over the area of interest. Another approach to en- 

hancing the sequential adjustment of wide-lane ambiguities 
is to introduce ionospheric correlations a priori, a framework 

for which is described by Schaffrin and Bock [1988]. 
Of course, reason 1 given above still applies to wide- 

laning. For the pseudorange method this is of no conse- 

quence, since it is independent of baseline length; for the 
ionospheric method it is an important consideration for the 
design of non-P code receiver networks. 

Multidimensional Generalization 

The cumulative probability function used for bias fixing, 

(31), is an approximation of the more general function which 
considers all possible combinations of integers. If we arrange 

our initial bias estimates into a column vector X and con- 

sider that a possible value of this vector can be any one 

with integer components J, then we can write the probabil- 

ity that K is the correct combination 

exp [-•(K- X)•rP-X(K- X)] 
Q(K,X,P) = E exp [-•(J- X)wP-i(J- X)] (41) 

J 

where P is the covariance matrix, and the summation is to 

be carried out over integer lattice points in d dimensions, 
where d is the number of biases in the system. 

Similarly, the expectation value given by (32) can be eas- 
ily generalized to the multidimensional case where there are 

many biases 

J 

P'= - - 
J 

(42) 

where P* is the new bias covariance matrix, and Q( J, X, P) 
is defined by (41). If these expressions could be computed, 
all available information could be used, and sequential ad- 

justment would not be necessary. However, on inspection of 

(41) and (42) we see that there is a problem: the number 
of lattice points in the summation grows as N a, where N is 
a search window. The multidimensional case becomes im- 

practical to implement unless the search space is limited in 

some way. A realistic approach would be to devise an algo- 
rithm which finds a subset of all J which are good candidates 

for correct integer combination. Such an algorithm, based 

on the sequential adjustment algorithm, is under develop- 

ment. (Another approach, used by Dong and Bock [1989], is 
to sequentially fix biases in batches using a five-dimensional 

search.) 
The analysis presented in this paper successfully uses 

the one-dimensional sequential adjustment technique. For 

sparse networks, where this type of bootstrapping may not 

be successfully initiated, a multidimensional search is clearly 
preferable. However, it is exactly this kind of network which 

is expected to benefit from the bias optimizing method, so 

a multidimensional scheme is recommended to fully test the 
relative merit of bias optimizing. 

DATA ANALYSIS AND RESULTS 

Software 

The GIPSY software (GPS-Inferred Positioning System), 
which was developed at the Jet Propulsion Laboratory, has 

already been used to analyze GPS carrier phase and pseudo- 
range data, yielding baseline precisions at the level of a few 

parts in l0 s or better [Lichten and Border, 1987; Tralli et al., 
1988]. The software automatically corrects for integer-cycle 
discontinuities (cycle slips) in the carrier phase data when 
a receiver loses lock on the signal. The module TurboEdit, 
which will not be described in detail here, automatically 

detects and corrects for wide-lane cycle slips using equa- 

tion (13) and corrects for the narrow-lane cycle slip using 
a polynomial model of ionospheric variations in the data 
over a few minutes spanning each side of the cycle slip. A 

study using thousands of station-satellite data arcs shows 
that TurboEdit makes an error on less than 1% of the arcs 

using pseudorange of TI-4100 quality. Any remaining, un- 



BLEWITT' GPS AMBIGUITY R, ESOLUTION UP TO 2000 KM 10,195 

resolved cycle slips are treated as additional parameters in 

the least squares process. 

A new module, A_MBIGON, implements the ideas ex- 

pressed in this paper for resolving carrier phase ambiguities 

and unresolved cycle slips and has been incorporated into 

GIPSY for routine data processsing. AMBIGON operates 
on an initial global estimate vector and factored covariance 

matrix from a filter run and produces a new global esti- 
mate and covariance. All the parameters in the filter run 

are adjusted, including the GPS satellite states and station 

locations. Low elevation data can be excluded when (14) 
is applied if large multipath signatures are a problem. This 

analysis nominally excludes GPS data from below 15 degrees 
of elevation. The user can run A_K4BIGON in either a bias 

fixing or bias optimizing mode, and batches of stations can 

be selected for ambiguity resolution. AMBIGON is designed 
to work naturally in network mode, using the algorithms de- 

scribed in this paper. A_ mixed network of P code receivers, 

C•A code receivers, and codeless receivers can be processed 
for ambiguity resolution. One strategy available is the auto- 

matic application of either the pseudorange or ionospheric 
method for each wide-lane bias, the decision being based on 

receiver type, baseline length, and the formal errors as com- 

puted by (15) and (21). The program is fully automatic, 
requiring no user intervention. 

Data 

The GPS data presented here were taken during the June 
1986 southern California campaign, in which up to 16 dual- 

frequency TI-4100 receivers acquired carrier phase and pseu- 
dorange data from the 6 available GPS satellites for four 

daily sessions. The receiver deployment schedule is shown 
in Table 2. In addition to 16 sites in southern Califor- 

nia, receivers were deployed at Hat Creek (northern Cali- 
fornia), Yuma (Arizona), and at the International Radio In- 

TABLE 2. Deployment of TI-4100 Receivers for the 

June 1986 Southern California Experiment 

Station June 17 June 18 June 19 June 20 

Fort Davis a X X X X 

Haystack a X X X X 
Richmond a X X X X 

Boucher X X 

Catalina c X X X X 

Cuyamaca X 
Hat Creek b X 

La Jolla X X 

Mojave b,c X X X X 
Monument Peak •,• X X X X 

Niguel X X 
Otay X X 

Palos Vetdes • X X X X 

Pinyon Flats • X X 
San Clemente {1) X X 
San Clemente {2) X X 

San Nicholas • X X X X 

Santiago X 
Soledad X X 

Vandenberg •,e X X X 
Yuma •,c X X X X 

aThese fiducial sites were held fixed at their VLBI-inferred co- 

ordinates. 

bThese sites were used in the comparison of GPS and VLBI 
solutions. 

øSites occupied for 3 or 4 days used for the daily repeatability 
study. 
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Fig. 2. 
lengths in the western United States on June 20, 1986. 

Histogram showing the distribution of G PS baseline 

terferometric Surveying (IRIS) sites at Fort Davis (Texas), 
Haystack (Massachusetts), and Richmond (Florida). 

The baselines in the western United States ranged in 

length from 18 to 1933km (Hat Creek-Fort Davis). This 
network was especially suitable for testing network mode 

ambiguity resolution because of the wide spectrum of base- 

line lengths, which is shown in Figure 2 for June 20, 1986. 

Even though data were acquired for only a few days at each 

site, the daily repeatability of baseline estimates provides 

a strong statistical test for evaluating analysis techniques 

because of the large number of baselines. 

Baseline accuracy was assessed by comparing GPS with 

very long baseline interferometry (VLBI) solutions. Histo- 
ries VLBI solutions for baseline coordinates are available 

from Hat Creek, Mojave, Monument Peak, Pinyon Flats, 

Vandenberg, Yuma, and the IRIS sites [Ryan and Ma, 1987]. 
The analysis presented here used the latest available God- 

dard global VLBI solution GLB223 evaluated at the epoch 

of June 1986 (3. W. Ryan, C. Ma and E. Himwich, God- 
dard Space Flight Center VLBI Group, unpublished results, 

1988). This provided (1) a priori values for the fixed fiducial 
coordinates at the IRIS stations and (2) ground truth base- 
line coordinates in the western United States from which 

GPS accuracy could be assessed both with and without am- 

biguity resolution. 

Parameter Estimation Strategy 

The analysis employed a parameter estimation strategy 

which basically follows Lichten and Border [1987], except 
that the parameters were estimated independently for each 
day. The use of independent data sets strengthens daily 

repeatability as a test of the improvement in precision. 

Undifferenced, ionospherically calibrated carrier phase 

and pseudorange data were processed simultaneously using 

a U-D factorized batch sequential filter with process noise 

capabilities. The receiver and satellite clock biases were con- 
strained to be identical for the two data types and were es- 

timated as white noise processes. Unlike techniques which 

prefit polynomials to the system clocks using the pseudo- 
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range, this method is completely insensitive to discontinu- 
ities and other problematic behavior in the clock signatures. 

This technique can be shown to be identical to using the 

pseudorange to prefit the station satellite carrier phase bi- 

ases (rather than the clocks), and subsequently using only 
carrier phase data to estimate the undifferenced biases with 

tight constraints at the level of a few nanoseconds (S.C. 
Wu, Jet Propulsion Laboratory, unpublished work, 1987). 

In order to accurately estimate the GPS orbits, and to 
establish solutions in the VLBI reference frame, the fiducial 

network concept was implemented, as described by Davidson 

et M. [1985]. Three fiducial sites (Fort Davis, Haystack, and 
Richmond) were fixed at their VLBI-inferred coordinates, 
and the other station locations were estimated simultane- 

ously with the GPS satellite states using loose constraints 

of 2 km on the a priori station locations. In the absence of 

water vapor radiometers (WVR's), surface meteorological 
data were used to calibrate the tropospheric delay, and the 

residual zenith tropospheric delay at each site was modeled 

as a random walk process with a characteristic constant of 

2.0 x !0 -? km/sec x/2 [œichten and Border, 1987]. This strat- 
egy allows the estimated zenith troposphere to wander from 

the calibrated values by about 5 cm over a 24-hour period. 
WVR data were available at the fiducial sites and Palos 

Verdes for some of the days. In these cases, a constant 

residual zenith delay was estimated. 

Arabiguity Resolution 

Ambiguity resolution techniques were applied to the west- 

ern United States network for all 4 days using both the 

sequential bias fixing method of (31) and the sequential 
bias optimizing method of (32). For the entire experi- 
ment, a total of 262 linearly independent, observable double- 

differenced phase biases were formed. Figure 3 shows 

the distribution of wide-lane bias estimates (equation (14)) 
about their nearest integer value using the pseudorange 
method. Since only those biases with a formal error less 

than 0.2 cycles are shown, we would expect to see a sharply 
peaked distribution about the nearest integer value. Fig- 

ure 4 shows a similar distribution for the ionosphere-free 
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Fig. 3. Histogram showing the distribution of wide-lane bias es- 
timates about the nearest integer values. Only biases with formal 
errors less than 0.2 cycles are shown. 
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Fig. 4. Histogram showing the distribution of ionosphere-free 
bias estimates about the nearest discrete values. The scale has 

been normalized so that the 10.7 cm distance between discrete 

values is defined to be 1 cycle. Only biases with formal errors less 
than 0.2 cycles are shown. 

biases (equation (23)) which was derived from the filter solu- 
tions (i.e., before sequential adjustment) assuming that the 
wide-lane biases were correctly resolved. In both Figures 3 

and 4, we clearly see the quantized nature of these biases 
and the characteristic half-Gaussian shape of the distribu- 

tions. These distributions indicate that systematic effects 

were small compared to the predicted random errors. 
Using the bias fixing method, 94% of the ionosphere-free 

ambiguities were resolved with a cumulative confidence of 
greater than 99% for each daily solution. The remaining 
ambiguities failed the confidence test primarily because ex- 

cessive pseudorange multipath prevented wide-laning. Even 

so, 97% of the wide-lane biases could be resolved with an 

individual confidence of greater than 99%, showing that TI- 
4100 receivers are adequate for the direct wide-laning ap- 

proach. 

When bias optimizing was applied, the baseline solutions 

agreed at the millimeter level with bias fixing. The reason 

for this is that the expectation values derived by (32) dif- 
fered at the submillimeter level with the values of the bias 

fixing approach derived by (31). This should be typical for 
well-configured networks. Since the solutions were so simi- 

lar, baseline results in the following sections apply to both 

approaches. 

A comparison of wide-lane bias estimates derived by the 

pseudorange and ionospheric methods is given in Figure 5 

for June 20, 1986. (Please note that in Figure 5 slight ad- 
justments to the baseline length (+10km) were made for a 
few overlapping points in order to enhance graphical clarity). 
The integer used to compute the deviation of the estimate 

was determined as follows: (1) in 64 out of 72 cases, the 
rounded integer agreed for both methods and was assumed 

to be correct and (2) in 5 cases, the rounded integer dis- 
agreed, but the estimates disagreed by less than one cycle; 

in these cases the integer closer to one of the estimates was 
taken. 

In the remaining 3 cases, the estimates disagreed by more 

than one cycle for the longest 1003 km baseline. For this 

baseline, it was noted that 5 of the 7 estimates using the 
pseudorange method were within 0.12 cycles of the nearest 

integer, and the other 2 were 0.23 cycles from the near- 
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Fig. 5. Distance of wide-lane bias estimates from correct integer 
as a function of baseline length on June 20, 1986. Determination 

of the correct integer is described in the text. (a) Pseudorange 
method. (b) Ionospheric method. 

est integer. However, the integers associated with the iono- 
spheric method were not obvious. Moreover, the pseudor- 
ange method is independent of baseline length, and based on 
statistics from shorter baselines, we expect only 0.6 of these 

7 estimates to have the incorrect integer. The integers de- 

rived from the pseudorange method were therefore assumed 
to be correct for this baseline. 

If this reasoning is correct, Figure 5 shows a breakdown 

of the ionospheric approach to wide-laning for the 1003 km 

baseline (Yuma-Fort Davis), using P code receivers. As 
mentioned previously, this translates to • 500 km for code- 

less receivers. While the ionospheric approach looks supe- 

rior for baselines of around 100 km, at 200 km the pseudo- 

range method gives more precise wide-lane estimates. At 

699 km (Vandenberg-Hat Creek), despite the fact that the 
ionosphere method gave correct integer estimates, little con- 

fidence could have been placed in the estimates were it not 

for the verification provided by the pseudorange method. 

The large difference in ionospheric wide-laning precision be- 

tween the 699 and 1003 km baselines may be attributed to 

differences in both baseline length and orientation. Since 

wide-laning using the pseudorange was more successful, the 

results that follow pertain to this technique. 

Baseline Repeatabilit•t Improvement 

The daily repeatability of a component of a baseline is 
defined here as follows' 

$= N 1' (R/-- (R))• 1 (43) 
i:1 O'i -- 

where N is the number of days the baseline was occupied, 

/L' and cri are the estimate and formal error of the baseline 

component on the ith day, and the angled brackets denote 

a weighted mean. For this experiment, data outages were 

minimal and so the daily weights were approximately equal. 

Figure 6 plots the baseline repeatability for the east, 

north, and vertical components versus baseline length, be- 

fore and after applying bias fixing. Only baselines which 

were occupied for 3 or 4 days are shown. After bias fix- 

ing, the largest observed horizontal baseline repeatability 

was only 1.4 cm (Vandenberg-Yuma: 620 km). Baselines 
occupied for only 2 days show the same pattern, showing 

subcentimeter repeatability with no outliers, demonstrating 

the remarkable robustness of this data set and these analysis 

techniques. (Two-day repeatabilities have not been included 
in Figure 6 for purposes of graphical clarity). 

Table 3 shows the baseline repeatability averaged over all 

baselines in Figure 6, for each baseline component both be- 

fore and after bias fixing. Consistent with the prediction 

by Melbourne [1985], ambiguity resolution improves the east 
baseline component by a factor of 2.4, the north by a factor 
of 1.9, and the vertical is not significantly improved. These 
improvement factors are consistent with the reduction in the 

formal errors as computed by (39). The negligible improve- 
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Fig. 6. Daily baseline repeatability versus baseline length, be- 
fore and after bias fixing, for those baselines occupied for at least 

3 days: (a) east component, (b) north component, and (½) vertical 
component. 
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TABLE 3. Mean Daily Repeatability for Baselines Occupied 

for 3 or 4 Days, Before and After Bias Fixing the Solutions 

Baseline 

Component 

RMS RMS Improvement 
Before, cm After, cm Factor 

2.0 0.82 2.4 

0.74 0.40 1.9 

3.2 2.9 1.1 

East 

North 

Vertical 

Also shown is the improvement factor due to bias fixing. 

ment in the vertical component can be understood in terms 

of its relatively small correlation with the carrier phase bi- 
ases. 

Baseline Accuracy Improvement 

The accuracy of a given baseline component solution is 

defined here as the magnitude of the difference between the 
GPS-inferred coordinate and the VLBI-inferred coordinate. 

This approach is conservative, since it neglects possible er- 
rors in the antenna eccentricities, local monument surveys, 
and the VLBI solutions. The GPS-inferred coordinate is 

taken to be the weighted mean of the daily solutions. GPS 
baselines between all sites collocated with VLBI were ana- 

lyzed, except for those involving the IRIS sites (which were 
held fixed). The longest of these baselines is Hat Creek- 
Yuma (1086 km). 

Using the above definition, baseline accuracy for the east, 

north and vertical components is plotted versus baseline 

length in Figure 7. Table 4 shows the accuracy of each base- 
line component averaged over all baselines collocated with 

VLBI. We see an improvement in accuracy for the horizontal 

baseline components after bias fixing. The east component 

is improved by a factor of 2.8, and the north component 

by a factor of 1.25. As expected, no improvement is seen 

for the vertical component. The mean vertical accuracy for 
baselines less than 500km is also shown. GPS and VLBI 

baseline lengths agree on average to better than a centime- 

ter. In fact, the Hat Creek-Yuma baseline (1086 km) agrees 
to 0.88cm, which corresponds to 8 parts in 109. The ac- 
curacy improvement factors are similar to those for daily 

repeatability; thus where no independent verification (such 
as from VLBI) is available, daily repeatability may be a good 
indicator as to the accuracy improvement due to ambiguity 
resolution. 

Discussion on Network Design 

The carrier phase bias parameters can be expressed in 
terms of linear combinations of the biases which were ex- 

plicitly resolved. Figure 8 shows all the baselines for which 

biases were explicitly resolved on June 20, 1986. Sequential 

ambiguity resolution tends to take a path of least resistance, 

i.e., biases tend to be resolved between nearest neighbor sta- 

tion pairs. When the neighbors are approximately equidis- 

tant from a given station, the automatic selection of biases 

also depends on more subtle factors such as network geom- 

etry, satellite geometry, and data scheduling (for example, 
look at La Jolla in Figure 8). Figure 9 shows the distribu- 
tion of nearest neighbor distances, which is almost identical 

to the distribution of lengths from Figure 8. It is recom- 

mended that networks be designed with a similar distribu- 

tion of nearest neighbor distances, starting with baseline 

lengths of around 100 km. 
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Fig. 7. Magnitude of difference between GPS and VLBI base- 
line solutions versus baseline length, before and after bias fixing: 

(a) east component, (b) north component, and (½) vertical com- 
ponent. 

Figure 8 can be used to infer a linear combination of bi- 
ases associated with a particular baseline. For example, each 

resolved bias associated with the Vandenberg-Fort Davis 

baseline (1618 km) can be expressed as a linear combination 
of 8 or 9 resolved biases associated with shorter baselines 

(depending on the associated satellites). By performing a 
linear decomposition, the percentage of resolved biases for 

any given baseline or subnetwork can be calculated. For ex- 

ample, 23 out of a total of 26 ionosphere-free biases (88%) 
were resolved for the 1618-km Vandenberg-Fort Davis base- 

TABLE 4. Mean RMS Difference Between GPS and VLBI 

Solutions for Baselines Between Nonfiducial Stations, 

Before and After Bias Fixing 

Baseline RMS RMS Improvement 

Component Before, cm After, cm Factor 

East 2.7 0.97 2.8 

North 1.0 0.80 1.25 

Vertical* 3.6 4.0 0.90 

Also shown is the improvement factor due to bias fixing. 

*Mean vertical RMS for baselines • 500 km is 2.8 cm before and 

2.6 cm after. 
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Fig. 8. Receiver deployment on June 20, 1986. Baselines for which biases which were explicitly resolved are 
shown. Other baselines had their biases resolved by linear combinations of the shown baselines. This illustrates 
a major strength that networks bring to ambiguity resolution for long baselines. 

line. The remaining 3 biases could not be resolved due to 

wide-laning failures; however, their formal errors were bet- 

ter than 6 mm, which is almost as good as having them 
resolved. The reason that these formal errors are so small is 

that the network was almost completely bias fixed and that 

the unresolved ambiguities are really associated with base- 

lines much shorter than 1618 kin. This study shows some of 

the inherent strengths that networks provide for long base- 

line ambiguity resolution. 

The mechanism of sequential adjustment is just one im- 

portant consideration when designing networks for long 

baseline ambiguity resolution. Of course, sequential adjust- 

ment will only succeed if the initial (preadjusted) ambiguity 
estimates are sufficiently accurate. With this in mind, the 

network designer should also consider (1) the selection of 
fiducial sites for precise orbit determination, (2) the spatial 
extent of the network and the number of receivers used in 

order to improve the local fit to the orbits over the region 

of interest, (3) the use of high precision P code receivers for 
more precise solutions before the ambiguities are resolved, 

and (4) the ability to resolve wide-lane ambiguities. 
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Fig. 9. Histogram showing the distribution of nearest neighbor 
distances on June 20, 1986. 

Since the pseudorange wide-laning method is baseline 

length independent, wide-laning need not be considered for 

the design of P code receiver networks. For the ionospheric 
method, however, the minimum distance between nearest 

neighboring stations required for wide-lane ambiguity reso- 

lution should be anywhere from N 100 to > 1000 km de- 

pending on the local time of day, the month of the year, the 
phase of the solar sunspot cycle, and the geographical loca- 
tion. These conditions are important considerations when 

deciding on the placement of non-P receivers in a network. 

Analltsis of a Well-Configured, Sparse Network 

A similar analysis to the one which has been described 
here in detail was conducted using a subset of the data ac- 

quired during the global CASA UNO experiment of January 
1988 [Neilan et al., 1988; Blewitt et al., 1988]. The network 
for this study comprised 4 stations in California: Mammoth, 
Owens Valley Radio Observatory (OVRO), Mojave, and Hat 
Creek. The fiducial network consisted of Haystack, Fort 

Davis and Hat Creek. (The other IRIS site, Richmond, 
had a receiver which was malfunctioning during this ex- 

periment.) The California network, shown in Figure 10, is 
clearly sparse, but based on the previous discussion is the- 
oretically well-configured because of the wide spectrum of 
baseline lengths. Figure 10 also illustrates the proximity of 
the fiducial baseline Hat Creek-Fort Davis to the California 

network: covariance studies show that this fiducial geometry 

is very strong for surveys in this region. 
Ambiguity resolution over the Hat Creek-Mojave baseline 

(723 km) was consistently applied to five single-day solutions 
by resolving the ambiguities on the Mammoth-OVRO base- 

line (71 km), the OVRO-Mojave baseline (245 km), and the 
Mammoth-Hat Creek baseline (416 km). All ambiguities 
were resolved, resulting in similar improvements in daily 

repeatability and accuracy as for the June 1986 southern 
California experiment. This was a more stringent test of 

the sequential adjustment algorithm since the network was 

much more sparse. Hence complete ambiguity resolution 
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Fig. 10. California network of January 1989, for which all biases were resolved. Also shown is one of the fiducial 
baselines: Fort Davis-Hat Creek. The third fiducial site at Haystack, Massachusetts, is not shown. 

can be achieved for 700 km baselines with a good fiducial 

network and as few as two additional, strategically located, 

•phase-connector"stations. 

Comparison of Bias Optimizing and Bias Fixing 

In its present implementation using (32), bias optimizing 
gave baseline solutions within I mm of bias fixing for 3 sta- 
tion subsets of the June 1986 southern California network 

for which the shortest baseline lengths were about 200 km or 

less. In these cases, both techniques were almost maximally 

effective (i.e., all but a few ambiguities could be fixed with 
very high confidence). Submillimeter agreement was found 
when the shortest baseline was about 400 km or more, but 

for a different reason: the uncertainties in the phase biases 

were large enough that neither bias optimizing nor bias fix- 

ing changed the initial filter solution significantly (if at all). 
In the intermediate regime, several three-station networks 

were investigated, for example, the Vandenberg-Mojave- 

Monument Peak triangle, for which the shortest baseline 

is 274 km. The following general observations can be made 

about these networks for this particular experiment: (1) a 
significant number of biases (20-100%) could not be fixed if 
the shortest baseline length were greater than 200 km, (2) 
both bias fixing and bias optimizing gave improved baseline 

accuracies and repeatabilities, especially on the shortest of 

the three baselines, and (3) most baseline solutions using 
bias optimizing and bias fixing agreed to better than a cen- 
timeter, and neither approach as it stands appears preferable 
to the other. 

In order to better test the hypothesis that bias optimizing 

is better than fixing for certain sparse networks, a multi- 
dimensional search algorithm is currently being developed 

which should provide a more meaningful realization of the 

probability function, (41), and the expectation value, (42). 

CONCLUSIONS 

This analysis shows that using pseudorange for wide-lane 

ambiguity resolution is a powerful technique, in this case 

with a success rate of 97% when using a 99% confidence level, 
and rather poor quality pseudorange data. This technique is 

important because it is applicable to baselines of any length 

and requires no assumptions about the ionosphere. Using 

receivers and antennas which will shortly be commercially 
available, a 99.9% success rate is certainly possible. 

The application of ionospheric constraints appears to be 

reliable for baselines up to a few hundred kilometers when 

using P code receivers during good ionospheric conditions 

(at Californian latitudes, and near the solar sunspot mini- 
mum). The pseudorange wide-laning approach appears to 
be more precise above 200 km. The results of Wu and Ben- 

der [1988] tend to support this conclusion. With receivers 
which do not acquire the P code, apart from the obvious 
problems that can be encountered under less desirable con- 

ditions, the baseline length over which the ionospheric con- 
straint method works is reduced by a factor of 2. 

For the ionosphere-free biases, ambiguities were success- 

fully resolved for baselines ranging up to 1933 km in length. 
The precision of the east baseline component improved on 
average by a factor of 2.4, and the agreement of the east 

component with VLBI improved by a factor of 2.8. Vertical 

accuracy is not significantly affected, because of the small 

correlation of the vertical component with carrier phase bi- 
ases. The comparison of GP$ with VLBI suggests that 
centimeter-level accuracy for the horizontal baseline com- 

ponents has been achieved, corresponding to about 1 part 
in l0 s for the longer baselines. 

l•esults using the bias optimizing method indicate that it 

is a promising approach, giving baseline accuracies compa- 
rable to bias fixing. A multidimensional algorithm for com- 

puting the expectation value (and also for bias fixing) would 
more rigorously test the hypothesis that bias optimizing is 
superior to bias fixing for poorly configured networks. 

The importance of ambiguity resolution for high precision 
geodesy cannot be overstated, and attention should be paid 
to this in the design of GP$ experiments. These studies show 

that if 1000 km baselines are to be resolved, the network 
should also contain baseline lengths as small as 100 km. The 
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results of Cou.selm•. [1987] and Do,g •nd Bock [1989] tend 
to support this conclusion. Ambiguity resolution software 

should then exploit the correlations between the biases for 

baselines of different lengths. The extra expense incurred 

by deploying extra receivers to ensure ambiguity resolution 
may be more than offset by the reduced dwell time needed 
to achieve the required accuracy for a particular baseline. 
Followlng these guidelines, ambiguity resolution could be 
routinely applied to baselines spanning entire continents. 

APPENDIX A' DERIVATION OF THE 

EXPECTATION VALUE 

The expectation value is derived using Bayesean consid- 

erations. Let us define p(zl• ) to be the likelihood function 
that a bias has a value z, given that it was estimated to 

have the (real)value •. Let p(z) be the a priori probabil- 
ity density that the bias has a value z. Let p(•lz) be the 
probability density of obtaining the weighted least squares 
estimate •, given that the true value of the bias was z. Us- 

ing Bayes' theorem [Mathews and Walker, 1970, p. 387] we 
can write 

P(•!x)P(x) (A1) = 

If an experiment were repeated an infinite number of times, 
and the experimental conditions were identical each time 

except for random white data noise, estimates • would obey 
the Gaussian probability distribution: 

1 _(•_•)2/2•2 (A2) = 

where z is the true value of the bias, and •r is the formal 
error. 

Now, if we assume a priori that any integer value is equally 

likely for a given bias in some large range (-N, ..., +N), then 
we can write the a priori probability density' 

1 •6(x--j) v(,) = (2N + 
(AS) 

Substituting (A2) and (A3)into (A1) and performing the 
integration gives 

where 

pCzl): - 

+N 

C = • e -(•-•)2/2'r2 

(A4) 

Equation (A4) represents our best estimate of the proba- 
bility distribution for the correct value of the bias. We can 
now ask what value of the bias we should take. The bias fix- 

ing approach is to take the maximum likelihood value only 
if it is more probably correct than some confidence level, 

otherwise use the originally estimated value •. In contrast, 

the expectation value is a minimum variance estimate. 

Suppose we took some real value z' for our new estimate 
of the bias. The variance of this value is defined in the usual 

way by the following integral [Mathews and Walker, 1970, p. 
388]' 

=/;: (z - z') 2 v(zl)dz 
Substituting (A4) into (AS) and integrating, we find 

+N 

1 z,)2 (AO) 

Let us find the value of z' when the variance is minimized. 

Let us define •': 

as(z') 
az, =o 

3:1 --•1 

therefore from (A6) and (A7), 

-I-N 

L:' = 1 e_(i_•)2/2•2 (AS) 

But as can be seen, •' is simply the weighted sum of all 
possible integer values that the bias can take; hence •* is 
called the expectation value. The standard error on •* is 
given by 

cr'= V/s($ ') (A9) 

where s(i')is calculated using (A6). 
Equations (AS) and (A9) are the actual formulas used 

in the bias optimizing approach. The original estimate i 
and formal error cr are replaced with the values • and cr '. 
Subsequently, the estimates and covariance for all the other 

parameters in the problem are updated. 

Equations (AS) and (A9) can be used to illustrate some 
interesting and desirable qualities of the expectation value. 

One can easily show the following limits: 

lim $' = (nearest integer to •) 

lim cr' = 0 
o'---• 0 

(A10) 

which is, of course, the same as bias fixing with 100% con- 
fidence, and 

lim • -- • 

'-• (All) 
lim •" = o' 

which states that if the initial resolution of bias is much 

worse than a single spacing between the possible values, then 

we approach the continuum limit, and our initial real-valued 
estimates cannot be improved. 

These two limits correspond to the two possible choices 

that can be made when using the bias fixing approach. How- 

ever, we have a smooth transition between the limits when 
the initial a is finite, and we have a means to account for 

the improvement in the formal errors. 

APPENDIX B' AN OPTIMAL DOUBLE-DIFFERENOING 

TRANSFORMATION 

A matrix D is found which maps the set of undifferenced 
bias estimates Xb, with covariance Pb, into an optimal set 
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(in the sense of being best determined) of double-differenced 
bias estimates Xd, with covariance Pd: 

X• = DX• 

P• = DP•D • 

where Pb = R•-XR• -r. 
The transformation matrix O is chosen as follows. First, 

let us define T as the matrix which transforms Xb into a 

vector whose components constitute a redundant set of all 

mathematically allowed double-differenced bias estimates. 

Hence each row of T has two elements which have a value + 1, 

two which are -1, and the rest are zero. The formal errors 

of the double-differenced biases can be rapidly computed as 
follows: 

• = T• • B2 

where n is the number of undifferenced biases. (Note 
•he subscripts •, j, and k simply refer to ms•rix elements 

and do not refer to particular stations or satellites). 
The matrix D is constructed by selecting rows of T which 

correspond to the transformed biases with the smallest 
ues of •;. A row of T is not used if it is $ linear combination 

of previously selected rows; this is tested by attempting to 

form an orthogonal vector to the selected set of rows using 

the candidate row (via the Gram-Schmidt procedure). Thus 
O defines a unique, linearly independent, theoretically best- 
determined set of double-differenced biases. The dimension 

• of O so constructed would be less than a. A complete 

n-dimensional set is formed by arbitrarily selecting (n- 
undifferenced biases which p•s the Gram-Schmidt test and 

appending the appropriate (n- m) rows to D. Hence D 
becomes an n-dimensional, regular square matrix and can 

be inverted for use in (35). 
Let us now consider the application of the transformation 

D in the SRIF formalism. Using an orthogonal matrix Hs = 

(H•) • • H• •, (B1) can be written 

Pd= R• X R• T 

= DR•(H•Hjr)R•D • 

= ( H• R• D - • ) - • ( H• R• D - X ) - T 

hence 

Rd = H•RbD -• (B4) 

where for convenience, Hs is chosen such that Rd is upper 

triangular. Substituting (B1)into (25), and using (B4), 

Zd ---- RdXd 

= RdDXb 

= ••D-•DX• (•$) 

= H•R•X• 

=H•Zb 

Hence in the SRIF notation of (29), (B4) and (B5) are 
represented as follows: 

[nlz] = m[nm-l&] 

which also appears as (35). 
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