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Carrier Synchronization for 3- and
4-bit-per-Symbol Optical Transmission

Ezra Ip and Joseph M. Kahn, Fellow, IEEE

Abstract—We investigate carrier synchronization for coherent
detection of optical signals encoding 3 and 4 bits/symbol. We
consider the effects of laser phase noise and of additive white
Gaussian noise (AWGN), which can arise from local oscillator
(LO) shot noise or LO-spontaneous beat noise. We identify 8- and
16-ary quadrature amplitude modulation (QAM) schemes that
perform well when the receiver phase-locked loop (PLL) tracks
the instantaneous signal phase with moderate phase error. We
propose implementations of 8- and 16-QAM transmitters using
Mach–Zehnder (MZ) modulators. We outline a numerical method
for computing the bit error rate (BER) of 8- and 16-QAM in the
presence of AWGN and phase error. It is found that these schemes
can tolerate phase-error standard deviations of 2.48◦ and 1.24◦,
respectively, for a power penalty of 0.5 dB at a BER of 10−9.
We propose a suitable PLL design and analyze its performance,
taking account of laser phase noise, AWGN, and propagation
delay within the PLL. Our analysis shows that the phase error
depends on the constellation penalty, which is the mean power
of constellation symbols times the mean inverse power. We estab-
lish a procedure for finding the optimal PLL natural frequency,
and determine tolerable laser linewidths and PLL propagation
delays. For zero propagation delay, 8- and 16-QAM can toler-
ate linewidth-to-bit-rate ratios of 1.8 × 10−5 and 1.4 × 10−6,
respectively, assuming a total penalty of 1.0 dB.

I. INTRODUCTION

MOST DENSE wavelength-division-multiplexing (DWDM)
systems currently employ binary modulation schemes,

such as ON-OFF keying (OOK) or binary differential phase-shift
keying (2-DPSK). Systems employing these binary schemes
cannot achieve spectral efficiencies exceeding 1 bit/s/Hz per
polarization [1]. Recent research has focused on increasing
spectral efficiency by using nonbinary modulation formats,
such as 4-DPSK [2], which encodes 2 bits/symbol, or even
8-DPSK [3], which encodes 3 bits/symbol. Information-
theoretic studies suggest that even when optical nonlinearities
are considered, spectral efficiencies of several bits per symbol
are possible [1], [4].

Fig. 1 shows the spectral efficiencies and signal-to-noise
ratio (SNR) per bit required to achieve a bit error rate (BER)
of 10−9 for various modulation and detection techniques [1].1

It is evident that the SNR requirements for M -DPSK with
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1We shall define the SNR per bit in Sections III-A and IV-B.

Fig. 1. Spectral efficiency versus SNR per bit required for a BER of 10−9 for
various transmission schemes. One polarization is assumed (taken from [1]).

differentially coherent detection increase substantially as M
increases to 4, 8, and 16, corresponding to spectral efficien-
cies of 2, 3, and 4 bits/symbol. At such high spectral effi-
ciencies, substantially lower SNR requirements are obtained
using 4-PSK, 8-quadrature amplitude modulation (QAM), and
16-QAM with coherent detection.2

A major challenge in coherent detection lies in carrier syn-
chronization between the local oscillator (LO) and the trans-
mitter at optical frequencies. Phase noise is an inherent property
of lasers, and can also arise from nonlinear processes [5] such
as self- and cross-phase modulation and four-wave mixing.
Phase noise increases the tracking errors in a coherent receiver’s
phase-locked loop (PLL). When the phase noise is large, it can
dominate over additive white Gaussian noise (AWGN) arising
from LO shot noise and inline amplifier noise, becoming the
principal source of system degradation. The PLL tracking error
depends on: 1) the statistics of laser phase noise, 2) the symbol
rate, 3) the type of PLL employed, and 4) the delay in the PLL
feedback path. To ensure that PLL phase error does not impose
an excessive receiver-sensitivity penalty, we need to mathemat-
ically characterize the combined effects of phase noise and
AWGN on PLL tracking performance. Carrier synchroniza-
tion has been studied thoroughly for 4-PSK [6], [7]. In this

2Throughout this paper, “coherent detection” denotes synchronous detection
by a phase-locked LO, and should be distinguished from noncoherent detection
(e.g., of OOK) and differentially coherent detection (e.g., of DPSK) [1].
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paper, we study carrier synchronization for 8- and 16-QAM.
We focus on the effect of laser phase noise, neglecting nonlinear
phase noise. We assume perfect matching between the signal
and LO states of polarization.

This paper is organized as follows. In Section II, we re-
view various signaling schemes that are suitable candidates for
8- and 16-ary optical transmission. We examine the relative
merits of these schemes and determine which constellations
are most attractive at moderate phase errors. We propose trans-
mitter implementations using Mach–Zehnder (MZ) modula-
tors. In Section III, we compute the BER performance for
the chosen 8- and 16-ary constellations at different phase-
error standard deviations. We also determine the maximum
phase errors that these constellations can tolerate for different
power penalties at various target BERs. In Section IV, we
analyze carrier synchronization in the presence of phase noise,
AWGN, and PLL propagation delay, determining the maxi-
mum tolerable laser linewidths and PLL propagation delays.
Our methods for computing BER and analyzing PLL tracking
error are sufficiently general that they can be applied to any
signaling scheme employing amplitude and phase modulation
in two-dimensional (2-D) signal space.

II. SYSTEM CONSIDERATIONS

A. Various 8- and 16-Point Constellations

Fig. 2 shows some well-known 8- and 16-point constellations
that have been employed in nonoptical systems, and which are
suitable candidates for consideration here. Owing to differences
in their packing densities and the different angular separation
between their signal points, these constellations perform dif-
ferently with respect to AWGN and phase noise [8]. Also,
implementation of transmitters and receivers is less complex
for some constellations than for others.

We first consider the 16-point constellations shown in
Figs. 2(d)–(f). The most common 16-point constellation is
16-QAM [Fig. 2(d)], in which points are arrayed on a 4 × 4
square grid. A major attraction of 16-QAM is its relatively low
implementation complexity. A 16-QAM transmitter requires
the fewest MZ modulators among the 16-point schemes con-
sidered here.3 The in-phase (I) and quadrature (Q) components
are separable, so a receiver for 16-QAM can make decisions
on I and Q independently. Performance advantages are also
offered by 16-QAM. It has the highest packing density under an
average power constraint of 16-point constellations considered
here, so it has the best performance with respect to AWGN. Of
the 16-point constellations, 16-QAM is the only one for which
Gray coding between bits and symbols is possible, minimizing
the BER for a given symbol error rate. The main disadvantage
of 16-QAM is that the signal points at the corners of the
constellation are poorly separated in angle, making the scheme
susceptible to phase error. Only when the phase-error standard
deviation is under 1◦ does 16-QAM have the best performance
among the schemes considered here [8]. Other 16-point options

3As explained in Section III-C, we assume that a transmitter uses MZ
modulators that are driven into saturation in order to optimize transmitted signal
quality [9].

Fig. 2. Various constellations having [(a), (b), and (c)] 8 and [(d), (e), and (f)]
16 points.

include the 1–5–10 and 5–11 constellations shown in Fig. 2(e)
and (f), respectively. Their main advantage over 16-QAM is that
the outer signal points are uniformly distributed on concentric
circles, maximizing their angular separation. Hence, the 1–5–10
and 5–11 constellations are attractive options when the phase-
error standard deviation is in the range of 1–1.5◦ [8]. Implemen-
tation of transmitters and receivers is more complex for 1–5–10
and 5–11 than for 16-QAM, and Gray coding is not possible.

Based on the above considerations, we identify the 16-QAM
square constellation shown in Fig. 2(d) as the most attractive
choice, so it is the only 16-point constellation considered in the
remainder of this paper.

We now consider the 8-point constellations shown in
Figs. 2(a)–(c). The constellation shown in Fig. 2(b), with points
arranged on a 2 × 4 grid, has separable I and Q components,
potentially simplifying receiver implementation. It does not
have the highest packing density under an average power con-
straint among 8-point constellations, so it does not offer the
best performance against AWGN. Most importantly, the signal
points furthest from the origin are poorly separated in angle,
leading to poor performance in the presence of phase error. The
constellations shown in Fig. 2(a) and (c) each consist of two
sets of four points uniformly distributed on concentric circles.
Hence, they have identical performance against phase error
in the limit that phase noise dominates over AWGN. Among
the 8-point constellations considered here, the 8-QAM cross
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Fig. 3. ML decision regions for 8-QAM. (a) Optimal in the AWGN-limited
case. (b) Optimal in the phase-noise-limited case.

shown in Fig. 2(a) has the highest packing density, and thus,
the best performance against AWGN. Although this is the only
one of the three 8-point constellations for which Gray coding
is not possible, Gray coding is secondary to packing density
at the high SNRs of interest. A transmitter for this constel-
lation also can be implemented with reasonable complexity,
as shown below.

Based on the above considerations, we identify the 8-QAM
cross constellation shown in Fig. 2(a) as the most attractive
choice, so it is the only 8-point constellation considered in the
remainder of this paper.

B. Detection of 8- and 16-QAM

The optimal detector employs maximum-likelihood (ML)
detection, which minimizes the probability of symbol error. The
decision regions in an ML detector depend on the relative mag-
nitudes of AWGN and phase error. When phase errors are ab-
sent and all signal points in the constellation are equally likely
to be transmitted, an ML detector makes decisions in favor of
the symbol located at the smallest Euclidean distance from the
received signal. When a phase error is present however, the ML
decision regions are determined by a non-Euclidean metric [8].
An example of this is illustrated in Fig. 3, where the optimal
decision regions for AWGN-limited and phase-noise-limited
cases are shown for 8-QAM. In a more general situation where
neither AWGN nor phase error completely dominates, the ML
decision regions are more complicated.

Practical considerations need to be taken into account when
implementing a decision device, particularly at high symbol
rates. Arbitrary decision regions can be implemented by dig-
itizing I and Q components and using a digital lookup table.
As analog-to-digital converters at rates of 10 GHz and above
become increasingly practical, this approach will be the most
flexible and will likely lead to the best performance.

Other means exist to implement decision devices. For
16-QAM in the AWGN-limited case, one can achieve rec-
tangular decision regions by splitting the signal into I and
Q components and applying three decision thresholds to each
component. However, these rectangular decision regions are
not optimal in the presence of significant phase error. For
8-QAM in the AWGN-limited case, the decision regions shown
in Fig. 3(a) can be implemented by forming various linear
combinations of I and Q components and applying decision
thresholds to them. For 8-QAM in the phase-noise-limited case,

Fig. 4. MZ modulator output for a noisy drive signal.

the decision regions shown in Fig. 3(b) can be implemented by
using an envelope detector and threshold to determine whether
the signal lies in the inner or outer circle; and by comparing I
and Q components, and their sum and difference, to determine
the quadrant in which the received signal lies.

In this paper, we analyze the performance of 8- and 16-QAM
under the assumption of optimal ML decisions for any particu-
lar combination of AWGN and phase noise that may be present.
Although a practical receiver may need to implement some
approximation of the ML decision regions, this assumption is
necessary for mathematical tractability.

C. Transmitters for 8- and 16-QAM

Using MZ modulators and couplers arranged in various
structures, 8- and 16-QAM may be generated. An MZ modu-
lator has a transfer characteristic given by

Eout

Ein
=

1
2

[
exp
(
jπ
V1

Vπ

)
+ exp

(
jπ
V2

Vπ

)]
(1)

where Ein and Eout are input and output electric fields, and
Vπ is the device-specific voltage that produces a π phase shift
between the two arms of the MZ modulator. In a dual-drive
modulator, V1 and V2 are two independent drive voltages, while
in a single-drive modulator, the drive voltage is V = V1 = −V2.
Ho showed that an arbitrary QAM signal set may be generated
with just one dual-drive MZ modulator [9]. Although the hard-
ware savings in this implementation appear attractive, the set of
drive signals become arbitrarily large as the number of signal
points increases. Furthermore, the nonlinear characteristic of
the MZ modulator causes drive signal noise4 to have an unequal
effect on different signal levels. Consider M -pulse amplitude
modulation (PAM) generated with a single-drive modulator.
The output intensity versus drive voltage is shown in Fig. 4.
Noise causes the outer eye rails to have smaller deviations
than the inner rails owing to the MZ-modulator characteristic
saturating at its maxima and minima. In order to minimize this
effect, it is desirable to use drive signals that change by integer
multiples of Vπ between successive symbols periods.

4Although we refer to this as “noise” for brevity, it typically arises from
signal distortion in practice.
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Fig. 5. Possible transmitter configurations for (a) 8-QAM and (b) 16-QAM.

We observe that 8- and 16-QAM may be decomposed into
simpler quaternary phase-shift keying (QPSK) constellations.
We can construct 8-QAM as a superposition of two QPSK
constellations having different powers; the points in the outer
QPSK circle are rotated 45◦ from those in the inner QPSK
circle. This scheme may be implemented using the structure
shown in Fig. 5(a). In each symbol period, a block of three
signal bits control the transmitter. The least significant bits drive
identical QPSK modulators in the lower and upper branches.
The most significant bit drives complementary MZ modulators
biased for binary OOK transmission. In either polarity of the
most significant bit, one of the OOK transmitters is turned
ON and the other is turned OFF. The outputs of the OOK
transmitters are combined in a coupler having a splitting ratio
of 78.9%/21.1% to produce QPSK rings with an average power
ratio of (1 +

√
3)2 : (

√
2)2.

We can decompose 16-QAM similarly into a Cartesian prod-
uct of two QPSK constellations, as shown in Fig. 6. The struc-
ture that implements this is shown in Fig. 5(b). The two most
significant bits control the QPSK modulator in the upper branch
while the least significant bits control the QPSK modulator in
the lower branch. The outputs are combined with a coupler
having a splitting ratio of 80%/20%.

The transmitters shown in both Fig. 5(a) and (b) require
QPSK modulators. Each QPSK modulator may be realized with
either one dual-drive MZ modulator, or two MZ modulators
that are single or dual drive. The latter configuration requires
an extra modulator, but the I and Q eye patterns do not exhibit
overshoot between successive symbols [9].

III. BER PERFORMANCE OF 8- AND 16-QAM

The effect of phase error is usually evaluated in terms of a
power penalty, which is defined as the additional SNR required
at the receiver to achieve the same target BER as that required
in the absence of phase error. In this section, we compute
the BER performance of 8- and 16-QAM for different phase-
noise standard deviations. We assume that AWGN and laser
phase noise are the only sources of impairment. We assume
that intersymbol interference and nonlinear phase noise are
negligible. The latter requirement can be satisfied by using
sufficiently low transmit power [5]. This enables us to model

phase error using well-known statistical distributions for PLL
tracking error.

A. Computing the Conditional Probability for the
Received Signal

Let sj be a vector in 2-D space representing the transmitted
signal. sj can be from an arbitrary constellation. When the
signal at the detector of the receiver has phase error θ, its mean
position is rotated from sj , as shown in Fig. 7. AWGN adds a
random noise vector n to the rotated signal to produce a vector
z of the form

z = R(θ)sj + n. (2)

R(θ) is a 2 × 2 rotation matrix given by R(θ) =(
cos θ − sin θ
sin θ cos θ

)
. Let the probability density function (pdf)

of phase error be p(θ), where θ can take on values between −π
and π. The probability that z is received given symbol sj was
sent is

p(z|sj) =

π∫
−π

p(z|sj , θ) · p(θ)dθ. (3)

Since phase error and AWGN are the only channel impair-
ments, if we assume the noise in I and Q are independent,
the conditional probability p(z|sj , θ) is a circular Gaussian
distribution, whose variance is N0 in each dimension:

p(z|sj , θ) =
1

2πN0
exp

{
−‖z − R(θ)sj‖2

2N0

}
. (4)

The SNR per symbol is

SNR =
E
[|sk|2]
2N0

. (5)

To compare the average-power-limited performance of systems
with different spectral efficiencies, the SNR per bit is a more
useful parameter [1]. The SNR per bit is given by SNRbit =
(1/ log2M)SNR for a constellation with M signal points en-
coding log2(M) bits per symbol.

In order to compute p(z|sj) using (3), we need to find
a suitable pdf for p(θ). If the receiver employs a first-order
PLL whose input is a sine wave corrupted by Gaussian noise,
the slowly varying component of phase error has a Tikhonov
distribution, whose pdf is [8]

p(θ) =
1
2π

eα cos θ

I0(α)
. (6)

I0(α) is the modified Bessel function of the zeroth order.
The parameter α is the carrier-to-noise ratio (CNR) at the
PLL input. Although this distribution is derived for a first-
order PLL, it is a good approximation of the phase error in
a second-order PLL [10], which is the type we analyze in
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Fig. 6. Decomposed of 16-QAM into the Cartesian product of two QPSK systems can be done.

Fig. 7. Effect of phase error and AWGN on the received signal.

Section IV. Substituting (4) and (6) into (3), the conditional
probability p(z|sj) is [8]

p(z|sj) =
1

2πN0

I0

(
βj

N0

)
I0(α)

· exp
{
− 1

2N0

[‖z − sj‖2 + 2〈z, sj〉
]}

(7)

where

βj =
√

‖z‖2‖sj‖2 + 2αN0〈z, sj〉 + (αN0)2. (8)

Equation (7) can be simplified using the following approxi-
mation for I0(x) at large x:

I0(x) ≈ 0.4
ex√
x
. (9)

A plot of the ratio between the left- and right-hand sides of
(9) is shown in Fig. 8. We observe that this approximation is
accurate to within 5% for x > 3. In all practical systems, α will
be much greater than 3 (4.8 dB). We can therefore evaluate (7)
as follows:

1) If βj/N0 > 3

p(z|sj) =
1

2πN0

√
αN0

βj

· exp
{
− 1

2N0

[‖z − sj‖2 + 2〈z, sj〉 + 2αN0 − 2βj
]}
.

(10)

Fig. 8. Approximation to the Bessel function I0(x).

2) Else

p(z|sj) =
1

2πN0

√
α

0.4
· I0
(
βj
N0

)

· exp
{
− 1

2N0

[‖z − sj‖2 + 2〈z, sj〉 + 2αN0

]}
. (11)

B. Computing the Probability of Symbol Error

As discussed in Section II-B, the probability of symbol error
depends on the decision regions employed by the receiver. In
this paper, we assume ML decision regions, even though a
practical receiver may have to implement some approximation
to them. When the system is operating at low probability of
error, the penalty associated with using suboptimal decision
regions should be small.

It is generally not possible to obtain analytical formulas for
the probability of symbol error when phase error and AWGN
are present simultaneously. In these circumstances, numerical
methods are used to compute system performance. We use a
procedure developed by Foschini et al. [8] in which the 2-D
space of the received signal is sampled at N ×N points {zi =
(xi, yi) : i = 1, 2, . . . , N2} distributed evenly in a rectangular
region (x, y) : −γA ≤ x ≤ γA, −γA ≤ y ≤ γA, as shown in
Fig. 9. This method is not specific to the constellations we
are considering in this paper. It may be used to compute the
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Fig. 9. Discretizing the received signal space to allow numerical calculation
of the probability of symbol error.

BER of any general 2-D signaling scheme employing amplitude
and/or phase modulation. γ is chosen to be sufficiently large to
encompass all regions where the conditional probability (7) is
significant. The larger the value of N , the more accurately we
can evaluate the probability of symbol error.

The probability of the detector correctly decoding a symbol
can be approximated by a discrete sum:

P (correct) =

∞∫
−∞

∞∫
−∞

P (correct|z) · p(z)dz

∼=
N2∑
i=1

P (correct|zi) · p(zi)∆x∆y (12)

where ∆x and ∆y are the horizontal and vertical separations
between neighboring samples of zi. In Fig. 9, we observe that

∆x = ∆y =
2γA
N − 1

. (13)

In ML detection, we declare symbol sk was transmitted if

p(zi|sk) = max
j

{p(zi|sj)} . (14)

The probability of a correct decision is then equal to

P (correct|zi) = p(sk|zi). (15)

Using Baye’s rule on the right-hand side of (15), we have

p(sk|zi) =
p(zi|sk) · p(sk)

p(zi)
. (16)

Assuming all constellation points are equally likely to be
transmitted, p(sk) = 1/M , we may substitute (16) into (15)
to compute the conditional probability of making a correct
decision

P (correct|zi) · p(zi) =
1
M
p(zi|sk). (17)

Thus, according to (12), we have

P (correct) ∼= 1
M

∆x∆y
N2∑
i=1

p(zi|sk)

=
1
M

∆x∆y
N2∑
i=1

max
j

{p(zi|sj)} . (18)

There are N2 ×M conditional probabilities p(zi|sj) that
need to be evaluated to compute (18). We can write a matrix
equation for p(zi|sj) as follows:



p(z1)

...
p(zN2)


 =



p(z1|s1) · · · p(z1|sM )

...
. . .

...
p(zN2 |s1) · · · p(zN2 |sM )


 ·



p(s1)

...
p(sM )


 .

(19)

The probability of making a correct decision on the received
signal is the sum of the largest elements in each row of the
matrix p(z|s). The larger we make N , the more accurately we
can compute (18). In practice, we evaluate the probability of
symbol error for different values of N to see at what point
P (error) = 1 − P (correct) changes negligibly with an increase
in N . When stable results are obtained, the computation termi-
nates and the results are declared accurate.

C. Computing the Probability of Bit Error

Computation of the BER requires knowledge of the relation-
ship between symbol errors and bit errors. When a receiver is
operating at a low probability of error (symbol or bit), it is
assumed that symbol errors are made in favor of the nearest
neighbor(s) of the transmitted signal [11]. A constellation that
has a Gray code mapping has the benefit that a symbol error
results in only a single bit error. If the constellation encodes b
bits per symbol, the probability of bit error is approximately
1/b times the probability of symbol error.

The computation of BER in the presence of phase error
is complicated by the fact that ML detection uses a non-
Euclidean metric for computing the conditional probability, as
shown in (7). This changes the “distance” relationship between
signal points as well as the number of nearest neighbors that
each signal point possesses in the constellation. If we assume
phase error to be small, such that AWGN is the dominant
source of signal corruption, the distance metric will be roughly
Euclidean. This allows us to find the nearest neighbors for each
signal point using a Euclidean distance metric as is usually
done when phase errors are absent. For 16-QAM, Gray code
mapping leads to

P 16−QAM
b =

1
4
P 16−QAM

s (20)

where Pb and Ps refer to BER and symbol error ratio,
respectively.

For 8-QAM, a Gray code mapping does not exist because
the signal points in the inner circle have four nearest neighbors.
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Fig. 10. Optimal bit-to-symbol mapping for 8-QAM.

These are shown by dashed lines in Fig. 10, where we have also
labeled the symbols by an optimal bit-to-symbol mapping. We
observe that the outer points have two nearest neighbors each,
so when one of these points is transmitted and a symbol error
is made, there is 50% chance of making one bit error and 50%
chance of making two bit errors. Likewise, when an inner point
is transmitted, a symbol error has 75% chance of making one bit
error and 25% chance of making two bit errors. The probability
of bit error for 8-QAM is then

P 8−QAM
b =

1
3

[
1
2

(
1
2
× 1 +

1
2
× 2
)

+
1
2

(
3
4
× 1 +

1
4
× 2
)]

· P 8−QAM
s

=
1.375

3
P 8−QAM

s . (21)

Equations (20) and (21) are accurate when the effect of phase
errors is small compared to AWGN and when the system is
already operating at a low probability of error.

D. Results

We used the numerical integration technique in (18) to
compute the probability of symbol error. Assuming that the
probability of error is low and that the effects of phase errors
are small compared to AWGN,5 we invoked (20) and (21)
to compute the probability of bit error. The BER results for
8- and 16-QAM are shown in Fig. 11(a) and (b) versus SNR
per bit at the detector for various values of phase-error standard
deviations. The analytical solution for the BER of 16-QAM in
the absence of phase errors

P 16−QAM
b =

3
8
erfc

(√
2SNRbit

5

)
(22)

is also shown in Fig. 11(b). We observe that the analytical
curve lies on top of our numerical result for σε = 0◦. Table I

5These conditions are required for the assumed relationship between symbol
errors and bit errors to hold in (20) and (21). It can be shown that these
conditions are satisfied inside the domains of Fig. 11 by separately considering
the probability of a symbol error due to either AWGN or phase noise alone.

Fig. 11. BER versus SNR per bit for (a) 8-QAM and (b) 16-QAM.

shows the maximum phase-error standard deviations that
8- and 16-QAM can tolerate for the power penalty to remain
within 0.5 and 1.0 dB, respectively, at BERs of 10−8, 10−9,
and 10−10.

While 8-QAM can tolerate between 2◦ and 4◦ phase-error
standard deviation without significant loss of receiver sensi-
tivity, 16-QAM can only tolerate 1–2◦. Thus, in going from
3 to 4 bits per symbol, the requirement on the PLL becomes
markedly more stringent. In the absence of phase errors, 8- and
16-QAM require 14.60 and 16.46 dB SNR per bit to achieve a
BER of 10−9.
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TABLE I
POWER PENALTIES FOR (A) 8-QAM AND (B) 16-QAM

Fig. 12. Long-haul system with NA spans of fiber employing inline OAs.

IV. CARRIER SYNCHRONIZATION FOR 8- AND 16-QAM

Now that the maximum allowable phase-error standard de-
viations have been computed for 8- and 16-QAM, we turn our
attention to carrier synchronization. Our goal is to determine
what PLL parameters are required to ensure that the standard
deviation of PLL tracking error is smaller than the values
computed in Table I. Our analysis shall focus on long-haul
transmission where lumped optical amplifiers (OAs) are used
periodically to reamplify the signal attenuated by fiber losses.
A model long-haul system is shown in Fig. 12. Each of the NA
spans is of length L. The output power at the end of each span
is 1/G times the input power. We insert an OA with gain G at
the output of each span to compensate for transmission losses.
The receiver consists of a preamplifier followed by the detection
circuit that includes the PLL. The system’s SNR is established
at the output of the preamplifier. The SNR per symbol is the
signal power divided by the LO-spontaneous noise occupying
the band of the signal. In a long-haul system, LO-spontaneous
beat noise is the dominant source of AWGN at the receiver if
the LO laser is operated at sufficiently high power.

A. PLL Models and Analysis

Either heterodyne or homodyne detection may be used to
coherently detect 8- and 16-QAM. Canonical receiver struc-
tures are shown in Fig. 13. The sensitivities of the heterodyne
and homodyne receivers are identical when LO shot noise
dominates [7]. In the LO-spontaneous beat-noise-limited case,
a heterodyne receiver can achieve the same performance as
a homodyne receiver, provided the heterodyne receiver em-
ploys image rejection or narrowband optical filtering to reject
the spontaneous emission noise in the image band [12]. For
concreteness, we analyze a heterodyne receiver that uses nar-
rowband optical filtering of spontaneous emission. We note
that a homodyne or heterodyne receiver can employ either an

optical PLL or an electrical PLL [7] for carrier synchronization.
Our analysis is valid whether an optical or electrical PLL is
used. It is also possible to implement the PLL digitally by
means of digital signal processing [13], [14]. Such an all-digital
implementation is mathematically equivalent to the analog im-
plementation analyzed here, provided that matched filtering is
used and that the sampling rate (equal to the symbol rate) is
much greater than the PLL natural frequency. Since the latter
condition is easily satisfied, our analysis is applicable to all-
digital PLLs. We assume perfect matching between the signal
and LO states of polarization.

In a laser that has a Lorentzian lineshape, whose full-
width at half-maximum (FWHM) linewidth is ∆ν, the instan-
taneous frequency is a white Gaussian random process. The
phase noise ϕ(t) is a Wiener process, whose power spectral
density (PSD) is

Sϕϕ(ω) =
∆ν
ω2

rad2/Hz. (23)

The analysis in this section is an extension of [7], which treated
carrier synchronization for QPSK.

Consider the signals at the inputs of the 180◦ hybrid of the
heterodyne receiver, as shown in Fig. 14. The fields of the
received signal and LO laser are

Ein(t) =T ·
∑
k

√
Pkb(t− kT )

· ej(ωct+θk+ϕin(t)) + Esp(t) (24)

ELO(t) =
√
PLO · ej(ωLOt+ψ(t)+ϕLO(t)). (25)

In (24) and (25), we have the following.

1) sk =
√
Pkejθk is a complex number denoting the kth

transmitted symbol. The real and imaginary parts of sk
are its I and Q components. In this section, we use an
amplitude-phase notation for the received symbols, as
opposed to Section III where we used a vector notation
sk. Since the inline OAs in the system are assumed to
have completely compensated for fiber attenuation, Pk is
equal to the transmitted power of the kth symbol.

2) b(t) is the pulse shape. In this paper, we assume rectangu-
lar pulse shaping [nonreturn to zero (NRZ)], so b(t) takes
the form

b(t) =
{

1
T , t ∈ (0, T ]
0, t �∈ (0, T ]

(26)

where T is the symbol period. It should be noted that our
analytical results to follow are also valid for any general
pulse shape (including RZ), provided that the low-pass
filters (LPFs) in Fig. 13 are matched to b(t).

3) ELO =
√
PLOejψ(t) is a phasor representing the ampli-

tude and phase of the LO.
4) Esp(t) is a phasor representing spontaneous emission.
5) ϕin(t) and ϕLO(t) are the phase noises of the source and

LO lasers.
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Fig. 13. Coherent detection using a (a) homodyne receiver and (b) heterodyne receiver.

Fig. 14. 180◦ hybrid of the heterodyne receiver.

6) ωc and ωLO are the frequencies of the signal and the LO.
In a heterodyne system, their algebraic difference ωc −
ωLO is the intermediate frequency (IF) ωIF.

7) Let the responsivity of each photodiode in Fig. 14 be R.
It can be shown that the balanced photodetector produces
an output I(t) of the form

I(t) = 2R
∑
k

T
√
PkPLOb(t− kT )

· sin (ωIFt+ θk + ϕ(t) − ψ(t)) − 2R
√
PLO

· Im
{
ejφLO(t)E∗

sp(t)
}

+ nsh(t) (27)

where the two phase noises have been combined into a sin-
gle variable ϕ(t) = ϕin(t) − ϕLO(t). We have thus attributed
phase noise entirely to the signal laser; the LO laser is assumed
to be phase-noise free. The spectrum of ejϕ(t) is Lorentzian,
whose linewidth ∆ν is equal to the sum of the linewidths of
the transmitter and LO lasers, which we refer to as the beat
linewidth. The first term of (27) is the desired signal modulated
by the IF frequency; the second term is LO-spontaneous beat
noise; and the third term nsh(t) = nsh,1(t) − nsh,2(t) is shot
noise produced by the two photodiodes. The power of the
desired signal is

Psig = 2R2GPrPLO. (28)

The one-sided PSDs of the noise terms are

SLO−spont(f) = 2R2PLOSsp(f) (29)

Sshot(f) = 2qRPLO (30)

where Ssp(f) is the spontaneous noise PSD given by [15]

Ssp(f) = NAnsp(G− 1)hν. (31)

nsp is the spontaneous emission factor and hν is the photon en-
ergy. The signal power in (28) divided by the LO-spontaneous
noise power in the same band as the one passing through a filter
matched to the signal gives the SNR per symbol at the detector.

Let n(t) = 2R
√
PLOIm{e−jφLO(t)Esp(t)} + nsh(t) be the

total noise in the system. Its PSD Snn(f) is the sum of (29)
and (30). In the limit that one noise source dominates, as in a
long-haul system (considered by this paper) or a back-to-back
measurement, we may ignore one of the terms.

A suitable PLL that can be used to recover the phase of
the signal is shown in Fig. 15. The photocurrent I(t) is mixed
with the I and Q phases of an IF electrical LO. I and Q mixer
outputs are passed through baseband matched filters B(s). The
functions performed by F and G depend on the type of loop
implemented, and are discussed in more detail below. The
outputs of the F and G elements in the I and Q branches are
cross multiplied and subtracted, and fed to a loop filter F (s),
which is proportional plus integral in a second-order PLL. The
loop filter output is used to control the IF phase. In an optical
PLL, the IF phase is controlled by frequency modulation of the
LO laser, while in an electrical PLL, the IF phase is controlled
by frequency modulation of the IF electrical LO.
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Fig. 15. Fig. 15. Decision-directed loop. (a) Implementation. (b) Complex model.

TABLE II
TRANSFER CHARACTERISTICS F AND G

In Table II, we show the functional forms of F and G in a
digital (discrete-time) decision-directed loop and in an analog
decision-directed loop. Either loop may be used to phase lock
8- and 16-QAM. Compared to carrier synchronization for
QPSK [7], fewer loop options are available: The Costas loop
cannot be used because the I and Q components have more than
two levels; similarly, the fourth-power loop cannot be used be-
cause the constellations have more than four phases. Although
an eighth-power loop is theoretically possible for phase-locking
8-QAM, the bandwidth requirement on its components makes it
prohibitive to implement. As the analog decision-directed loop
is an approximation of the digital decision-directed loop [7],
we shall analyze the latter only. At low BERs, the performance
of the analog decision-directed loop will approach that of the
digital decision-directed loop.

We can simplify our analysis by writing a mathematically
equivalent complex model of the PLL. This is shown in
Fig. 15(b). The functions F and G in this model operate on
complex-valued inputs, performing independent actions on the
real and imaginary components:

F{u+ jv} = F{u} + jF{v}. (32)

The choices for F and G are now apparent in this model, as
illustrated in Fig. 16. Let sk be the signal that appears at the
output of the matched filter at the kth sampling instant. When
phase error is the only signal corruption, and its value is small,

Fig. 16. Received signal and the decision.

the decision device correctly recovers the transmitted signal.
The product of the sample-and-hold output and the complex
conjugate of the decision [sk] gives

sk · [sk]∗ ≈ |sk|2ejεk . (33)

If the value of the phase error εk is small, its value can be
estimated by computing

Im
[
sk

|sk|2 · [sk]∗
]

= sin εk ≈ εk. (34)

Using the photocurrent I(t) computed in (27), the signal s′(t)
that appears at the matched filter output in Fig. 15(b) is

s′(t) = b(t) ⊗
{
R
∑
k

T
√
PkPLOb(t− kT )

·ej(θk+ϕ(t)−ψ(t)) + n(t)

}
(35)
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where n(t) = jn(t)e−jωIFt has the same PSD as Snn(f) given
by (29) or (30). Since b(t) is a rectangular function, the signal
s′(t) sampled at t = kT has a value

s′(kT ) = R
√
Pk−1PLO · ejθk−1

·


 1
T

kT∫
(k−1)T

ejε(t
′)dt′


+

1
T

kT∫
(k−1)T

n(t′)dt′. (36)

In general, the phase error ε(t) = ϕ(t) − ψ(t) changes very
little over a symbol period.6 We can make the approximation
that ε(t) ≈ εk−1 for the entire duration (k − 1)T < t ≤ kT .
Defining a new variable

nk =
1
T

(k+1)T∫
kT

n(t′)dt′ (37)

we have the following after dividing (36) by R
√
PLO:

s(kT ) = ejεk−1 · sk−1 +
1

R
√
PLO

nk−1. (38)

The first term of (38) is the receiver’s estimate of the transmitted
symbol corrupted by phase error. The second term is corruption
by AWGN. We observe that (38) is the same form as (2), which
we assumed in deriving the results in Section III. If the phase
error and AWGN are small, the decision device always makes
a correct decision

F [s(kT )] = sk−1 =
√
Pk−1ejθk−1

for kT < t ≤ (k + 1)T. (39)

The output of the sample-and-hold device is

G [s(kT )] = s(kT ), for kT < t ≤ (k + 1)T (40)

and the product of (40) and the complex conjugate of (39)
gives

F [s(kT )]G [s(kT )]∗ = ejεk−1Pk−1 +
√
Pk−1

R
√
PLO

nk−1e−jθk−1

for kT < t ≤ (k + 1)T. (41)

Dividing (41) by the signal power Pk−1 and taking its imag-
inary component yields the receiver’s estimate of the phase
error e(t):

e(t) = sin(εk−1) +
1

R
√
PLOPk−1

Im
{
e−jθk−1 · nk−1

}
≈ εk−1 + w(t− T ), for kT < t ≤ (k + 1)T (42)

6The fast component of the tracking error ε(t) is due to phase noise. Lasers
suitable for coherent detection have linewidths of the order of tens of kilohertz,
while the symbol rate is of the order of tens of gigahertz.

TABLE III
CONSTELLATION PENALTIES FOR VARIOUS WELL-KNOWN

SIGNALING SCHEMES

where

w(t) =
1

R
√
PLOPk

Im
{
e−jθk · nk

}
for kT < t ≤ (k + 1)T. (43)

w(t) is the effect of AWGN on our estimate of the true phase
error, which is linear in the phase error of the first order.

The key difference between the result (43) and the one in [7]
is that (43) is valid for an arbitrary signaling format employ-
ing amplitude and/or phase modulation. If constant-envelope
modulation is used, our result reduces to [7]. The statistics
of w(t) over the duration kT < t ≤ (k + 1)T depend on the
power of the kth transmitted symbol. Provided the transmitted
symbols are a stationary process, it can be shown that w(t) is
stationary and is well approximated by a white-noise process
with spectrum given by (see Appendix)

SWW (ω) =
ηTb

nb
(44)

where Tb = T/ log2(M) is the bit period and nb = PrTb/hν
is the mean number of photons per bit incident on the receiver
shown in Fig. 12. The minimum value of nb that achieves sat-
isfactory performance is the receiver sensitivity. η depends on
which source of AWGN is dominant. For an LO-spontaneous
beat-noise-limited system, we have

η =
NAnsp

2

(
G− 1
G

)
· E[Pk]E

[
1
Pk

]
(45)

where E[Pk] is the mean transmitted power, and E[1/Pk] is the
mean inverse of the transmitted power. These expectations are
taken over the signal points in the signal constellation. We can
define the product of these quantities as

ηc = E[Pk]E
[

1
Pk

]
. (46)

ηc is a unitless “constellation penalty,” whose value depends
only on the arrangement of signal points in the constellation.
Table III shows the value of ηc for some commonly used
constellations including 8- and 16-QAM. All constant-envelope
(PSK) schemes have unit constellation penalty.

The key utility of our complex-model analysis is that it
reduces the receiver’s phase-error estimate to a linear sum of
the actual phase error and w(t). We can now analyze the PLL
using the linear model shown in Fig. 17. In this model, the
input signal ϕ̇(t) represents frequency noise. For a laser with
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Fig. 17. Linearized model of PLL.

a Lorentzian lineshape, ϕ̇(t) is a white Gaussian process. Its
integral represents phase noise, whose PSD is given by (23).
Phase error is the difference between phase noise ϕ(t), which
we have attributed entirely to the signal laser, and the control
phase ψ(t) of the LO. The feedback path of the PLL includes
a loop filter F (s) and a delay element that lumps together
all delays in the PLL arising from signal propagation and
component group delays. The delay time is given by τ . For a
loop filter of the form

F (s) = 2ζωn +
ω2

n

s
(47)

the PLL has a second-order transfer function, whose natural
frequency and damping factor are given by ωn and ζ, respec-
tively. Grant et al. [16] showed that the variance of phase error
is given by

σ2
ε =

π∆ν
2ζωn

ΓPN(ωnτ) +
(1 + 4ζ2)ωn

4ζ
ηTb

nb
ΓAWGN(ωnτ)

(48)
where

ΓPN(ωnτ) =
2ζωn

π
·

∞∫
−∞

∣∣jω + e−jωτF (ω)
∣∣−2

dω (49)

ΓAWGN(ωnτ) =
2ζ

π(1 + 4ζ2)ωn

·
∞∫

−∞

∣∣∣∣ F (ω)
jω + e−jωτF (ω)

∣∣∣∣
2

dω. (50)

The subscripts PN and AWGN denote that these terms are
contributions by phase noise and AWGN, respectively. We
observe that they add independently and linearly. ∆ν is the beat
linewidth between the signal and LO lasers and η can be com-
puted using (45). Equations (48)–(50) allow a system designer
to calculate the phase-error standard deviation for any coherent
system. The value of σε computed should be compared with
Table I to determine whether the system achieves satisfactory
performance.

B. Example

In Section III-D, the values of SNR per bit required to
achieve a BER of 10−9 for 8- and 16-QAM were computed

to be 14.60 and 16.46 dB, respectively. Since matched fil-
tering is used by the receiver, the LO-spontaneous beat-noise
variance is

σ2
LO−spont =

∞∫
−∞

SLO−spont(f) |B(f)|2 df

=
2R2PLOSsp(f)

T
. (51)

Noting that (28) divided by (51) gives the SNR per symbol at
the detector, the SNR per bit is

SNRbit =
1

log2M

GPrT

(G− 1)NAnsphν

=
(

G

G− 1

)
nb

NAnsp
. (52)

Assume a system that has a single OA (NA = 1) with
high gain (G→ ∞), whose spontaneous emission factor
is nsp = 1. We have SNRbit ≈ nb. The receiver sensitivi-
ties for 8- and 16-QAM are 28.8 and 44.3 photons per bit,
respectively.

As in [7], we assume our system operates 1-dB away from
the fundamental AWGN limit. Of this 1 dB, we allot 0.5 dB to
system margin and the remaining 0.5 dB to phase-error penalty.
Let the gain of the OA be 20 dB. For the PLL, we assume a
second-order loop with a damping factor ζ = 1/

√
2. This is

a common choice as it balances the requirements of a quick
transient response and a low steady-state variance. We assume
a 10-Gb/s system so the bit period is Tb = 100 ps. We assume
that the transmitter and LO lasers each have linewidths of
15 kHz, so the beat linewidth is ∆ν = 30 kHz.7

Fig. 18 shows the phase-error standard deviation in such
a system, as a function of the PLL’s natural frequency at
various feedback delays. To ensure that the phase-error penalty
remains below 0.5 dB, we note in Table I that σε should be
less than 2.48◦ for 8-QAM and 1.24◦ for 16-QAM. Provided
the loop delay is less than 34.5Tb, 8-QAM is able to sat-
isfy this requirement, corresponding to 3.45 ns. For 16-QAM,
there is no value τ for which the 0.5-dB margin is satisfied.
Consequently, a system implementing 16-QAM must either
tolerate a larger phase penalty or use lasers having smaller
linewidths.

We observe in Fig. 18 that for every value of τ , there exists an
optimal PLL natural frequency that minimizes the phase-error
standard deviation. A plot of the optimal PLL natural frequency
ωn versus delay is shown in Fig. 19. As the delay increases, the
optimal loop frequency decreases like the magnitude response
of a first-order LPF [7].

7This number was chosen based on measured linewidths of microelectro-
mechanical system (MEMS)-based external-cavity tunable lasers [17].
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Fig. 18. Phase-error standard deviation versus PLL natural frequency at
various feedback delays for (a) 8-QAM and (b) 16-QAM.

Finally, in Fig. 20, we plot the maximum allowable laser
linewidth as a function of feedback delay assuming the PLL
always uses an optimized value for its loop natural frequency.
As τ increases, the system is less able to track the instantaneous
phase noise, so the tolerable linewidth is decreased. The rate of
this decrease is also well modeled by the magnitude response
of first-order LPF [7]. When feedback delay is 0, we observe
that for 8- and 16-QAM, the beat linewidths may not exceed
180 and 13.7 kHz, respectively.

V. CONCLUSION

We presented a detailed analysis of the performance of 8- and
16-quadrature amplitude modulation (QAM) in the presence
of phase noise and additive white Gaussian noise (AWGN).
We numerically evaluated bit-error-rate (BER) performance
for each transmission scheme assuming the receiver employs
maximum-likelihood (ML) detection. These results may be
used to determine the maximum phase-error standard devia-
tions that 8- and 16-QAM can tolerate while satisfying power-

Fig. 19. Optimal PLL natural frequency versus feedback delay for (a) 8-QAM
and (b) 16-QAM.

penalty constraints at a given BER. We analyzed two PLLs that
are suitable for phase synchronization of 8- and 16-QAM: the
discrete-time decision-directed loop and the analog decision-
directed loop. We found that the contribution of AWGN to the
phase-error variance is proportional to ηTb/nb, where nb/Tb

is the photon arrival rate at the receiver. We computed η for
LO-spontaneous beat-noise-limited systems and found it was
proportional to the constellation penalty, which is a function of
the arrangement of signal points in the constellation.

Assuming the use of a proportional-plus-integral loop filter,
we computed the maximum tolerable laser linewidth and op-
timal PLL natural frequency as functions of delay in the PLL
feedback path. We found that at a bit rate of 10 Gb/s, lasers
having a beat linewidth ∆ν = 30 kHz can be used for 8-QAM
but not for 16-QAM, even with zero delay.

APPENDIX

In Section IV-A, we found that the PLL’s estimate of the
phase error is corrupted by an AWGN termw(t). It was claimed
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Fig. 20. Maximum tolerable beat linewidth versus feedback delay for 0.5 dB
phase-error penalty: (a) 8-QAM and (b) 16-QAM.

that w(t) is stationary, whose PSD is well approximated by
a white noise spectrum. In this Appendix, we justify these
assumptions and derive the form of the scaling factor η for
both shot-noise-limited and LO-spontaneous beat-noise-limited
systems.

We first consider a signal w′(t) that is related to w(t) by
dropping the Im{·} in (43). Substituting the definition of nk
provided in (37), we have

w′(t) =
e−jθk

RT
√
PLOPk

(k+1)T∫
kT

n(t′)dt′

for kT < t ≤ (k + 1)T. (53)

We assume the transmitted symbols is a stationary process
that is independent of white noise n(t). This is a valid assump-
tion provided the LO power at the receiver is much higher
than the signal power, as it results in n(t) being a zero-mean
Gaussian random process whose variance depends only on the

LO power, as per (29) or (30). w′(t) has an autocorrelation
function

E
[
w′(t)w′∗(t− τ)

]
=

1
R2T 2PLO

· E






(k+1)T∫
kT

(j+1)T∫
jT

n(t′)n(u′)dt′du′


 e−j(θk−θj)√

PkPj




=
1

R2T 2PLO




(k+1)T∫
kT

(j+1)T∫
jT

E [n(t′)n(u′)] dt′du′




· E
[
e−j(θk−θj)√

PkPj

]
(54)

where jT < t− τ ≤ (j + 1)T and kT < t ≤ (k + 1)T .
Since n(t) has a white spectrum, its autocorrelation

function is

E [n(t′)n(u′)] =
Snn
2

δ(t′ − u′) (55)

where Snn is the one-sided PSD of n(t).
The double integral in (54) is 0 if t and t− τ are not

in the same symbol period (j �= k); and is Snn/2 otherwise
(j = k). The probability that two time samples drawn randomly
separated by τ are both in the same symbol period is 1 − |τ |/T .
Hence

E
[
w′(t)w′∗(t− τ)

]
=

Snn
2R2T 2PLO

Pr{j = k} · E
[

1
Pk

]

=
Snn

2R2T 2PLO

(
1 − |τ |

T

)
· E
[

1
Pk

]
(56)

depends only on the time difference τ and not on t. Similarly,
one can show that the process w(t) has zero mean and is
therefore independent of t. w(t) is thus at least wide-sense
stationary. However, w(t) is Gaussian, so it is in fact a strict-
sense-stationary process. Taking the Fourier transform of (56)
yields the PSD of w′(t)

SW ′W ′(ω) =
Snn

2R2T 2PLO
E

[
1
Pk

]
· sin2

(
ωT
2

)
(
ωT
2

)2 . (57)

In practice, the bandwidth of the optimal loopBL,opt is much
smaller than the bandwidth of the signal: BL,optT � 1 [7].
Consequently, SW ′W ′(ω) is well modeled by a white Gaussian
spectrum whose PSD is given by (57), evaluated at ω = 0. Since
the sinc function has value 1 at ω = 0, andw(t) is the imaginary
part of w′(t) and so has half the power, we have

SWW ′(ω) ≈ 1
2
SW ′W ′(0) =

Snn
4R2PLO

· E
[

1
Pk

]
. (58)
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For a shot-noise-limited system, the one-sided PSD Snn is
given by (30)

SSN
WW (ω) =

q

2RPr
· PrE

[
1
Pk

]
. (59)

We note that the received power Pr is equal to the average
power of the detected symbols E[Pk]. We can further define
m = RPrTb/q as the mean number of detected photoelectrons
per bit period. This leads to

SSN
WW (ω) = ηSN

Tb

m
(60)

where ηSN is

ηSN =
1
2
E[Pk]E

[
1
Pk

]
=

1
2
ηc. (61)

For constant-envelop modulation formats such as QPSK,
ηc = 1, so (60) reduces to the result derived in [7].

For an LO-spontaneous beat-noise-limited system, Snn is
given by (29). We have

SLO−spont
WW (ω) =

NAnsp(G− 1)hν
2

· E
[

1
Pk

]

=
NAnsphν

2Pr

(
G− 1
G

)
·GPrE

[
1
Pk

]
. (62)

Owing to preamplification at the receiver, the average power
of the detected symbols is E[Pk] = GPr. Noting that nb =
PrTb/hν is the average number of received photons per bit at
the input of the heterodyne receiver, we have

SLO−spont
WW (ω) = ηLO−spont

Tb

nb
(63)

where the premultiplier in this case is

ηLO−spont =
NAnsp

2

(
G− 1
G

)
· E[Pk]E

[
1
Pk

]

=
ηcNAnsp

2

(
G− 1
G

)
. (64)

We have thus proved (45).
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