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1 Introduction

The Carroll group is one of the contractions of the Lorentz group, obtained by letting the
speed of light c go to zero [1, 2] (“ultrarelativistic limit”). It turns out to emerge in many
interesting physical contexts, ranging from gravity to condensed matter physics (see [3–5]
for earlier applications and [6–14] and references therein for more recent work).
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A manifestly diffeomorphism invariant formulation of a gravitation theory based on
the Carroll group was given in [5]. That gravitation theory could be viewed as the strong
coupling limit [3] or the “zero signature limit” [4] of Einstein theory. In that limit, the
dynamical equations obeyed by the metric involve only its time derivatives, and so, one
can view this ultrarelativistic contraction as the limit of Einstein theory in which time
derivatives dynamically dominate spatial gradients, a phenomenon physically relevant in
the vicinity of a spacelike singularity [15–19].

It was proved in [20] by analysing Maxwell’s equations of motion that electromagnetism
in four spacetime dimensions has two inequivalent Carroll contractions, one “electric” and
the other “magnetic”. This is the Carrollian analog of a similar phenomenon analysed in
the Galilean limit [21, 22]. The Carroll-invariant action principle was constructed in the
electric case. The Carroll transformation rules of the fields were also discussed and their
difference in the two contractions was displayed.

The purpose of this note is to show that the existence of two different Carroll con-
tractions is not peculiar to electromagnetism but that a similar phenomenon exists for all
Lorentz-invariant theories whether or not they enjoy electromagnetic duality. This phe-
nomenon is also present in the (full) Einstein theory of gravity, for which one can consider a
“magnetic” contraction different from that of [3, 4], which turns out to be the “electric” one.

Our method relies on the Hamiltonian formulation of the theories and on the Hamil-
tonian control of spacetime covariance [23–26]. Our approach automatically yields in each
case the relevant Carroll-invariant action principle, but being Hamiltonian, its covariance
is not manifest (one cannot apply spacetime tensor calculus in the standard way). The
problem of writing equivalent manifestly Carroll-covariant action principles for each con-
traction is then solved for p-form gauge fields in flat Carroll spacetime, starting with the
scalar field and the electromagnetic field. A key tool is provided by the geometrical con-
cepts developed in [5]. We find that the manifestly covariant description of the magnetic
contractions is more subtle in that it involves an additional pure gauge field, which can be
gauged away at the price of losing manifest covariance.

Our paper is organized as follows. After a brief survey of the geometrical concepts
adapted to the description of Carroll contractions (section 2) and the underlying sym-
metry groups (section 3), we establish the conditions for a theory to be Carroll-invariant
(section 4). We then take the electric and magnetic Carroll contractions of various Lorentz-
invariant theories, dealing successively with scalar fields, electromagnetism, p-form gauge
fields for general p (section 5) and then higher spin gauge fields (section 6). We find in that
latter case that some of the components of the spin-s fields are more conveniently put, in
taking the limits, on the same footing as the conjugate momenta, i.e., should be regarded
as “p’s”, while their conjugate momenta should be treated as “q”’s. The construction of
a manifestly covariant action principle turns out to be involved especially in the magnetic
case and in order to achieve this task, we focus next on p-form gauge fields, for which we
give the covariant actions for both the electric-type and magnetic-type contractions (sec-
tion 7). We also discuss the transformations of the fields under the Carroll group, which
are associated with different (dual) representations in the electric and magnetic cases. Sec-
tion 8 is devoted to the explicit derivation of the Carroll magnetic limit of the Einstein
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theory within the Hamiltonian formalism. Finally, the last section (section 9) provides
conclusions and prospects.

2 Carroll geometries

2.1 Zero Hamiltonian signature spacetimes — minimal Carroll geometry

Curved Carroll geometries were defined long ago in [5]. They were called there “zero Hamil-
tonian signature spacetimes” because the Hamiltonian signature ε = ±1, 0 is a parameter
that distinguishes in the Hamiltonian formulation of general relativity between Euclidean
signature (ε = 1), Lorentzian signature (ε = −1) and “zero Hamiltonian signature” (ε = 0),
which lie halfway between the Euclidean and Minkowskian cases [4]. This is clear if one
writes the spacetime metric as gαβ = diag(ε, 1, 1, · · · , 1).

A vector space with a Carroll structure in D dimensions involve two ingredients.

1. First, there is a degenerate metric gαβ of rank D − 1 which is positive semi-definite,
i.e. det gαβ = 0, gαβvαvβ ≥ 0, with gαβvαvβ = 0 if and only if the vector vα is along
the null direction (“null vector”).

2. There is also a notion of normalization of the null vectors. This normalization can
be introduced in two different ways.

• One can introduce a non-vanishing density Ω of weight one, as was done in [5].
The “unit” null vector nα is then such that

Gαβ = Ω2nαnβ . (2.1)

Here Gαβ are the minors of gαβ ,

Gαβ = 1
3!ε

αλµνεβρστgλρgµσgντ . (2.2)

(One has clearly Gαβgγβ = 0 since det gαβ = 0 and so the tensor density of
weight two Gαβ is indeed proportional to the product nαnβ where nα is a null
vector. Giving Ω fixes the normalization of nα. Note that the procedure fixes
nα only up to a sign.)

• Equivalently, if there is a time-orientation — as we shall assume from now on,
— one can just give the unit (future-pointing) null vector nα.

The two definitions of a Carroll structure are equivalent. The first one explicitly shows
that the number of fields characterizing a Carroll geometry (gαβ with det gαβ = 0 and
Ω) is equal to the number of fields characterizing a Riemannian geometry (gαβ with non-
vanishing determinant). The density Ω replaces the determinant of gαβ , which is useful for
writing down variational principles.

A Carroll manifold is a manifold equipped with a Carroll structure in the tangent
space at each point, which depends smoothly on the point. In local coordinates, it is
defined by a symmetric tensor gαβ(x) with the above properties and a density Ω(x), which
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are both smooth. These D(D+1)
2 − 1 (components of the degenerate metric of rank D − 1)

+1 (volume element) = D(D+1)
2 field components match exactly in number the components

of the Riemannian metric formulation of general relativity.

2.2 Raising indices and one-form θα

Because the metric is degenerate, it has no inverse, i.e., there is no tensor gαβ such that
gαβgβγ = δαγ .

One can nevertheless raise indices by introducing the extra structure of a one-form θα
such that

θαn
α = 1 (2.3)

(see [5]). One then defines the twice contravariant symmetric tensor Gαβ such that

Gαβgβγ = δαγ − nαθγ . (2.4)

If one imposes in addition the condition

Gαβθαθγ = 0, (2.5)

the tensor Gαβ is completely determined. We shall sometimes write Gαβ(gρσ, nλ, θµ) to
emphasize that Gαβ depends not only on gαβ but also on nα and θα.

One has
gαβG

βγvγ = vα − θα(nγvγ) (2.6)

so that one gets back vα after raising the index with Gαβ and then lowering it with gαβ
only if vα is “transverse”, i.e., vαnα = 0.

It is useful to determine how Gαβ changes if one changes the extra, non-Carrollian
structure given by the one-form θα. A direct computation shows that for a shift of θα,

θα → θ′α = θα + Λα, Λαnα = 0, (2.7)

(Λα finite), the contravariant tensor Gαβ transforms as

Gαβ → G′αβ = Gαβ − nαΛβ − nβΛα + nαnβΛµΛµ, Λα ≡ GαβΛβ . (2.8)

In infinitesimal form (Λα ≡ λα small), this becomes

δθα = λα, δGαβ = −nαλβ − nβλα, λβ = Gβαλα. (2.9)

The one-form θα was actually considered more recently in the interesting work [27]
where it was interpreted as an Ehresmann connection enabling one to split the tangent
space into the direct sum of the one-dimensional null subspace generated by nα and a unique
transverse subspace to this null direction spanned by the vectors vα such that θαvα = 0.

Since the one-form θα comes on top of the basic Carroll structure defined by the de-
generate metric gαβ and the null vector nα, we shall insist that “Carrollian physics” should
not depend on θα, i.e. should be invariant under (2.7) and (2.8). These transformations
should appear as gauge transformations in any purely Carrollian action. Using Gαβ to
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raise indices might be useful in order to use tensor calculus, but one should verify in the
end that the physics does not depend on which Gαβ (i.e., which θα) is chosen.

We also recall that if the covectors vα and wα are both transverse, their scalar product
Gαβvαwα does not depend on the choice of θα and hence, is well defined in a purely
Carrollian structure without need for θα. Similarly, the trace KαβG

αβ is independent of
θα for a transverse tensor Kαβ (Kαβn

α = 0 = Kαβn
β) etc.

Note on affine Carroll structures. In [20], the definition of a Carroll manifold was
taken to involve an additional ingredient, namely, that it should also be equipped with a
symmetric affine connection preserving both the metric and the unit null vector. Since the
existence of such a structure may not exist and is not unique when it exists, this brings
constraints on gαβ [28] (see also [29–31]). For that reason, we shall not include that extra
structure in the definition of a Carroll manifold and we shall stick to the original definition
of [5] involving only the degenerate metric and a normalization of the null vectors.

Actually, the introduction of a metric-preserving, symmetric affine connection was also
found to be unconvenient for some purposes in [6] and the authors of [6, 20] reverted to the
earlier definition of [5] without this extra connection, which turns out to be appropriate
for the generalization to conformal Carroll structures and the link with the BMS group [6].

3 Carroll groups

3.1 Infinite dimensional Carroll group C(D)

Flat Carroll space has constant gαβ and nα. In an appropriate coordinate system (xµ)
(“Carrollian coordinates”), one can assume

(gαβ) =
(

0 0
0 Id×d

)
, (nα) =



1
0
0
...
0


, (3.1)

where D = d+ 1 and Id×d is the unit matrix in d dimensions. One has then Ω = 1.
The group C(D) of isometries of this structure is infinite-dimensional and given by

x′0 = x0 + f(xk), x′k = Rkmx
m + ak, (3.2)

where ak are constants and Rkm ∈ O(d) is an orthogonal transformation in d dimensions.
The function f(xk) is arbitrary.

In infinitesimal form,

δx0 = ξ(xk), δxk = ωkmx
m + ak, ωkm = −ωmk (3.3)

(with ωkm ≡ δktωtm). Note that there would be no condition on δx0 had we only required
invariance of the metric. δx0 could be in that case an arbitrary function of space and time.
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3.2 Finite-dimensional Carroll group C(D)

If one restricts the transformations to be linear, one gets the finite-dimensional (inhomo-
geneous) Carroll group C(D),

x′0 = x0 + a0 + bkx
k, x′k = Rkmx

m + ak, a0, ak, bk ∈ R, Rkm ∈ O(d). (3.4)

The parameters bk parametrize the “Carroll boosts”, while the a0 and ak are spacetime
translations. The restriction to linear transformations is natural in the flat case where
the structure is defined in a vector space. It can be implemented by requesting invariance
of the flat connection Γabc = 0 which preserves both the flat metric and the flat density
(and which manifestly exists in this very special flat case!). The finite dimensional group
C(D) can be obtained by group contraction from the Poincaré group [1]. Its homogeneous
subgroupgroup C(D) ∩GL(D) is obtained by setting a0 = ak = 0.

In infinitesimal form, the Carroll transformations (3.4) read

δx0 = a0 + bkx
k, δxk = ωkmx

m + ak, ωkm = −ωmk, (3.5)

where we kept the same notation a0 and ak for the infinitesimal translations and bk for the
infinitesimal Carroll boosts.

While the flat tensors (3.1) are numerically invariant under Carroll transformations
(by definition of the Carroll group), this is not so for the extra structure θα. One finds
instead that θ0 is invariant

θ′0 = θ0 = 1 (3.6)

(in agreement with nαθα = 1 = nαθ′α), but that the spatial components transform non-
trivially,

θ′m = −bk(R−1)kmθ0 + θk(R−1)km = −bk(R−1)km + θk(R−1)km. (3.7)

Infinitesimally, one gets
δθ0 = 0, δθm = −bm + θkω

k
m. (3.8)

Since θ0 = 1, one can use Carroll transformations to set θk = 0, so that θα reads

(θα) =
(
1 0 · · · 0

)
, (3.9)

but this special form is not preserved in all Carroll frames (defined as frames in which gαβ
and nα take the form (3.1)). In fact, the Carroll subgroup that preserves (3.9) contains
only translations and spatial rotations.

When (3.9) holds, the contravariant tensor Gαβ reduces to

(Gαβ) =
(

0 0
0 Id×d

)
, (3.10)

but in general ((θα) = (1, θa)), it reads

(Gαβ) =
(
δcdθcθd −δbcθc
−δacθc δab

)
, (3.11)
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in agreement with (2.7) and (2.8). It is thus not numerically invariant under Carroll boosts,
for which one can actually verify that

G′αβ ≡ ∂x′α

∂xµ
∂x′β

∂xν
Gλµ = Gαβ(gρσ, nτ , θ′γ ≡ θδ

∂xδ

∂xγ
), (3.12)

as it follows from (3.4), (3.7) and (3.11).

4 Carroll invariance in the Hamiltonian formalism

Except when we deal with gravity, we will consider in this paper Carroll invariant dynamics
of fields φA(x) in flat Carroll spacetime. When these are tensor fields, their transformation
under a linear Carroll transformation,

x′β = Cβαx
α + aβ ,

(
Cβα

)
=
(

1 ba
0 R

)
, (4.1)

is just inherited from their transformation under general coordinate transformations. For
instance, we saw that for a one-form θα,

θ′α(x′) = (C−1)βαθβ(x),⇔ θ′0(x′) = θ0(x), θ′a(x′) = (R−1)ba (−bbθ0 + θb(x)) , (4.2)

which is just the restriction to a linear Carroll transformation of the general coordinate
transformation

θ′α(x′) = ∂x′β

∂xα
θβ(x). (4.3)

For a vector field, one has

V ′α(x′) = CαβV
β(x),⇔ V ′0(x′) = V 0(x) + baV

a(x), V ′a(x′) = RabV
b(x), (4.4)

and the product θαV α is clearly invariant. Under an infinitesimal Carroll transformation
parametrized by the vector field ξµ, the fields φA transform with the Lie derivatives,

δξφ
A = LξφA. (4.5)

A Carroll transformation is generated in the canonical formalism by

a0E + akPk + bkB
k + 1

2ωkmM
km, (4.6)

where the Carroll generators are given by integrals of local densities involving the “en-
ergy density” E(x) and the “momentum density” Pk(x). The spacetime translations are
generated by

E =
∫
ddxE(x), Pk =

∫
ddxPk(x), (4.7)

while the generators of Carroll boosts and spatial rotations read

Bk =
∫
ddxxkE(x), M rs =

∫
ddx(xrδsk − xsδrk)Pk(x) (4.8)

– 7 –



J
H
E
P
1
1
(
2
0
2
1
)
1
8
0

In particular, the dynamical generator E is the generator of time translations (Hamiltonian)
and depends on the action.

A necessary and sufficient condition for the theory to be Carroll invariant is that the
generators fulfil the Carroll algebra

[Pk, Bm] = δmkE, (4.9)
[Pk,M rs] = (δrkδsl − δskδrl)Pl, [Bk,M rs] = −Brδsk +Bsδrk, (4.10)

[Mkm,M rs] = −δkrMms + δmrMks + δksMmr − δmsMkr (4.11)

(other Poisson brackets equal to zero). Indeed, when this is the case, the Hamiltonian
action S[φA, πA] =

∫
dx0(

∫
ddxπAφ̇

A−E) is invariant under the canonical transformations
generated by E,Pk, Bm,M rs and these transformations close in the same way as their gen-
erators, i.e., according to the Carroll algebra. Here πA is the momentum conjugate to φA.

The condition that the generators E,Pk, Bm,M rs should close according to the Carroll
algebra implies constraints on the form of the Poisson brackets of the densities E(x) and
Pk(x) out of which they are constructed, just as in the Lorentz invariant case [23, 24].

In fact, since Pk =
∫
ddxPk(x) is a kinematical generator, the form of which can be

determined without knowing the action, the non trivial conditions for Carroll covariance
are only conditions on E and are fulfilled if (i) E is a scalar under spatial translations and
rotations (kinematical transformations); and (ii)

[E(x), E(x′)] = 0 (4.12)

(to be compared with the Dirac-Schwinger conditions [E(x), E(x′)] ∼ (Pk(x) +
Pk(x′))δ,k(x − x′)). We now establish that these two conditions imply indeed the Car-
roll algebra.

The kinematical momentum density Pk(x) is given by
∫
ddxξkPk =

∫
d3xπALξφA,

so that [φA(x),
∫
ddyξk(y)Pk(y)] = LξφA(x) and [πA(x),

∫
ddyξk(y)Pk(y)] = LξπA(x) for

any spatial vector ξk(x). This implies quite generally [F (x),
∫
ddyξk(y)Pk(y)] = LξF (x)

for any function of the fields. Since
∫
ddyξk(y)Pk(y) is the generator of the spatial Lie

derivatives, the algebra of the kinematical generators Pk and M rs is automatically fulfilled
if we specialize ξk to be a spatial translation or rotation.

Now, if F is a scalar under spatial translations or rotations, one gets

[F (x),
∫
ddy(akPk(y) + ω k

r x
rPk(y)] = (ak + ω k

r x
r)∂kF (x), (4.13)

i.e., [
F (x), akPk + 1

2ωrsM
rs
]

= (ak + ω k
r x

r)∂kF (x). (4.14)

This equation holds in particular for E if it is a scalar, as condition (i) above im-
poses. Integrating then this Poisson bracket over space gives

∫
ddx[E , akPk + 1

2ωrsM
rs] =∫

ddx(ak + ω k
r x

r)∂kE and an integration by part of the right hand side yields the correct
Poisson brackets [E,Pk] and [E,M rs] (which both vanish). Similarly, multiplying E by
xm, integrating over space, using the above Poisson bracket and integrating by parts yields

– 8 –



J
H
E
P
1
1
(
2
0
2
1
)
1
8
0

also the correct Poisson brackets [Bm, Pk] and [Bm,Mrs]. [We assume the energy density
to decay sufficiently fast so that the integrals for the Carroll generators converge and the
surface integrals occurring at infinity in this computation vanish.]

The second condition (ii) implies even more straightforwardly that the Poisson brackets
[E,Bk] and [Bk, Bm] are equal to zero. This shows that the full Carroll algebra is satisfied.

We note that in the case of a gauge invariant theory, a further consistency condition
should be verified, namely, that the Carroll generators should be gauge invariant, i.e.,
have vanishing Poisson brackets with the generators of gauge transformations up to these
generators themselves (which weakly vanish), leaving thereby invariant the corresponding
constraint term in the action (with possibly a transformation of the Lagrange multipliers).
This will be the case if the integrands of the Carroll generators themselves are gauge
invariant, or gauge invariant up to a total derivative (modulo the gauge constraints).

We now describe the two different types of contractions of Lorentz-invariant field the-
ories.

5 Carroll contractions of p-form gauge theories

5.1 Scalar field

We start with the Klein-Gordon field. Since there is no universal speed to convert time
into length in the limit c → 0, we use a time variable t that has dimension of time and
keep track explicitly of the powers of c in the Lorentz-invariant action before taking the
Carrollian limits. The Lorentzian metric reads ds2 = −c2dt2 + ∑

k(dxk)2 (in particular,
ηtt = −c2) and the inverse component ηtt is equal to − 1

c2 . We initially assign a dimension to
the scalar field such that the potential energy density (∂kφ)2 has units of an energy density
(without power of c). This choice is adapted to the magnetic-type Carroll contraction. A
different choice will be made below when we take the electric-type contraction.

The canonical action for a scalar field in Minkowski space is,

S[φ, πφ] =
∫
dt

[∫
ddxπφφ̇−H

]
, φ̇ ≡ ∂tφ, (5.1)

with
H =

∫
ddxE , E = 1

2
[
c2 (πφ)2 + ∂kφ∂

kφ
]
, (5.2)

where the indices are raised with the flat metric.
The magnetic contraction is the straightforward limit c→ 0 in that expression, which

gives

SM [φ, πφ] =
∫
dt

[∫
ddxπφφ̇−HM

]
, (5.3)

HM =
∫
ddxEM , EM = 1

2∂kφ∂
kφ. (5.4)

The limit is direct because one only sets to zero the “visible” c’s, without rescaling the field
φ or its conjugate momentum π.
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Alternatively, by rescaling φ = cφ′, πφ = 1
cπ
′
φ, which preserves the canonical structure,

taking the limit c→ 0 and dropping then the primes, one gets the electric contraction

SE [φ, πφ] =
∫
dt

[∫
ddxπφφ̇−HE

]
, (5.5)

HE =
∫
ddxEE , EE = 1

2 (πφ)2 . (5.6)

[In terms of the old variables EE is equal to 1
2 (cπφ)2; the change of variables absorbs the

factor c2 and “transfers” it to EM , which reads c2

2 ∂kφ∂
kφ in terms of the new variables.]

The terminology “electric contraction” and “magnetic contraction” is used in analogy
with the terminology introduced in [20] for electromagnetism. The field φ has naturally
different units in the electric and magnetic contractions, since it is either φ̇2 or (∂kφ)2 that
has the dimension of an energy density.

Both contractions are Carroll-invariant since the resulting energy density E(xk) obeys
in both cases the Poisson brackets

[E(xk), E(x′k)] = 0, (5.7)

characteristic of Carroll-invariant dynamics. The momentum density Pk generating spatial
Lie derivatives is given by

Pk = πφ∂kφ. (5.8)

Both limits are also compatible with Carroll causality, which requests that information
propagates only along the null curves (neighbouring points do not speak to each other).
Indeed, in the magnetic case, the equations are φ̇ = 0 and π̇φ = 4φ. This implies φ(t, xk) =
φ(0, xk) and πφ(t, xk) = t4φ(0, xk) + πφ(0, xk), which shows that the fields at time t and
space xk depend only on the fields (and a finite number of their spatial derivatives) at time
t = 0 evaluated at the same spatial point xk. In the electric case, the equations of motion
are φ̇ = πφ, π̇φ = 0 and lead to similar conclusions.1

There are thus two ways to produce a Carroll-invariant theory. Either we drop the
spatial gradients of the fields in the energy density and keep only the time derivatives, i.e.
the conjugate momenta (“electric limit”). Or we drop the conjugate momenta and keep
only the spatial gradients (“magnetic limit”). The kinetic term

∫
dt
∫
ddxπφφ̇ in the action

is always kept intact. In both cases the key relation [E(xk), E(x′k)] = 0 is obviously fulfilled
since the resulting energy density ‘depends only on the “p’s” or on the “q’s”. Furthermore,
since both the kinetic energy density and the potential energy density are independently
scalars under spatial translations and rotations, the whole Carroll algebra is fulfilled.

Note that a mass term m2φ2 is acceptable in both contractions provided one rescales
the mass so that this term survives in the limits. This is true even in the electric-type
Carrollian limit because the resulting energy density contains undifferentiated π and φ (it
is “ultralocal”). The mass must be rescaled with different powers of c in the magnetic and
electric limits, in such a way that m2φ2 has the dimensions of an energy density in terms
of the original φ (magnetic contraction) or the new one (electric contraction).

1The wave equation obtained after integrating out πφ in the electric case has been considered in [32].
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5.2 Electromagnetism

We start with the standard Lorentz-invariant Maxwell action in Hamiltonian form, which
reads

S[Ai, πi, At] =
∫
dt

[∫
ddxπaȦa −H

]
, (5.9)

where
H =

∫
ddx(E −At∂aπa), E = 1

2

(
c2πaπa + 1

2F
abFab

)
(5.10)

(Atdt and Aadxa have same dimension, i.e., [At] = [cAa], so that ∂iAt and Ȧa have same
dimension). Here πa is the momentum conjugate to Aa and is (up to the factor c−2 and on
the Maxwell shell) equal to the mixed temporal-spatial components of the field strength Fta,

Fta = Ȧa − ∂aAt, (5.11)

whereas Fab is the magnetic field defined as usual,

Fab = ∂aAb − ∂bAa. (5.12)

The magnetic contraction is obtained by letting c→ 0, which yields

SM [Aa, πa, A0] =
∫
dt

[∫
ddxπaȦa −HM

]
, (5.13)

where
HM =

∫
ddx(EM −At∂aπa), EM = 1

4F
abFab, (5.14)

so that
[EM (xk), EM (x′k)] = 0. (5.15)

The field equations that follows by extremizing the Carroll magnetic action are then given
by

δπi : Fta ≡ Ȧa − ∂aAt = 0,
δAa : π̇a −∆Aa + ∂a∂bA

b = 0,
δAt : ∂aπ

a = 0.
(5.16)

In that limit, πa is no longer equal to Fta. We still call it, however, the “electric field” (or
rather, minus the electric field), since Fta, being zero, is not a particularly interesting object.

In four spacetime dimensions, one can equivalently rewrite these equations of motion
in terms of the electric field Ea = −πa and the magnetic field Ba = 1

2ε
abcFbc = εabc∂bAc as

∇ ·E = 0, ∇ ·B = 0, ∂E

∂t
−∇×B = 0, ∂B

∂t
= 0, (5.17)

in agreement with [20]. (The last equation follows from Fta = 0 and the Bianchi identity;
conversely it implies Fta = 0 by a suitable choice of At.)

To reach the electric-like contraction, we rescale the fields as Aa → cAa, πa → 1
cπ

a

and also At → cAt. In the limit c→ 0 this yields

SE [Aa, πa, At] =
∫
dt

[∫
ddxπaȦa −HE

]
, (5.18)
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where
HE =

∫
ddx(EE −At∂aπa), EE = 1

2π
aπa, (5.19)

so that
[EE(xk), EE(x′k)] = 0. (5.20)

The field equations are now

δπa : Ȧa − ∂aAt − πa = 0,
δAa : π̇a = 0,
δA0 : ∂aπ

a = 0,
(5.21)

and, in four spacetime dimensions, are equivalent to

∇ ·E = 0, ∇ ·B = 0, ∂B

∂t
+ ∇×E = 0, ∂E

∂t
= 0, (5.22)

again in agreement with [20].
Since the energy density E(x) fulfills in both cases the Poisson bracket relation

[E(x), E(x′)] = 0 and is gauge invariant, it can be used to construct, together with the mo-
mentum density Pk = Fkmπ

m, the Carroll generators E,Pa, Ba,M rs. Note that this choice
of Pk, which is gauge invariant, differs from the generator of spatial diffeomorphisms by a
physically irrelevant term proportional to the gauge constraint-generator −∂aπa ≈ 0 (Gauss
law). The standard generator of spatial diffeomorphisms could be equally used, a kinemati-
cal issue that is actually independent of whether one performs or not a Carroll contraction.

Carroll causality is meaningful only for gauge-invariant functions (observables). It is
discussed as in the scalar field case by integrating explicitly the field equations. Given the
similarity between the equations of motion of the electric and magnetic Carroll contractions,
it is sufficient to consider only one of them, say the electric limit. In that case, one gets

Ba(t, xk) = tεabc∂bπc(0, xk) +Ba(0, xk), πa(t, xk) = πa(0, xk), (5.23)

the compatibility with Carroll invariance being then manifest since information evidently
propagates only along the lines xk = const.

One can easily include a mass term. The Proca Lagrangian is the above Lagrangian
supplemented by 1

2m
2(c−2A2

t − AaAa) (in appropriate units for the mass). There is no
gauge invariance and the field A0 is an auxiliary field that can be eliminated using its own
equation of motion, to give

SProca =
∫
dt ddx

(
πaȦa −HProca

)
, (5.24)

with
HProca = EE + EM , (5.25)

and
EE = c2

(1
2πaπ

a + 1
2m2 (∂aπa)2

)
, EM = 1

4FabF
ab + m2

2 AaA
a. (5.26)
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One clearly has [EC(xk), EC(x′k)] = 0 for C = M or E. Both magnetic-type and electric-
type Carroll limits can be taken as above (no rescaling for the magnetic case; rescaling
πi → c−1πi, Ai → cAi prior to taking the limit for the electric case, in order to pass the
c2-factor from EE to EM in terms of the rescaled variables).

5.3 p-form gauge fields (general p) and interactions

We shall use from now on the notation x0 ≡ t (without factor of c) in order to avoid
possible confusion between ∂t = ∂

∂t (t time) and ∂t = ∂
∂xt (t latin index). We also write

dDx ≡ dtddx.

p-form electrodynamics. We consider a p-form gauge field

A = 1
p!Aα1···αpdx

α1 ∧ · · · ∧ dxαp , (5.27)

whose associated field strength is given by the curvature (p+ 1)-form

F = dA = 1
(p+ 1)!Fα1···αp+1dx

α1 ∧ · · · ∧ dxαp+1 , (5.28)

where
Fα1···αp+1 = (p+ 1)∂[α1Aα2···αp+1]. (5.29)

The action for the free theory,

S[Aα1···αp ] = − 1
2(p+ 1)!

∫
dDxFα1···αp+1F

α1···αp+1

= 1
2

∫
dDx

( 1
c2p!F0a1···apF

a1···ap
0 − 1

(p+ 1)!Fa1···ap+1F
a1···ap+1

)
,

(5.30)

can be cast in Hamiltonian form following the standard procedure. One finds

S[Aa1···ap , π
a1···ap , A0a1···ap−1 ] =

∫
dDx

(
πa1···apȦa1···ap −A0a2···apGa2···ap −H

)
, (5.31)

where
H = EE + EM , (5.32)

with
EE = p!c2

2 πa1···apπ
a1···ap , EM = 1

2(p+ 1)!Fa1···ap+1F
a1···ap+1 , (5.33)

and
Ga1···ap−1 = −p∂aπaa1···ap−1 . (5.34)

The variables πa1···ap are the momenta conjugate to Aa1···ap while A0a1···ap−1 are the La-
grange multipliers for the constraints Ga1···ap−1 ≈ 0.

The magnetic Carrollian limit is straightforward, whereas the electric limit requires
the rescalings

Aa1···ap → cAa1···ap , πa1···ap → 1
c
πa1···ap , A0a1···ap−1 → cA0a1···ap−1 . (5.35)
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Interactions. Carrollian contractions are also compatible with the switching on of in-
teractions (when these consistently exist). We explicitly consider here the Yang-Mills case,
and p-form interactions.

• Yang-Mills field: the Yang-Mills action for a non-Abelian gauge field Aα = AAαTA,
where TA stands for some set of Lie algebra generators, [TA, TB] = fCABTC , is given by

S = − 1
4g2

∫
dDxFAαβF

αβ
A , FAαβ = ∂αA

A
β − ∂βAAα + [Aα, Aβ ]A, (5.36)

where g is the Yang-Mills coupling constant. For comparison with the abelian case,
we perform the convenient rescaling AAα → gAAα , FAαβ → gFAαβ , which yields

S = −1
4

∫
dDxFAαβF

αβ
A , FAαβ = ∂αA

A
β − ∂βAAα + g[Aα, Aβ ]A. (5.37)

The Hamiltonian action then takes the form

S[AAa , πaA, AA0 ] =
∫
dDx

(
πaAȦ

A
a −H−AA0 GA

)
, H = c2

2 π
A
a π

a
A + 1

4F
A
abF

ab
A , (5.38)

where πaA are the momenta conjugate to AAa and AA0 the Lagrange multiplier for the
non-abelian Gauss constraint GA ≈ 0, with

GA = −Daπ
a
A ≡ −(∂aπaA + g fCBAA

B
a π

a
C). (5.39)

The constraints generate the Yang-Mills gauge transformations.

The magnetic Carrollian contraction is straightforward in (5.38). The electric
contraction requires to set

AAa → cAAa , πaA →
1
c
πaA, AA0 → cAA0 . (5.40)

However this renders the curvature FAab, as well as the covariant derivative Da

Abelian. While this result yields a consistent theory, one can circumvent it by
supplementing (5.40) with

g → 1
c
g. (5.41)

The effect of this rescaling is that the constraint-generator GA does not rescale,
whereas FAab rescales in the same way as AAa . The action then takes the form

S =
∫
dDx

(
πaAȦ

A
a −H +AA0 Daπ

a
A

)
, H =

(
1
2π

A
a π

a
A + c2

4 F
A
abF

ab
A

)
, (5.42)

on which the electric Carrollian contraction can be implemented.

Note that one can introduce a mass in term in the Yang-Mills action in complete
analogy to the Abelian case.
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• p-form interactions: we consider for definiteness the coupled Yang-Mills-2-form
system, with action

S[AAα , Bαβ ] =
∫
dDx

(
−1

4F
A
αβF

αβ
A − 1

12 (Gαβγ + λΘαβγ)
(
Gαβγ + λΘαβγ

))
. (5.43)

Here, AAα is the Yang-Mills field and Bαβ is the Abelian two-form, FAαβ is the
Yang-Mills curvature tensor given in (5.37), Gαβγ is the field strength of the 2-form,

Gαβγ = ∂αBβγ − ∂βBαγ − ∂γBβα, (5.44)

λ is a constant and Θαβ are the components of the Chern-Simons form

Θ = 1
3Tr

[
A ∧ F − 1

6A ∧ [A,A]
]
, (5.45)

where, after implemented the rescaling AAα → gAAα , FAαβ → gFAαβ as in (5.37) and
absorbing a factor g2 in λ, we can write

Θαβγ = AA[αF
A
βγ] −

g

3fABCA
A
αA

B
β A

C
γ . (5.46)

We have also assumed the gauge group to be compact so that fABC is totally
antisymmetric.
The Hamiltonian form of the action has been worked out in [33] and reads in obvious
notations

SH =
∫
dDx

(
πaAȦ

A
a + P abḂab −H− 2B0a∂bP

ab +AA0

(
Daπ

a
A + 2λP ab∂aAAb

))
,

(5.47)
where the Hamiltonian density is given by

H = EE + EM

EE = c2
(
PabP

ab + 1
2(πaA − 2λP abAAb)(πAa − 2λPacAAc)

)
EM = 1

4F
A
abF

ab
A + 1

12 (Gabc + λΘabc)
(
Gabc + λΘabc

)
.

(5.48)

One has
[EM (xk), EM (yk)] = 0, [EE(xk), EE(yk)] = 0. (5.49)

In the electric case, where both AAa and its conjugate momentum appear, this
commutation relation holds because no derivative of the canonical variable enter EE
(ultralocality).
We can immediately see that the magnetic Carrollian limit is again straightforward,
whereas the electric one requires the rescalings

AAa → cAAa , πaA →
1
c
πaA,

Bab → cBab, P ab → 1
c
P ab,

AA0 → cAA0 , B0a → cB0a,

λ→ 1
c
λ, g → 1

c
g

(5.50)
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(the rescalings of the coupling constants guarantee that the interactions survive in
the limit).

We considered here the explicit case of the Chern-Simons-like couplings of a 1-form
with a 2-form. The analysis can readily be extended to more general form degrees.

6 Carroll contractions of higher spin gauge theories

The reasons why the above contraction procedure can be applied without difficulty,
yielding consistent Carroll-invariant theories with a variational description, can be
characterized as follows.

The Hamiltonian formulation of these Lorentz-invariant theories involves an energy
density and a momentum density. While the momentum density is unaffected in the Carroll
contractions, this is not so for the energy density.

The energy density is a sum of two terms, each of which is a scalar under the kinemati-
cal spatial translations and rotations. These are the potential energy density containing the
fields and the kinetic energy density containing their conjugate momenta. The potential en-
ergy densities at distinct spatial points have vanishing Poisson brackets, as do the kinetic en-
ergy densities — but the brackets between the potential and kinetic energy densities do have
non-trivial Poisson bracket that ensure the validity of the Dirac-Schwinger Poisson bracket
relations. Therefore, if one drops either the potential energy density (electric contraction)
or the kinetic energy density (magnetic contraction), one gets a Carroll-invariant theory.

The full consistency of the procedure is established once one has verified that it is com-
patible with gauge invariance. Now, the gauge generators are unchanged in the Carroll lim-
its and the gauge transformations in phase space remain the same. In the verification that
the total (kinetic + potential) energy density yields gauge invariant generators

∫
ddxE(x)

(Lorentz energy) and
∫
ddxxaE(x)) (Lorentz boost generator at x0 = 0), which does hold

because of the consistency of the pre-contraction Lorentz-invariant theory, there is no com-
pensation between the individual contribution of each type of energy density, because the
gauge transformations of the fields and their momenta involve independent parameters.
Therefore, each type of energy densities leads to gauge invariant Carroll generators.

These properties also hold for higher spin gauge fields described by the relativistic
Fronsdal action [34] and therefore these theories also possess two different consistent Carroll
limits, one electric and one magnetic.

We illustrate the contraction procedure in the Pauli-Fierz case (spin 2) and in the spin
3 case.

6.1 Pauli-Fierz field

Keeping track of the powers of c, one finds that the massless Pauli-Fierz action in Hamil-
tonian form is

S[hab, πab, h00, h0a] =
∫
dDx

(
πabḣab −H−

1
2c2h00C − h a0 Ca

)
, (6.1)
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where hab are the spatial components of the graviton field, πab the conjugate momenta and
h00, h0a the Lagrange multipliers for the first-class constraints

C = −∂a∂ah bb + ∂a∂bhab ≈ 0, Ca = −2∂bπab ≈ 0. (6.2)

We have rescaled h00 as
h00 → c2h00, (6.3)

so that h00 and hab have same dimension. Spatial indices are raised with δab.
The energy density H reads

H = EE + EM , (6.4)

where the electric and magnetic contributions are respectively

EE = c2
(
πabπab −

1
D − 2(πaa)2

)
, (6.5)

EM = 1
4∂

ahbc∂ahbc −
1
2∂bh

bc∂ahac + 1
2∂

ahab∂
bhcc −

1
4∂

ahbb∂ah
c
c. (6.6)

The total energy E is not strictly invariant under the gauge transformations generated by
the first-class constraints, which are,

δπab = −∂a∂bξ0 + δab∂c∂cξ
0, δhab = ∂aξb + ∂bξa. (6.7)

More precisely, E is only invariant up to the divergence ∂aV
a of a spatial vector and

constraint terms,

δE = ∂aV
a − c2∂aξ

0Ca, V a = −2c2∂bξ
0πab − 1

4h
c
c∂b∂

[aξb] + hbc∂a∂bξc − hac∂b∂bξc. (6.8)

Its integral over space is thus gauge invariant when the constraints hold.
As in the case of p-forms, the electric energy density depends only on the momenta,

while the magnetic energy density depends only on the fields. Since the gauge transfor-
mation generated by C affects only the momenta πab, while those generated by Ca affects
only the hab, one has separately that EE and EM are gauge invariant up to a divergence,
so that their integrals over space are gauge invariant (on the constraint surface).

Since the constraints and hence the gauge invariances are unchanged in the limits,
one can take consistently the magnetic and electric limits as in the previous section. The
magnetic limit amounts to setting c = 0 in the above expressions, while the electric limit
needs a rescaling of the fields before setting c equal to zero.

Mass term. If we add the mass term −m2

2

(
1
2habhab −

1
c2h0ah0a + 1

c2h00haa − 1
2haahbb

)
one gets as new Hamiltonian action, after the h0a’s, which are now auxiliary fields, are
eliminated using their equations of motion,

Sm2 6=0[hab, πab, h00] =
∫
dDx

(
πabḣab −H′ −

1
2h00C′

)
, (6.9)

with
H′ = E ′E + E ′M , (6.10)

– 17 –



J
H
E
P
1
1
(
2
0
2
1
)
1
8
0

and

E ′E = c2πabπab −
c2

D − 2(πaa)2 + 2c2

m2
(
∂aπ

ab∂cπcb
)
, (6.11)

E ′M = 1
4∂

ahbc∂ahbc −
1
2∂bh

bc∂ahac + 1
2∂

ahab∂
bhcc −

1
4∂

ahbb∂ah
c
c

+1
4m

2
(
habhab − (haa)2

)
, (6.12)

C′ = −∂a∂ah bb + ∂a∂bhab +m2haa. (6.13)

There is now no gauge invariance since the equation of motion Ċ′ = 0 implies the constraint
D ≈ 0 with

D = ∂a∂bπ
ab + m2

D − 2π
a
a. (6.14)

The pair (C′,D) is second class.
One can clearly take again consistently the electric and magnetic Carroll limits.

6.2 Higher spins

One can extend the procedure to Lorentz-invariant higher spin theories described by the
Fronsdal action [34]. These possess also two Carroll contractions. A new interesting feature
emerges, however, which is that in order to preserve the form of the gauge invariances (i.e.,
of the constraints), some of the original Lagrangian field components should be regarded as
“momenta” (i.e., are p’s rather than q’s) while their conjugate variables should be regarded
as “fields” (i.e., are q’s rather than p’s).

We illustrate this phenomenon with the spin 3 field. Its Hamiltonian formulation reads,
with the rescaling φ00a → c2φ00a,

S =
∫
dDx

(
Πabcφ̇abc + Πα̇−H− φ0abCab − φa00Ca

)
, (6.15)

where φabc are the spatial components of the spin-3 field,

α ≡ 1
c2φ000 − 3φ a

0a , (6.16)

and Πabc, Π their conjugate momenta. Here, the energy density is explicitly given by (with
φa ≡ φ k

ak and Πa ≡ Πak
k)

H = c4Π2 + c2

2 ΠabcΠabc − 3c2

2DΠaΠa + 5D − 3
8c2D

∂aα∂
aα+ 3

2DΠa∂aα

+ 1
2∂kφabc∂

kφabc − 3
2∂

aφbcd∂bφacd + 3∂aφabc∂bφc −
3
2∂aφb∂

aφb − 3
4(∂aφa)2,

(6.17)

and the constraints read
Cab = −3∂cΠabc −

3
2c2 δab,∆α (6.18)

and
Ca = 3c2∂aΠ + 3∂b∂cφabc − 3∆φa −

3
2∂a∂

bφb. (6.19)

The temporal components φ0bc and φ00c are the Lagrange multipliers for the constraints.
These are first class and generate the following gauge transformations:
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• Constraint Cab:

δεhijk = 3∂(iεjk), (6.20)

δεΠ = 1
c2

3
24ε

a
a (6.21)

(δεπijk = 0, δεα = 0).

• Constraint Ca:

δχΠijk = −∂(i∂jχk) + δ(ij
(
4χk) + 1

2∂
k)∂mχ

m
)

(6.22)

δχα = −c2∂mχ
m (6.23)

(δχhijk = 0, δχΠ = 0).

The fields (hijk,Π) transform together, and only under the action of Cab; the fields
(πijk, α) transform together, and only under the action of Ca. However, c2 appears in the
transformation laws. In order to avoid a singular limit as c → 0 and, more crucially, a
modification of the constraints and the gauge transformations in the Carrollian limit, we
rescale α and its conjugate momentum (besides the already performed rescaling of the
Lagrange multiplier φa00)

α→ c2α, Π→ 1
c2 Π, (6.24)

which has the effect of exchanging the role of α and its conjugate momentum Π. This
yields

S =
∫
dDx

(
Πabcφ̇abc + Πα̇−H− φ0abCab −

1
c2φa00Ca

)
, (6.25)

where the constraints are now c-independent,

Cab = −3∂cΠabc −
3
2δab∆α, (6.26)

and
Ca = 3∂aΠ + 3∂b∂cφabc − 3∆φa −

3
2∂a∂

bφb. (6.27)

The energy density reads
H = EE + EE , (6.28)

with
EE = c2

(1
2ΠabcΠabc − 3

2DΠaΠa + 5D − 3
8D ∂aα∂

aα+ 3
2DΠa∂aα

)
, (6.29)

and

EM = Π2 + 1
2∂kφabc∂

kφabc− 3
2∂

aφbcd∂bφacd+3∂aφabc∂bφc−
3
2∂aφb∂

aφb− 3
4(∂aφa)2. (6.30)

One can easily take the Carrollian limits in a way that manifestly preserves the gauge
symmetries. The magnetic limit is obtained by dropping EE while the electric limit is ob-
tained by dropping EM , after rescalings analogous to those of the p-form case. Even though
we swapped the roles of α and its conjugate momentum Π before taking the contractions,
Carroll causality is easily verified to hold in the limit because the dynamical equations
effectively reduce again to ordinary differential evolution equations with respect to time.
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7 Manifestly Carroll invariant actions for p-form gauge fields

The Hamiltonian actions considered so far do not exhibit explicitly spacetime covariance
in the sense that we cannot use directly standard tensor calculus to check their Carroll
invariance. A manifestly spacetime covariant action can be useful in certain circumstances.
We achieve the task of constructing manifestly Carroll invariant actions for p-form gauge
fields, dealing first with the cases p = 0 and p = 1 and generalizing then to all p’s.

7.1 Scalar field

7.1.1 Electric contraction

We start with the simpler electric case.
In the electric limit, the manifestly covariant action is just obtained by eliminating

the momentum πφ in terms of the velocity φ̇ using its own equation of motion. One gets
SE [φ] = 1

2
∫
dDxφ̇2, or in covariant form

SE [φ] = 1
2

∫
dDx(nα∂αφ)2 (7.1)

This action is manifestly invariant under Carroll transformations, which leave nα invariant
and preserve the volume element.

The field φ is a scalar, the components ∂αφ are the components of a 1-form and the
momentum πφ = nα∂αφ is a scalar.

7.1.2 Magnetic contraction

In the magnetic limit, one cannot eliminate πφ using its own equation of motion. In fact,
the connection between φ̇ and πφ is lost, since φ̇ = 0 but in general πφ 6= 0.

Therefore, we try to rewrite the first-order action directly in manifestly covariant form.
To that end, we recall that if a covariant tensor is transverse (its contraction with nα on
any index is zero), then its square norm is well defined. Thus, at least on shell, where
nα∂αφ = 0, one can rewrite the energy density of the magnetic theory as ∂αφ∂βφGαβ ,
where Gαβ is any contravariant tensor fulfilling (2.4), i.e., Gαβgβγ = δαγ − nαθγ . We need,
however, to define the action off-shell. For that purpose, we introduce the one-form θα(x)
(with θαnα = 1), which we treat as a dynamical variable and consider the action

SM [φ, πφ, θα] =
∫
dDx

(
πφn

α∂αφ−
1
2G

αβ∂αφ∂βφ

)
. (7.2)

This action is Carroll invariant if we transform φ, πφ as scalars and θα as a one-form.
It is nevertheless not clear that it is satisfactory since it involves the extra field θα,

which might change the dynamics. It turns out, however, that this is not the case and
that the action (7.2) is dynamically equivalent to the Hamiltonian action (5.3). This is
because it possesses a gauge invariance that enables one to gauge the extra field θα away,
thereby reducing (7.2) to (5.3). Indeed, if we shift θα as in (2.9) (with λαnα = 0), the term
1
2G

αβ∂αφ∂βφ changes as

δθα = λα, δ

(1
2G

αβ∂αφ∂βφ

)
= −nαGβρλρ∂αφ∂βφ (7.3)
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If we transform at the same time the momentum πφ as

δπφ = −Gβρλρ∂βφ (7.4)

the action is invariant.
Using this gauge invariance, we can set (θα) = (1, 0, · · · , 0), in which case Gαβ takes the

canonical form (3.10) and the action (7.2) reduces to (5.3). Note that the gauge condition
θa = 0 is not Carroll invariant. Under a Carroll boost parametrized by the vector field
ξ = bax

a ∂
∂x0 , one finds δθα = Lξθα = (0, ba), and thus one must accompany the Carroll

boost by the compensating gauge transformation with λa = −ba to maintain θa = 0. This
means that once the gauge is fixed, the momentum πφ transforms as

δbπφ = Lξπφ + bα∂αφ = bax
a∂0πφ + bα∂αφ bα = (0, ba) (7.5)

where Lξπφ is here the Lie derivative of πφ viewed as a scalar (ordinary transport term
ξρ∂ρπφ) and where the second term comes from the compensating gauge transformation.

This is a perfectly acceptable transformation rule. In fact, if we construct the D-
component object with components (V 0 = πφ, V

a = −∂aφ) (index raised with δab), the
transformation law (7.5) coincides with the zeroth-component of LξV α where V α are viewed
as the components of a contravariant D-vector, i.e., δbπφ = LξV 0 = ξρ∂ρV

0 − V ρ∂ρξ
0 —

and the spatial components of the relation δbV a = LξV a are obviously fulfilled since ξa = 0.
Thus, the procedure of gauge-fixing has effectively changed the transformation law of πφ
from that of a scalar to that of the zeroth-component of the contravariant vector field V α.

If we compare the transformation laws of πφ in the electric and magnetic theories, we
see that they are different. In the electric case, πφ transforms as the zeroth component of a
covariant vector field, while in the magnetic case, it transforms as the zeroth-component of
a contravariant vector field. The two representations are inequivalent and there is indeed
no non-degenerate invariant metric to go from one to the other. The same difference in
transformation rules was observed and analyzed in the case of electromagnetism, where
again, the electric theory was naturally found to correspond to a formulation involving
fields transforming in covariant representations, while the magnetic theory was found to
correspond to contravariant fields [20]. How this arises in our approach will be discussed in
the next section, but first, we show that the same conclusions concerning transformation
rules hold in the Hamiltonian formalism.

One way to characterize the inequivalence of the two representations is to observe
that in the representation described by covariant vectors , there is a d-dimensional in-
variant subspace defined by V0 = 0. The representation is not completely reducible since
there is no complementary invariant one-dimensional subspace (the conditions Va = 0
are not invariant), i.e., is not decomposable. In the dual contravariant case, there is an
invariant one-dimensional subspace defined by V a = 0, but no invariant complementary
d-dimensional subspace; the representation is again indecomposable, but in a different way.

What makes the above construction possible, is that the representation in the
d-dimensional invariant subspace of the covariant representation is equivalent to the
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d-dimensional quotient representation of the contravariant representation by its one-
dimensional invariant subrepresentation. This d-dimensional representation represents triv-
ially the boosts and coincides with the vector representation of the spatial rotation group,
for which there is no distinction between covariant and contravariant tensors.

To conclude this section, we show equivalence of the transformation rules derived in
the covariant formulation and in the Hamiltonian formulation. We only need to consider
Carroll boosts since the other Carroll transformations raise no particular difficulty.

Under a Carroll boost parametrized by the vector field ξ = bkx
k ∂
∂x0 ⇔ ξ0 = bkx

k, ξk =
0, the Hamiltonian fields transform as δφA = [φA,

∫
ddxbkx

kE ]. This must be compared
with δφA = LξφA.

In the electric case where π is the zeroth component ∂0φ of the one-form ∂αφ, one gets

δbφ = bkx
kπφ, δbπφ = 0, (7.6)

which is found to be in perfect agreement with δbφ = Lξφ = ξρ∂ρφ and δb∂αφ = Lξ∂αφ =
ξρ∂ρ(∂αφ) + ∂αξ

ρ∂ρφ if one uses the equations of motion.
In the magnetic case, one gets

δbφ = 0, δbπφ = bk∂kφ+ bjx
j∂k∂

kφ (7.7)

Again, this is in perfect agreement with δbφ = Lξφ and δbV α = LξV α = ξρ∂ρV
α − V ρ∂ρξ

α

with V α = (πφ,−∂aφ) when one uses the equations of motion.

7.2 Electromagnetism

7.2.1 Electric contraction

The actions of the electromagnetic contractions can also be cast in a manifestly Carroll-
covariant form. Again, we start with the simpler electric limit, where one can eliminate
the momenta by means of their own field equations. If one does this, one finds that the
action, which is second order, takes the form

SE [Ai, A0] = 1
2

∫
dDxF0iF

i
0 (7.8)

or, in manifestly Carroll-invariant form,

SE [Aα] = 1
2

∫
dDx(nαFαβ)2 (7.9)

The integrand GρσnαFαρnβFβσ is well-defined because Fαβnβ is transverse, nαFαβnβ = 0.
The electric and magnetic fields form the components of the covariant antisymmetric

tensor Fαβ , as in the Maxwell theory. The action is invariant under

δAα = LξAα = ξρ∂ρAα + ∂αξ
ρAρ (7.10)

which implies
δFαβ = LξFαβ = ξρ∂ρFαβ + ∂αξ

ρFρβ + ∂βξ
ρFαρ (7.11)
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In particular for Carroll boosts ξ = bax
a ∂
∂x0 , one gets

δA0 = bax
aȦ0, δAk = bax

aȦk + bkA0 (7.12)

which leads to the transformations of the electric and magnetic fields

δF0k = bax
aḞ0k, δFkm = bax

aḞkm + bkF0m − bmF0k (7.13)

equivalent to the expressions given in [20].

7.2.2 Magnetic contraction

The magnetic Carroll limit of electromagnetism is very similar to the magnetic Carroll limit
of the Klein-Gordon theory, with in particular, the impossibility to express the momenta
πi in terms of the velocities through their equations of motion.

We thus follow the same steps as in the scalar case, and look for a direct covariantization
of the first-order Hamiltonian action. For that purpose, we introduce the gauge field θα that
enables one to define Gαβ . We also assume initially that the momenta πa are the spatial
components of a spacetime vector πα, with the gauge invariance πα → πα + λnα (λ arbi-
trary) to keep the number of degrees of freedom unchanged. As we shall see, a representa-
tion transmutation phenomenon similar to the one found in the scalar case will occur for πα.

We postulate the action

SM [Aα, πβ , θγ ] =
∫
dDx

(
παFαβn

β − 1
4G

αβGρσFαρFβσ

)
(7.14)

The gauge invariance πα → πα + λnα is obvious since Fαβ is antisymmetric — π0 just
drops.

The scalar product GαβGρσFαρFβσ is θ-independent when the equations of motion for
πα hold, but off-shell, this scalar product — and hence also the action — does depend on
θα. This dependence, however, is associated with a gauge invariance, just as in the scalar
case. If one shifts θα as in (2.9) (with λαnα = 0) and at the same time transforms πα as

δθα = λα, δπα = −GαρFρσλσ (7.15)

the action is invariant.
Therefore, we can shift away θα and go to the gauge θ0 = 1, θa = 0. In that gauge,

the action (7.14) reduces to the Carroll magnetic action (5.13). Furthermore, just as in
the scalar case, the gauge condition is not maintained by Carroll boosts, which must be
supplemented by a compensating θ-shift to bring one back to θ0 = 1, θa = 0. Under this
compensating gauge transformation, πa picks up a term of the form F acbc. The net result is
that the electric field and the magnetic field transform in the representation of the Carroll
group given by antisymmetric contravariant tensors Hαβ , in agreement with [20] (note
the obvious typo in (5.14) of that reference, the transformation of the electric field should
involve B instead of E in the second term). One has (Hαβ) = (πa, F ab) and

δH0k = bax
aḢ0k − baHak, δHkm = bax

aḢkm (7.16)
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under Carroll boosts (the first term is the standard transport term, the second term is
determined by the representation).

One can also verify that the Carroll transformations are correctly generated in the
Hamiltonian formalism. Note that as it is well known, the transformation of the vector po-
tential differs from its Lie derivative by a gauge transformation that drops when computing
the transformation of gauge invariant quantities.

7.3 p-form gauge theories

Direct extension of the previous derivations yield as covariant action

SE [Aα1···αp ] = 1
2p!

∫
dDx(nβFβα1···αp)2 (7.17)

for the electric-type contraction and

SM [Aα1···αp , π
β1···βp , θγ ] =

∫
dDx

(
πα1···αpnβFβα1···αp −

1
2(p+ 1)!(Fα1···αpαp+1)2

)
(7.18)

for the magnetic-type one. Here, in computing expressions such as (nβFβα1···αp)2 or
(Fα1···αpαp+1)2, one raises of course the indices with Gαβ . The form of the gauge transfor-
mation that shifts θα takes now the form

δθα = λα, δπα1···αp = − 1
p!G

α1β1 · · ·GαpβpFβ1···βpσλ
σ . (7.19)

8 Carroll contractions of Einstein’s theory

The Carroll contractions of gravity are discussed along similar lines once the Einstein action
is put in Hamiltonian form. Spacetime covariance corresponds now to a local symmetry
generated by first-class constraints. The question from the Hamiltonian viewpoint, then, is
to check whether there are contractions of these constraints that yield the Carroll structure.
It is easy to show that this is so.

The Hamiltonian action reads, in standard notations,

S[gij , πij , N,N i] =
∫
dx0

∫
ddx(πij ġij −NH−N iHi) (8.1)

where we do not write explicitly the surface terms as these will be discussed elsewhere when
we analyse the asymptotic symmetries. Here, H ≈ 0 is the Hamiltonian constraint and
Hi ≈ 0 is the momentum constraint. The explicit expressions are, in appropriate units,

H = Gijkmπ
ijπmn −R√g, Hi = −2π j

i |j . (8.2)

One can drop consistently either term in the Hamiltonian constraint, since in each
case, one gets the system of first class constraints,

[HC(x),HC(x′)] = 0, (8.3)
[HC(x),Hk(x′)] = (HC(x) +HC(x′))δ,k(x− x′) (8.4)
[Hm(x),Hk(x′)] = Hm(x′)δ,k(x− x′) +Hk(x)δ,m(x− x′) (8.5)
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where HC stands for either HE or HM ,

HE = Gijkmπ
ijπmn, HM = −R√g (8.6)

This first class constraint algebra is precisely the algebra characteristic of Carrollian space-
times (see [4, 5, 25]) and therefore, there are again two consistent Carroll contractions.
Note that the cosmological constant term Λ√g is consistently allowed in both limits. The
electric-type contraction, where spatial gradients are dropped in H, is the strong cou-
pling limit [3], or zero signature limit [4] defined long ago, which are relevant to the BKL
behaviour.

The Hamiltonian action possesses in each case D class constraints, which correctly
matches the number of gauge invariances of a diffeomorphism invariant theory. The mani-
festly covariant action (i.e., in the present case, manifestly diffeomorphism invariant action)
for the electric limit was written in [5]. It involves the second fundamental formKαβ defined
as (−1

2) times the Lie derivative of the degenerate metric gαβ along the vector nα,

Kαβ = −1
2Lngαβ (8.7)

and reads
SE [gαβ ,Ω] =

∫
dDxΩ(KαβKαβ −K2) (8.8)

This expression makes sense because Kαβ is identically transverse, Kαβn
β = 0, so that

K ≡ KαβG
αβ and KαβKαβ = KρσG

ραGσβKαβ are well defined.
We have not derived the manifestly covariant action for the magnetic limit, where one

gets the equation of motion Kαβ = 0 so that there is no connection between the momenta
and the time derivatives of the metric.

In fact, covariant actions for Carroll gravity have been constructed in [35, 36] by
gauging the Carroll algebra.2 Although we have not performed the explicit check, we
suspect that the action of [35], which has a structure similar to KαβKαβ−K2, is equivalent
to the above electric action, while the action of [36], which implies Kαβ = 0, would be
equivalent to the Hamiltonian action of the magnetic-type contraction. We hope to return
to this issue in the future.

9 Conclusions

In this paper, we have shown that Lorentz-invariant theories possess two distinct Carroll
limits, one electric and one magnetic. This generalizes to arbitrary fields what was found
earlier for electromagnetism [20], and is the analog of a similar phenomenon described in
the Galilean case [21]. The existence of two distinct limits reflects the fact that while
contravariant and covariant tensors transform in equivalent representations of the Lorentz
group where there is an invertible invariant metric connecting the two, this property no
longer holds in the Carrollian case [20].

2Covariant actions for Carroll gravity in three and two spacetime dimensions in have also been con-
structed in [37–42].
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Our approach for taking the Carrollian limits is based on the variational formulation
and provides automatically Carroll invariant action principles. Spacetime covariance is not
manifest, however, since we use the Hamiltonian form of the variational principle. It is
controlled through the Poisson brackets of the energy density and momentum density. We
have nevertheless constructed covariant action principles for p-form gauge theories for both
the electric magnetic limits, which share, in the electric case, features quite similar to those
of the electric-type limit of Einstein theory [5].

As we alluded to above, a different method for constructing Carroll-invariant actions
have been devised more recently for Carrollian gravities, by gauging the Carroll algebra [35,
36]. It would be interesting to explicitly compare this approach with our results, as well
as its extension to the higher spin Carroll algebras of [43].

Since one potentially useful application of the Carroll algebra deals with non relativistic
holography, another interesting problem is to perform the asymptotic analysis at spatial
infinity of both the electric and magnetic limits of Einstein gravity in arbitrary spacetime
dimensions.
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