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As a new category of quasi-one-dimensional materials, graphene nanoscroll (GNS) has captivated the researchers recently because
of its exceptional electronic properties like having large carrier mobility. In addition, it is admitted that the scrolled con	gurations
for graphene indicate larger stability concerning the energy, as opposed to their counterpart planar con	gurations like nanoribbon,
nanotube, and bilayer graphene. By utilizing a novel analytical approach, the current paper introduces modeling of the density
of state (DOS), carrier concentration, and quantum capacitance for graphene nanoscroll (suggested schematic perfect scroll-like
Archimedes spiral). �e DOS model was derived at 	rst, while it was later applied to compute the carrier concentration and
quantum capacitance model. Furthermore, the carrier concentration and quantum capacitance were modeled for both degenerate
and nondegenerate regimes, along with examining the e
ect of structural parameters and chirality number on the density of state
and carrier concentration. Latterly, the temperature e
ect on the quantum capacitance was studied too.

1. Introduction

It is well agreed that the graphene based materials do
reveal better electrical transmission. Fabricating the elec-
tronic devices in tremendously small dimensions (fewer than
100 nanometers) has become possible owing to the modern
advances in the construction of atomic-sized conductors.
Up till now, the majority of surveys conducted formerly
have focused on CNT and GNR [1, 2]. It is known that the
graphene nanoscrolls are indeed small graphene nanoribbons
which have been rolled up into the spiral [3, 4]. �e GNS
formation mechanisms greatly resemble the mechanisms
associated with the characteristic large graphene and boron
nitride nanoscrolls. �e overlapping surface of the rolled
layers in GNSs is potent of enhancing the structural stability
[5]. Graphene nanoscrolls are reported to be auspicious
materials for the subsequent generation of the nanoelec-
tronic devices, like the channel and interconnection in

FETs and MOSFETs [6, 7]. While outlining the structure
of the nanoscrolls, the electron microscopy and di
raction
can be measured as very e�cient approaches [8, 9]. GNSs
have the potential being used as electron-transport carrier
[10, 11]. Currently, the quasi-one-dimensional nanocarbons,
namely, the nanowall, nanowire, nanobelt, and nanoscroll,
are being synthesized using the hydrothermal method or
the plasma enhanced chemical vapor deposition (CVD) [12–
14]. Utilizing the isotropy alcohol solution for rolling up
the monolayer graphene prede	ned on SiO2/Si substrates
has been considered as a simple and e�cient method for
constructing the high-quality carbon nanoscrolls (CNSs).
Additionally, it is con	rmed that the GNS attained through-
out this method would be capable of sustaining a high

current density up to 5 × 107 A/cm2. �is in turn proves
that it can be taken as a proper candidate for microcircuit
interconnect [15, 16]. Another important class of nanostruc-
tures is boron nitride nanotubes (BNNTs) and boron nitride
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nanoscrolls (BNSs). Although a large number of theoretical
and experimental works have been reported to BNNTs, BNSs
have not been explored so far. In principle, the recently
reported experimental techniques used to produce CNSs can
be used to produce BNSs using cubic boron nitride crystals
as starting materials. Similar to CNSs, BNS formation is
dominated by two major energetic contributions, the elastic
energy increase caused by bending the BN layer (decreasing
stability) and the free energy decrease generated by the
van der Waals interaction energy of overlapping regions of
the layer (increasing stability). �is suggests that the van
der Waals interactions are more relevant for the BNS than
for the CNS case. [17, 18]. Figure 1 illustrates a common
graphene nanoscroll (perfect scroll-like Archimedes spiral)
whose length � (length of Archimedes spiral) is given by

� = ∫�
�

√�2 + (����)2��, (1)

where � stands as right angle for the spiral from 
 to � for 
 as
the starting value from �, � = 2�
, (
 is the number of turns),
and � = 
 + �� (� is the distance from the origin). By utilizing
a third nearest-neighbour tight binding analysis, the energy
dispersion relation and conductance of graphene nanoscroll
can be achieved. �e dependency of the energy band gap on
the geometry structure and chirality number has been rati	ed
[19]. �erefore, the controllable band gap in GNS can stand
as the foremost point in future studies for employing theGNS
as electronic devices, like the FET and MOSFET.�e current
research presents modeling of the states density, the carrier
concentration, and quantum capacitance on the basis of the
parabolic energy dispersion approximation for the ZGNS. By
implementing the 	rst derivative of the Taylors expansion
approximation on the energy dispersion relation, the quan-
tum capacitance is accordinglymodelled. Likewise,Maxwell-
Boltzmann’s distribution law was used at low concentration.
In themeantime, the quantum capacitance was only regarded
to be within parabolic bands [20–22]. Besides, the carrier
statistics dependency on the length of the spiral (�) and the
chiral vector ( ⃗�) was shownwhile examining the e
ects of the
temperature variations on the quantum capacitance. In this
paper, the e
ect of the electroactuation phenomenon on the
model of the quantum capacitance has not been taken into
account [23].

2. Analytical Model of Quantum Capacitance(��) for ZGNS

As fundamental electronic parameters, the carrier concen-
tration and quantum capacitance can aid in attaining the
physical insights while specifying the electronic devices, like
the FET and MOSFET characteristics [24, 25]. Numerous
surveys have been conducted so far on the subject of the
graphene, CNT, GNR, and GNSs electronic properties like
the carrier statistics, conductance, mobility, and quantum
capacitance through molecular dynamic simulation, as well
as the fabrication process [26–28]. Nevertheless, there is
no numerical simulation or analytical models for the stated
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Figure 1: Schematic representation of a typical graphene nanoscroll.
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Figure 2: Illustration of how a graphene sheet is rolled up into spiral
in GNS.

parameters in the GNSs. �e graphene lattice presented in
Figure 2 indicates the procedure of rolling the graphene layer
up to the formation of GNS, in which � symbolizes the
scroll angle pertaining to the axes. �e chiral vector ( ⃗�)
determines the direction of the roll-up ⃗� = � ⃗
1 + � ⃗
2, where
1(√3
��((√3/2)�̂+0.5�̂)), 
2(√3
��((√3/2)�̂−0.5�̂)) andwhere
the integers (�) and (�) are the number of steps along the unit
vectors ⃗
1 and ⃗
2. It is possible for us to have an armchair
nanoscroll if ⃗� lies along the �-axis and a zigzag nanoscroll

if ⃗� lies along the �-axis. Vector of �⃗ is the translational
vector along the nanoscroll axis. [29–31]. Consequently, in
zigzag graphene nanoscroll whose circumferential direction
is around the �-axis, the energy dispersion relation utilizing
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the tight binding model and enforcing boundary condition�⃗ ⋅ ⃗� = � is determined as [19]

�� (�⃗) = ± √1 + 4 cos(3��
��2 ) cos( �2�) + 4cos2 ( �2�),
(2)

where �⃗ (the wave vector) can be obtained by �⃗ = �� �̂ + �	�̂,�� denotes the �’s magnitude along the axis of the nanoscroll,
and the range of �� will be (−2�/3
�� ≤ �� ≤ 2�/3
��),
while 
�� = 1.42 Å will be the carbon-carbon bonding
distance or the length of the carbon-carbon atom and ( =3.0 ev) stands as the closest neighbour C–C overlap energy
and (�) signi	es the chirality number. Figure 3 exhibits the

energy band structure of ZGNS ��(�⃗) near the Dirac point
with the band gap at (� = 0). �erefore, at the beginning
for the modeling of quantum capacitance, we start by the
modeling of the DOS which is presented for the zigzag
nanoscroll. Because the structure of the ZGNS is a con	ned
one-dimensional (1D) structure, the DOS (normalized per
unit length) for ZGNS can be obtained through [24]

DoS = Δ�
�Δ�
= ±2�∗(� − ��)−1/23ℎ2�√ ,

(3)

�∗ = 4�2ℎ29
�� (�2 + 4�2) , (4)

where �∗ provided by (4) can be considered as the e�cient
electron mass in the ZGNS, ( = 3.0 ev) is the closest
neighbour C–C overlap energy, �� denotes the energy of

the conductance band derived as �� = 0.5 + (3�2)/(2�2),� shows the length of the spiral in GNS, and � stands for
the chirality, while ℎ signi	es the reduced Planck’s constant
or Dirac constant. Figures 4 and 5 exhibit the DOS as a
function of � (�) for diverse values of (�) and (�). As it can be
discerned, the DOS is proportional to (�) and (�) in reverse.
In practice, by incorporating and integrating the Fermi-
Dirac distribution function against the energy, the sum of
the carrier concentration within a band can be acquired.
Accordingly, the carrier concentration can be demarcated as
[20]

�
 = ∫DoS (�) * (�) ��, (5)

where *(�) = 1/(1 + -(�−��)/
��) stands as Fermi-Dirac dis-
tribution function which yields the probability of occupation
of a state at any energy level. In this function, �� is the Fermi
energy, 6� denotes Boltzmann’s constant, and � shows the
absolute temperature. By employing the DOS provided by
(3) along with substituting � = (� − ��)/6�� and 7� =(�� − ��)/6��, the carrier concentration will read as

�
 = 2�∗3ℎ2�√6�� ∫+∞
0

(�)−1/21 + exp (� − 7�)��. (6)
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Figure 3: Energy band structure (�) versus (6) for ZGNS near the
Dirac point.
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Figure 4: DOS versus � for various values of chirality (�) and � =
80 nm.
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Figure 5: DOS versus � for various values of chirality (�) and � =
60 nm.
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By solving the integral analytically, (6) will be obtained as

�
 = 2�∗6��3 �ℎ2 ϝ0 (7�) + √ 2�∗6���29 �ℎ2 ϝ(−1/2) (7�) , (7)

where ϝ0(7�) and ϝ(−1/2)(7�) show the Fermi-Dirac integrals
of orders 0 and (−1/2), respectively. Furthermore, by utilizing
the equation of the energy dispersion, � can be acquired as

� = ±13√�∗ (� − ��)ℎ2 . (8)

�e carrier concentration as function of 7 (normalized
energy) for two diverse values of � (� = 30 nm, � = 60 nm,
and � = 80 nm) is plotted in Figure 6, indicating that, by a
rise in �, there will be a rise in the �
, while all of the curves
in the 	gure would pursue the same trend. It should be noted
that the Fermi-Dirac distribution function contains various
forms in degenerate and nondegenerate states that can be
attributed by (7� ≫ 0) and (7� ≪ 0), respectively [32, 33]. As
opposed to the 36��, there are a small number of electrons
in the conduction band in the nondegenerate regime while
the conduction band edge is greatly above the Fermi energy.
�erefore, the Fermi-Dirac integral can be estimated by the
Maxwell-Boltzmann distribution factor of *(�) = exp(7�).
However, the concentration of electrons in the conductance
band in the degenerate regime surpasses the state density,
while the Fermi energy remains within the conductance
band and the Fermi-Dirac function can be estimated as*(�) = 1. Having implemented these limits for (7), the carrier
concentration in degenerate and nondegenerate regimes can
be, respectively, obtained by

�
dg = 27��∗6��3 �ℎ2 + � �ℎ√ 27��∗6��3 ,

�
non-dg = 2�∗6��3 �ℎ2 exp (7�) + √ 2�∗6���29 �ℎ2 exp (7�) .
(9)

Figure 7 demonstrates the carrier concentration with
regard to 7 for both degenerate and nondegenerate regimes.
As it can be observed, the carrier concentration in the
nondegenerate state is larger than the same concentration in
the degenerate regime; moreover, by having a rise in the 7,
the �
 correspondingly surges with a nonlinear relation. �e
quantum capacitance is remarkably in�uenced by the quan-
tum con	nement into nanoscale size devices. Consequently,
the quantum capacitance has been supposed to be modeled
for nanoscale devices, the graphene based materials in par-
ticular [27, 34]. �e quantum capacitance can be acquired
by computing at a certain Fermi level and temperature,
contrasting the total capacitance that is attained from the
experiments. �e quantum capacitance at Dirac point or
charge neutrality is obtained by the di
erentiation of carrier
concentration against the states of energy level. A general
expression of the one-dimensional quantum capacitance is
provided by [21, 26, 34]

�� = <><? = -2<�
<� = -26��
<�
<� , (10)
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Figure 6: �e carrier concentration with respect to 7 for di
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values of �.
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Figure 7: �e carrier concentration with respect to 7 for both
degenerate and nondegenerate regimes.

where �
 shows the carrier concentration and (?) denotes the
voltage applied to the GNS, while (-) stands as the magnitude
of an electron charge. Consequently, by substituting �
 from
(7) into (10), we can simplify the quantum capacitance as

�� = 2-2�∗3�ℎ2 √ 1 ⋅ 6�� ( (�)−1/21 + exp (� − 7�)) . (11)

�e states within the conduction band (allowed band) are
moderately 	lled at room temperature (� = 300K) in the
nondegenerate regime; accordingly, the exponential part of
(11) is large enough to discard (1) from the denominator.
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�erefore, the quantum capacitance in nondegenerate regime
can be acquired as

���� = 2-2�∗3�ℎ2 ⋅ (�)−1/2√ 1 ⋅ 6�� exp (� − 7) . (12)

On the other hand, the exponential part is really small in the
degenerate regime owing to the probability for the electron
to 	ll all the available states up to the Fermi level which
is roughly (1), suggesting that there are no accessible states
within the conduction band for � − �� ≤ 36��. As a result,
the quantum capacitance within the degenerate regime can
be obtained by

��� = 2-2�∗3�ℎ2 √ 1 ⋅ 6�� ⋅ (�)−1/2. (13)

�e quantum capacitances against 7 (normalized energy) for
the general state and both degenerate and nondegenerate
regimes are plotted in Figure 8, indicating that, for the degen-
erate regime, it has not been in�uenced by 7 variations while

it tends to have a steady value (5.5 × 10−9). Contrariwise,
it increases exponentially in the nondegenerate regime by
altering the 7. Aswell, the quantum capacitance in the general
state upsurges intensely for the range of 1.5 ≤ 7 ≤ 5; yet,
it will reach the saturation region a�er that having the equal
value as the degenerate limit.�e dominance of the quantum
capacitance can be explained at di
erent concentration levels.

In the last part, the temperature e
ect on the quantum
capacitance was scrutinized, showing that in Figure 9 the
quantum capacitance gets to the degenerate limit more
speedily once there is a rise in the temperature. Hence, the
quantum capacitance, by elevating the temperature, will get
to its limit at low 7. �ere will be a considerable increase
in the electron concentration by the temperature increase,
making the quantum capacitance reach its limitmore quickly,
as a consequence. In the degenerate regime, the quantum
capacitance is not supposedly in�uenced by the temperature
by reason of the assumption of the high carrier density [25,
35]. Figure 9 portrays the quantum capacitance dependency
in the general state for ZGNS on the temperature variations.

3. Conclusion

It is acknowledged that the graphene nanoscrolls with out-
standing 	eld emission properties and strip morphology
are claimed to be capable of being employed in the future
nanoelectronics as the electron transport carriers. Numerous
analytical models have been recommended in the current
paper for the GNSs electronic properties, such as the state
density and the carrier concentration as well as the quantum
capacitance. Furthermore, the current research approved
that the chirality number (�) and structural parameters of
nanoscroll, such as length of nanoscroll (�), a
ect the state
density of states and carrier concentration. It is con	rmed
here that the results are consistent with the ones related to
the carbon nanotube and graphene nanoribbon. Besides, the
temperature e
ects on the quantum capacitance were exam-
ined, indicating that once there is a rise in the temperature,
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the quantum capacitance will reach its limit more quickly at
low 7.
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