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Abstract Changes in GPS transmitter and receiver antenna orientations

induce variations in observed carrier phase values. An analytic formula for

this well-known carrier phase wind-up correction is derived which general-

izes a previous result. In addition, it is shown that in GPS reflectometry

the wind-up values of direct and coherently reflected rays may differ by up

to several centimeters. The results are discussed on the basis of simulated

measurements.

1 Introduction

Global Positioning System (GPS) satellites transmit L-band signals which

are right-hand circularly polarized (RHCP) (see, e.g., Misra and Enge,

2006). The measured carrier phase, therefore, varies when the receiving

and/or transmitting antennas change their relative orientations. This effect

is known as carrier phase wind-up and has been thoroughly discussed by
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Wu et al. (1993). In general, the fractional part of the carrier phase wind-up

constitutes a minor correction on the order of a few centimeters in terms

of phase path, but needs to be corrected for in high-precision applications

or other specific utilizations (Wu et al., 1993; Tetewsky and Mullen, 1997;

Kim et al., 2006; Beutler et al., 2007; Garćıa-Fernández et al., 2008). The

integer part may accumulate with time and is estimated by comparing the

wind-up value at the current and preceding epoch (Wu et al., 1993). In the

following, the integer part of the wind-up value is ignored and I consider

only its value modulo 2π, i.e., its fractional part.

The GPS satellites orbit the Earth at altitudes of about 20,180 km and

their signals propagate to ground-based receivers at transmitter antenna

off-boresight angles between 0◦ (satellite in the receiver’s zenith) and about

13.9◦ (satellite at the receiver’s horizon). Even for space-borne receivers

placed in low-Earth orbits at altitudes below 2000 km, the transmitter off-

boresight angle remains below 18.4◦.

It is well known that for non-zero off-boresight angles the GPS signals’

polarization state at the receiver antenna phase center deviates from pure

RHCP (Wu et al., 1993). Still, the left-hand circularly polarized (LHCP)

power levels are small compared to the RHCP levels. For most practical

purposes they are negligible and the assumption of a pure RHCP trans-

mitter signal (equation (3) in Wu et al. (1993)) is well justified. As will

be shown in the following, the error in carrier phase wind-up introduced

by this approximation lies in the sub-millimeter range in terms of phase
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path. In GPS reflectometry, however, the phase wind-up correction of a co-

herently reflected signal differs by up to several centimeters from the value

experienced by the direct signal and needs to be taken into account for the

determination of altimetric heights.

The paper is organized as follows. The next section reviews the deriva-

tion of the carrier phase wind-up for direct rays and derives a generalization

of the phase wind-up expression given by Wu et al. (1993). The subsequent

section focuses on the phase wind-up calculation of reflected rays taking into

account the change of polarization state at the reflecting surface. Finally,

the results are discussed using simulated measurements.

2 Theory

In the following discussion the transmitted signal is taken to be the su-

perposition of a RHCP and LHCP component. That is, the signal is per-

fectly polarized and contains no unpolarized contributions. Furthermore, it

is assumed that both, the transmitter and the receiver antenna, may be

modelled as crossed dipoles (Wu et al., 1993). A crossed dipole consists of

two short dipoles oriented perpendicular to each other. The aligned dipole

(superscript a) and the transverse dipole (superscript t) are identical except

that the signal path to the transverse dipole adds an additional phase de-

lay of π/2. In addition, the model assumes that the antenna’s phase center

coincides with the crosspoint of the aligned and transverse dipole. Phase

center variations, which may assume values of several centimeters for real
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GPS antennas, are not taken into account (e.g., Schmid et al., 2007; Mon-

tenbruck et al., 2008). Furthermore, atmospheric and ionospheric effects on

the signal’s carrier phase are ignored as well.

The transmitter antenna orientation is characterized by two unit vectors,

t̂a and t̂t. The symbol t̂a
(
t̂t

)
denotes the unit vector in the direction of

the aligned (transverse) dipole. The antenna boresight direction is given

by t̂b ≡ t̂a × t̂t and the vectors [t̂a, t̂t, t̂b] form a right-hand, orthonormal

coordinate system. Similarly, the receiver’s antenna orientation is described

by the three unit vectors [r̂a, r̂t, r̂b] with r̂b ≡ r̂a× r̂t. The vectors t̂b and r̂b

point towards the transmitter and receiver antennas’ top sides, respectively.

2.1 Phase Wind-up for Direct Rays

The electric field Ea(Ω) generated by the aligned dipole at a location r far

away from the transmitter antenna is (e.g., Jackson, 1999)

Ea(Ω) ≈ 1
4π ε0

[
ω2

c2 r3
(r× p)× r

]
cos(ω t− k · r− δ) (1)

∝
(
(k̂ × t̂a)× k̂

)
cos(Ω)

where Ω ≡ ω t−k ·r−δ. Here, ω and t denote the signal’s angular frequency

and time, r is the difference vector between the receiver and transmitter

phase centers, k ≡ k̂ 2π/λ is the wave vector with k̂ ≡ k/|k|, p is the dipole

moment, ε0 is the permittivity of free space, c is the velocity of light and δ is

an additional phase offset. The far-field approximation (1) is valid provided

that |r|ω/c À 1.
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Fig. 1 Transmitter and receiver antenna geometry. The arrows mark the aligned

and transverse dipoles’ directions as well as the antenna boresight directions. k̂ is

the normalized wave vector.
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The present analysis concentrates on phase changes induced by the an-

tenna orientations; phase variations caused by the relative motion between

the two antenna phase centers are disregarded and |r| is considered con-

stant. Since the absolute value of the electric field amplitudes are irrelevant

for the present discussion, the constant of proportionality in (1) (and anal-

ogous expressions below) will be set to unity without loss of generality.

The transverse dipole transmits a signal which is delayed by π/2 with re-

spect to the signal transmitted by the aligned dipole and the corresponding

field is proportional to

Et(Ω) ∝
(
(k̂ × t̂t)× k̂

)
sin(Ω) (2)

The overall field E(Ω) is the superposition of Ea(Ω) and Et(Ω), i.e.

E(Ω) ≡ Ea(Ω) + Et(Ω) (3)

∝ Ta(k̂) cos(Ω) + Tt(k̂) sin(Ω)

where

Ta(k̂) ≡
(
k̂ × t̂a

)
× k̂ (4)

Tt(k̂) ≡
(
k̂ × t̂t

)
× k̂

and the fact is used that the constants of proportionality in (1,2) are iden-

tical.

Following Wu et al. (1993) the open-circuit voltage V a at the aligned

receiver dipole is proportional to

V a ∝ r̂a ·E(Ω) (5)
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Fig. 2 The electric fields Ea(Ω) and Et(Ω) transmitted towards direction k̂ by

two dipoles oriented at t̂a and t̂t. Note that Ea(Ω) and Et(Ω) are perpendicular

to each other only if t̂a ⊥ k̂ or t̂t ⊥ k̂.

Analogous to the transmitting transverse dipole, the receiving transverse di-

pole’s signal path inserts a phase shift of π/2 and the corresponding voltage

V t is given by

V t ∝ r̂t ·E(Ω − π/2) (6)

Again, the constants of proportionality in (5) and (6) are taken to be equal.

The measured output voltage is the sum of V a and V t, and from (3), (5)
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and (6) one obtains

V ≡ V a + V t (7)

∝ (Ta(k̂) cos(Ω) + Tt(k̂) sin(Ω)) · r̂a +

(Ta(k̂) sin(Ω)−Tt(k̂) cos(Ω)) · r̂t

= (Ta(k̂) · r̂a −Tt(k̂) · r̂t) cos(Ω) + (Tt(k̂) · r̂a + Ta(k̂) · r̂t) sin(Ω)

Using the relation (Bronstein and Semendjajew , 1981), the derivation is

given in the appendix,

a sin(Ω) + b cos(Ω) = A cos(Ω − Φ) (8)

with

A ≡
√

a2 + b2 (9)

Φ ≡ arctan2(a, b)

the phase delay of the measured voltage V (7) with respect to the electric

field transmitted by the aligned dipole (1) is

Φ = arctan2
(
Tt(k̂) · r̂a + Ta(k̂) · r̂t,Ta(k̂) · r̂a −Tt(k̂) · r̂t

)
(10)

with Ta(k̂) and Tt(k̂) being defined by (4). Φ is the amount of carrier phase

wind-up for transmitter and receiver antenna orientations t̂a, t̂t and r̂a, r̂t.

Here, arctan2(a, b) denotes the four-quadrant arctangent

arctan2(a, b) ≡





sgn(a) arctan
∣∣a

b

∣∣ : b > 0

sgn(a) π
2 : b = 0

sgn(a)
(
π − arctan

∣∣a
b

∣∣) : b < 0

(11)
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and the sign function is defined by

sgn(a) ≡





1 : a > 0

0 : a = 0

−1 : a < 0

. (12)

Equation (10) is easily modified for a LHCP receiver antenna by changing

the phase offset sign in (6). The factor E(Ω−π/2) is replaced by E(Ω+π/2)

and the corresponding carrier phase wind-up value ΦL is

ΦL = arctan2
(
Tt(k̂) · r̂a −Ta(k̂) · r̂t,Ta(k̂) · r̂a + Tt(k̂) · r̂t

)
(13)

Alternatively, equation (13) is obtained directly from (10) by reversing the

direction of the transverse receiver dipole, r̂t.

For reference, the results obtained by Wu et al. (1993) for a RHCP

receiver antenna are quoted. Under the assumption that the transmitted

signal is in a pure RHCP state (equation (3) in Wu et al. (1993)), they

show that the carrier phase wind-up is given by

Φ̃ = sgn(ζ) arccos
(

D ·D′

|D| |D′|
)

(14)

(equation (30) in Wu et al. (1993)). Here, D, D′ and ζ are defined as

D′ ≡ t̂a − k̂
(
k̂ · t̂a

)
− k̂ × t̂t (15)

D ≡ r̂a − k̂
(
k̂ · r̂a

)
+ k̂ × r̂t

ζ ≡ k̂ · (D′ ×D)

Equations (10) and (14) are not identical; simulation results described in

section 3, however, indicate that the differences between Φ̃ and Φ for realistic



10 G. Beyerle

antenna geometries are on the order of a few mrad (about 0.1 mm in terms

of phase path at L-band frequencies). The assumption by Wu et al. (1993)

of pure RHCP transmitter signals is therefore well justified. Moreover, if

the boresight vectors of the transmitter and receiver antenna lie in one

plane, equations (10) and (14) are in fact equivalent as will be shown in the

appendix. This condition is met for static ground-based receivers with their

antennas’ boresights pointing towards the zenith.

2.2 Phase Wind-up for Coherently Reflected Rays

In this section a signal is considered which is transmitted by a crossed dipole

and coherently reflected from a plane, mirror-like surface at an incidence

angle θ (e.g., Anderson, 2000; Treuhaft et al., 2001; Mart́ın-Neira et al.,

2001; Cardellach et al., 2006). In the following, incoherent signal components

in the reflected signal are not taken into account. The Fresnel reflection

coefficients (Hecht and Zajac, 1997; Born and Wolf , 1980)

r‖ =
n2 cos θ −√n2 − sin θ

n2 cos θ +
√

n2 − sin θ
(16)

r⊥ =
cos θ −√n2 − sin θ

cos θ +
√

n2 − sin θ

relate the electric field amplitudes of the incoming signal (superscript i),

E
(i)
‖ and E

(i)
⊥ , to the amplitudes of the reflected signal (superscript o),

E
(o)
‖ ≡ r‖E

(i)
‖ (17)

E
(o)
⊥ ≡ r⊥E

(i)
⊥
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Fig. 3 Coordinate systems describing incoming and reflected ray and defining

the signs in equation (16).

In (16), n ≡ n2/n1 denotes the ratio of the refractive index of the reflecting

material, n2 =
√

εr ≡
√

ε/ε0, and the refractive index of air n1. Here, εr is

the real part of the relative dielectric constant. The signs in (16) correspond

to the coordinate systems shown in Fig. 3 (Hecht and Zajac, 1997).

Again, the observed voltage is proportional to the electric field generated

by the transmitting crossed dipoles at the location of the receiver antenna

phase center (5,6). Using the Fresnel coefficients (16), the electric field vec-

tor of the reflected ray is determined from the electric field vector of the

incoming ray by decomposing it into components parallel and perpendicular

to the reflection plane (see (17) and Fig. 3).

The voltage recorded by the receiver antenna is thus given by

Vrfl ∝ (Sa cos(Ω) + St sin(Ω)) · r̂a + (18)

(Sa sin(Ω)− St cos(Ω)) · r̂t
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= (Sa · r̂a − St · r̂t) cos(Ω) + (St · r̂a + Sa · r̂t) sin(Ω)

with the notation

Sa ≡ r‖
(
Ta(k̂(i)) · ŝ(i)

‖
)

ŝ
(o)
‖ + r⊥

(
Ta(k̂(i)) · ŝ⊥

)
ŝ⊥ (19)

St ≡ r‖
(
Tt(k̂(i)) · ŝ(i)

‖
)

ŝ
(o)
‖ + r⊥

(
Tt(k̂(i)) · ŝ⊥

)
ŝ⊥

Here, Ta(k̂(i)) · ŝ
(i)
‖ and Ta(k̂(i)) · ŝ⊥ are the amplitudes of the paral-

lel and perpendicular components of the incoming electric field, respec-

tively, which is generated by the aligned dipole (superscript a). Furthermore,

r‖
(
Ta(k̂(i)) · ŝ(i)

‖
)

ŝ
(o)
‖ and r⊥

(
Ta(k̂(i)) · ŝ⊥

)
ŝ⊥ are the parallel and per-

pendicular components of the reflected field, respectively. The phase wind-

up of the reflected ray Φrfl, accordingly, is given by

Φrfl = arctan2
(
St · r̂a + Sa · r̂t,Sa · r̂a − St · r̂t

)
(20)

with Sa and St defined by (19). Analogous to (13), the corresponding wind-

up value observed by a LHCP antenna is

Φrfl
L = arctan2

(
St · r̂a − Sa · r̂t,Sa · r̂a + St · r̂t

)
(21)

As an aside, we note that the incoming ray’s wave direction k̂(i) closely

matches the direct ray’s direction vector k̂, since the distance between

reflection point and receiver generally is much smaller than the distance

between receiver and GPS satellite and, therefore, Ta(k̂(i)) ≈ Ta(k̂) and

Tt(k̂(i)) ≈ Tt(k̂).
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2.3 Signal Intensities in Direct and Reflected Rays

Equations (8) and (9) also allow for estimating the relative signal amplitudes

observed by RHCP and LHCP antennas. For the direct ray, the ratio of the

RHCP and LHCP power levels is given by

R
R/L
drct =

(
Tt(k̂) · r̂a + Ta(k̂) · r̂t

)2

+
(
Ta(k̂) · r̂a −Tt(k̂) · r̂t

)2

(
Tt(k̂) · r̂a −Ta(k̂) · r̂t

)2

+
(
Ta(k̂) · r̂a + Tt(k̂) · r̂t

)2 (22)

Similarly, the corresponding ratio for the reflected ray is

R
R/L
rfl =

(St · r̂a + Sa · r̂t)2 + (Sa · r̂a − St · r̂t)2

(St · r̂a − Sa · r̂t)2 + (Sa · r̂a + St · r̂t)2
(23)

Section 3 provides example profiles for R
R/L
drct and R

R/L
rfl which were derived

from simulated measurements.

3 Discussion

In the following, carrier phase wind-up corrections calculated from the ana-

lytic formulas are discussed on the basis of simulated GPS observations. The

simulated signal is transmitted by GPS satellite PRN 17 on 17 July 2007

between 13 h and 17 h GPS time and recorded by a receiver located at the

mountain top of Fahrenberg (47.617◦N, 11.315◦E, 1625 m above sea level).

The corresponding sky trace of PRN 17 is shown in Fig. 4. For simplicity,

the simulation assumes straight-line ray propagation and does not take into

account phase delays induced by the ionosphere or neutral atmosphere.

The ground-based receiver antenna (boresight direction r̂b) is oriented

towards East at an azimuth angle of +90◦ and at zenith angles of 0◦, 45◦
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Fig. 4 GPS satellite sky trace for PRN 17 on 17 July 2007. The trace begins at

13 h in the South-East and ends at 17 h GPS time.

and 90◦. The zenith angle is the angle between r̂b and the zenith direction.

The orientation vector r̂a is aligned with respect to the azimuth direction.

On the transmitter side, the antenna boresight t̂b points to the center of the

Earth and t̂a is assumed to lie in the plane defined by t̂b and the Earth-Sun

line (Bar-Sever , 1996).

The simulation results are presented in terms of the phase path wind-up

Λ and Λrfl

Λ ≡ λ

2π
Φ (24)

Λrfl ≡ λ

2π
Φrfl

where λ ≈ 19 cm denotes the GPS L1 carrier signal’s wavelength. The

resulting phase path wind-up for the direct ray is shown in Fig. 5. The
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Fig. 5 Top: Simulated wind-up phase paths for PRN 17 on 17 July 2007 at

the Fahrenberg measurement site (Fig. 4). The wind-up phase paths are derived

from (10) for a receiver antenna azimuth angle of +90◦ and zenith angles of 0◦

(solid line), 45◦ (dashed) and 90◦ (dashed-dotted).

Bottom: Difference between wind-up phase path derived from equations (14) and

(10) for zenith angles of 0◦ (solid line), 45◦ (dashed) and 90◦ (dashed-dotted). At

0◦ the two profiles are identical and the difference vanishes.

difference

∆Λ ≡ λ

2π
(Φ̃− Φ) (25)

vanishes for a zenith-oriented receiver antenna. However, for a zenith angle

of 45◦ ∆Λ may reach values of up to 0.1 mm.

The simulated measurements also include a GPS reflectometry com-

ponent with signals coherently reflected from the Walchensee lake surface

about 824 m below the receiver location. The coherent reflection process
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Fig. 6 The difference between the phase path wind-up of reflected and direct ray

at the Fahrenberg measurement site. The simulated measurement is performed

for PRN 17 on 17 July 2007 using receiver antenna zenith angles of 0◦ (solid line),

45◦ (dashed) and 90◦ (dashed-dotted) and an antenna azimuth angle of +90◦.

is modelled according to (16) with a relative dielectric constant of water

εr ≡ ε/ε0 = 85.64 and a refractive index of air 1.0004.

The difference in phase path wind-up for reflected and direct ray, Λrfl−Λ,

is shown in Fig. 6 for three receiver antenna zenith angles. For a zenith-

pointing antenna, no dependence of Λrfl − Λ on antenna orientations is

observed. However, for non-zero antenna zenith angles the phase path wind-

up difference Λrfl−Λ may reach several centimeters and needs to be corrected

for in reflectometry data analyses.

Finally, RHCP-to-LHCP power ratios are plotted in Fig. 7. The top

panel shows the ratio R
R/L
drct corresponding to the data set plotted in Fig. 5.
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Fig. 7 Top: Power level ratio of RHCP to LHCP component (direct ray) for

receiver antenna zenith angles of 0◦ (solid line), 45◦ (dashed) and 90◦ (dashed-

dotted).

Bottom: Same as above, however, for the reflected ray.

For all three zenith angles R
R/L
drct is positive indicating that the RHCP domi-

nates the LHCP component. For a vertical pointing antenna R
R/L
drct is smaller

compared to the ratio at the other two antenna orientations, since the ele-

vation of GPS satellite PRN 17 during the simulated measurement period

is comparatively low and never exceeds 45◦ (Fig. 4). With a zenith angle of

45◦ (dashed line) at around 15 h GPS time, the receiver antenna boresight

almost directly points towards the transmitter increasing R
R/L
drct to more than

40 dB. For the reflected ray, on the other hand, the LHCP component dom-

inates the RHCP component by about 10 dB if the antenna points towards

to horizon (zenith angle of 90◦, Fig. 7, bottom panel), whereas at 45◦ both
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components are at about the same level. Thus, in the design of reflectome-

try experiments the antenna polarization type and orientation needs to be

carefully selected.

Note that these considerations apply to the crossed dipole antenna model.

The RHCP-to-LHCP power level ratios observed with real GPS antennas

may differ significantly from the simulated data shown in Fig. 7.

4 Conclusions

An analytical expression for the carrier phase wind-up correction is derived

which generalizes a well-known result derived by Wu et al. (1993). If the

transmitter and receiver antennas’ boresight directions lie in one plane the

two formulae are equivalent. This condition is met in most ground-based

applications with static receivers and antenna boresight directions pointing

towards the zenith. For arbitrary orientations the expected deviations are in

the sub-millimeter range. Carrier phase wind-up is a significant correction

in GPS reflectometry. Using simulated measurements it is shown that the

observed differences between direct and reflected ray phase path wind-up

may reach up to several centimeters.
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Cardellach, E., S. Ribó, and A. Rius (2006), Technical note

on polarimetric phase interferometry (POPI), Tech. Rep.

http://arxiv.org/abs/physics/0606099.
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5 Appendix

In the following we first show that the phase wind-up value derived from (10)

is identical to the value derived using (14) provided that the transmitter

and receiver antenna boresight vectors t̂b and r̂b lie in one plane. We then

derive (8).

The unit wave vector k̂ can then be written as a linear combination of

t̂b and r̂b

k̂ = α t̂b + β r̂b (26)

where it is assumed that t̂b and r̂b are not collinear. We define nine para-

meters a, b, c, d, A, B, C, D and ∆ by

R ≡




t̂a · r̂a t̂a · r̂t t̂a · r̂b

t̂t · r̂a t̂t · r̂t t̂t · r̂b

t̂b · r̂a t̂b · r̂t t̂b · r̂b



≡




a c A

b d B

C D ∆




(27)

noting that

∆ =
(
t̂a × t̂t

) · (r̂a × r̂t
)

(28)

=
(
t̂a · r̂a

) (
t̂t · r̂t

)− (
t̂t · r̂a

) (
t̂a · r̂t

)

= a d− b c .

Since the vectors [t̂a, t̂t, t̂b] and [r̂a, r̂t, r̂b] can be regarded as bases of carte-

sian coordinate systems, the matrix R is orthonormal, i.e.

3∑

k=1

Rik Rjk = δij (29)

3∑

k=1

RkiRkj = δij
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with the Kronecker delta defined by

δij ≡





0 : i 6= j

1 : i = j

(30)

For example, equation (29) translates into the following relations which will

be used later

cA + dB + D ∆ = 0 (31)

a2 + b2 + C2 = 1 (32)

c2 + d2 + D2 = 1 (33)

a2 + c2 + A2 = 1 (34)

b2 + d2 + B2 = 1 (35)

C2 + D2 + ∆2 = 1 (36)

From (26) and |k̂| = 1 it follows that

α2 + β2 + 2 α β ∆ = 1 (37)

and equations (32), (33) and (36) yield

a2 + b2 + c2 + d2 = 1 + ∆2 (38)

Equation (10) can now be re-written in terms of the parameters defined

in (27),

Tt(k̂) · r̂a =
((

k̂ × t̂t
)
× k̂

)
· r̂a (39)

=
(
t̂t − k̂

(
k̂ · t̂t

))
· r̂a

= b− α β B C
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Similarly, one obtains

Ta(k̂) · r̂t = c− α β AD (40)

Ta(k̂) · r̂a = a− α β A C

Tt(k̂) · r̂t = d− α β B D

In the next step, the products AD, B C, A C and B D are expressed in

terms of a, b, c and d. For example, by squaring (31), inserting (35), (34)

and (33) and using (38) one obtains

A D =
1

2 c ∆

(
d2 (1− b2 − d2)− c2 (1− a2 − c2)−∆2 (1− c2 − d2)

)
(41)

=
1

2 c ∆

(
d2 (a2 + c2 −∆2)− c2 (b2 + d2 −∆2)−∆2 (1− c2 − d2)

)

=
1

2 c ∆

(
∆ (a d + b c)−∆2 + 2 c2 ∆2

)

= b + c∆

Similarly, for the remaining products one finds

B C = c + b∆ AC = −d + a ∆ B D = −a + d∆ (42)

and (10) becomes

Φ = arctan2(b + c, a− d)

The corresponding expressions for (15) are

D ·D′ = a− d + α β (B D −AC) + (α− β) (a− d) (43)

= (a− d) (1 + α− β − α β (1 + ∆))

|D|2 = D ·D = 2− α2 (C2 + D2)− 2 α ∆− 2 β
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= (1− α ∆− β)2

|D′|2 = D′ ·D′ = 2− β2 (A2 + B2) + 2 β ∆ + 2 α

= (1 + α + β ∆)2

ζ =
1
2

(b + c) (1 + α− β)2

using (26) and (37). Note that (14) and (43) imply

|D| = 1− α ∆− β 6= 0 and |D′| = 1 + α + β ∆ 6= 0 . (44)

Using (43) and (37), Φ̃ is given by

Φ̃ = sgn(ζ) arccos
(

(a− d) (1 + α− β − α β (1 + ∆))
(1− α ∆− β) (1 + α + β ∆)

)
(45)

= sgn(b + c) arccos
(

a− d

1−∆

)

since

(1− α ∆− β) (1 + α + β ∆) = (1−∆) (1 + α− β − α β (1 + ∆)) . (46)

In equation (45) sgn(ζ) has been replaced by sgn(b + c) which is only ad-

missible for 1 + α − β 6= 0. However, if 1 + α − β = 0 the rhs of (46) was

identically zero (see (37)) contradicting (44).

With arctan2(
√

1− x2, x) = arccos x, where −1 ≤ x ≤ +1, one finds for

x ≡ (a− d)/(1−∆) that
√

1− x2 = |b + c|/(1−∆). Thus,

Φ̃ = sgn(b + c) arccos
(

a− d

1−∆

)
(47)

= sgn(b + c) arctan2
( |b + c|

1−∆
,

a− d

1−∆

)

= arctan2(b + c, a− d)

= Φ
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concluding the proof that Φ = Φ̃ provided the transmitter and receiver

antenna boresight vectors t̂b and r̂b lie in one plane.

Equation (8) is derived in the following way: with sin Ω = (eiΩ −

e−iΩ)/(2i) and cos Ω = (eiΩ + e−iΩ)/2 we find

a sin Ω + b cosΩ =
(

a

2i
+

b

2

)
eiΩ +

(
− a

2i
+

b

2

)
e−iΩ (48)

=
1
2

√
a2 + b2 e−i arctan2(a,b) eiΩ +

1
2

√
a2 + b2 ei arctan2(a,b) e−iΩ

=
√

a2 + b2 cos(Ω − arctan2(a, b))


