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Abstract

This paper exploits the intrinsic features of urban-scene

images and proposes a general add-on module, called

height-driven attention networks (HANet), for improving

semantic segmentation for urban-scene images. It empha-

sizes informative features or classes selectively according

to the vertical position of a pixel. The pixel-wise class dis-

tributions are significantly different from each other among

horizontally segmented sections in the urban-scene im-

ages. Likewise, urban-scene images have their own dis-

tinct characteristics, but most semantic segmentation net-

works do not reflect such unique attributes in the architec-

ture. The proposed network architecture incorporates the

capability exploiting the attributes to handle the urban-

scene dataset effectively. We validate the consistent perfor-

mance (mIoU) increase of various semantic segmentation

models on two datasets when HANet is adopted. This ex-

tensive quantitative analysis demonstrates that adding our

module to existing models is easy and cost-effective. Our

method achieves a new state-of-the-art performance on the

Cityscapes benchmark with a large margin among ResNet-

101 based segmentation models. Also, we show that the pro-

posed model is coherent with the facts observed in the urban

scene by visualizing and interpreting the attention map. Our

code and trained models are publicly available1.

1. Introduction

Semantic image segmentation, a fundamental task in

computer vision, is employed for basic urban-scene under-

standing in autonomous driving. Fully convolutional net-

works (FCNs) [28] are seminal work that adopts deep con-

volutional neural networks (CNNs) in semantic segmen-

tation, by replacing fully connected layers with convolu-

tional ones at the last stage in typical CNN architectures.

Other advanced techniques, such as skip-connections in an

encoder-decoder architecture [2, 34, 8], an atrous convolu-

1https://github.com/shachoi/HANet

tion [6, 46], an atrous spatial pyramid pooling (ASPP) [7],

and a pyramid pooling module [51], have further improved

the FCN-based architecture in terms of semantic segmen-

tation performance. They have proven to be successful in

diverse semantic segmentation benchmarks [14, 15, 31, 12,

1, 25, 32] including urban-scene datasets.

Yet, urban-scene images have their own distinct nature

related to perspective geometry [23] and positional pat-

terns [55, 10]. Due to the fact that the urban-scene im-

ages are captured by the cameras mounted on the front

side of a car, the urban-scene datasets consist only of road-

driving pictures. This leads to the possibility of incorporat-

ing common structural priors depending on a spatial posi-

tion, markedly in a vertical position. To verify this charac-

teristic, we present the class distribution of an urban-scene

dataset across vertical positions in Fig. 1. Although the pix-

els of the few classes are dominant in an entire region of an

image (Fig. 1(a)), the class distribution has significant de-

pendency on a vertical position. That is, a lower part of an

image is mainly composed of road, while the middle part

contains various kinds of relatively small objects. In the up-

per part, buildings, vegetation, and sky are principal objects

as shown in Fig. 1(b).

Table 1 shows the probabilities with respect to the domi-

nant top-5 classes: road, building, vegetation, car, and side-

walk. The class distribution is extremely imbalanced that

the dominant classes take over 88% of the entire dataset. As

mentioned above, the class distribution is completely differ-

ent if the image is divided into three regions: upper, middle,

and lower parts. For instance, the probability of the road

class proad is 36.9% on average given an entire image, but

this chance drops dramatically to 0.006% for an upper re-

gion, while jumps to 87.9% if a lower region is considered.

Also, we analyzed this observation using entropy, a mea-

sure of uncertainty. The entropy of the probability dis-

tribution X of a pixel over 19 classes in the Cityscapes

dataset [12] is computed as
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Figure 1: Motivation of our approach, the pixel-wise class distributions. All numbers are average values obtained from the entire training

set of the Cityscapes dataset with its pixel-level class labels [12]. Note that there exists a total of 2048K pixels per image, and the y-axis

is in log-scale. (a) Each bar represents the average number of pixels assigned to each class contained in a single image. For example, on

average, about 685K pixels per image are assigned to the road class. (b) Each part of an image divided into three horizontal sections has a

significantly different class distribution from each other. For example, the upper region has just 38 pixels of the road class, while the lower

region has 480K pixels of it.

H(X) = H(proad, pbuilding, . . . , pmotorcycle)

= −
∑

i

pi log pi, (1)

where pi denotes the probability that an arbitrary pixel

is assigned to the i-th class. the conditional entropy

H(X
∣

∣image) of X given an image, computed by Eq. (1),

is 1.84. On the other hand, the average conditional en-

tropy of X given each of the three regions as H(X
∣

∣upper),

H(X
∣

∣middle), and H(X
∣

∣lower), is 1.26 as shown in Ta-

ble 1. As a result, one can see the uncertainty is reduced if

we divide an image into several parts horizontally. Based

on this analysis, if we can identify the part of an image to

which a given arbitrary pixel belongs, it will be helpful for

pixel-level classification in semantic segmentation.

Motivated by these observations, we propose a novel

height-driven attention networks (HANet) as a general add-

on module to semantic segmentation for urban-scene im-

ages. Given an input feature map, HANet extracts “height-

wise contextual information”, which represents the con-

text of each horizontally divided part, and then predicts

which features or classes are more important than the oth-

ers within each horizontal part from the height-wise con-

textual information. The models adopting HANet consis-

Given
Probabilities of top-5 classes Entire class

proad pbuild. pveg pcar pswalk entropy

Image 36.9 22.8 15.9 7.0 6.1 1.84

Upper 0.006 47.8 35.4 0.6 0.009 1.24
1.26
(avg)

Middle 31.4 16.6 9.4 17.4 10.7 2.04

Lower 87.9 0.1 0.3 2.2 7.9 0.51

Table 1: Comparison of the probability distributions (%) of pixels

being assigned to each class when an entire image is separated on

upper, middle, and lower regions of the Cityscapes dataset.

tently outperform baseline models. Importantly, our pro-

posed module can be added to any CNN-based backbone

networks with negligible cost increase. To verify the ef-

fectiveness of HANet, we conduct extensive experiments

with various backbone networks such as ShuffleNetV2 [29],

MobileNetV2 [37], ResNet-50 [18], and ResNet-101 [18].

We also focus on lightweight backbone networks where a

lightweight HANet is more effective. The main contribu-

tions of this paper include:

• We propose a novel lightweight add-on module, called

HANet, which can be easily added to existing models

and improves the performance by scaling the activation

of channels according to the vertical position of a pixel.

We show the effectiveness and wide applicability of our

method through extensive experiments by applying on var-

ious backbone networks and two different datasets.

• By adding HANet to the baseline, with negligible com-

putational and memory overhead, we achieve a new state-

of-the-art performance on the Cityscapes benchmark with

a large margin among ResNet-101 based models.

• We visualize and interpret the attention weights on in-

dividual channels to experimentally confirm our intuition

and rationale that height position is crucial to improve the

segmentation performance on urban scene.

2. Related Work

Model architectures for semantic segmentation. Main-

taining the resolution of a feature map while capturing high-

level semantic features is essential in achieving high perfor-

mance of semantic segmentation. Typically, high-level fea-

tures are extracted by stacking multiple convolutions and

spatial pooling layers, but the resolution gets coarser in

the process. Several studies [28, 33] address this limita-

tion by leveraging deconvolution for learnable upsampling

9374



from low-resolution features. Skip-connections overcome

the limitation by recovering the object boundaries in a de-

coder layer through leveraging high-resolution features ex-

isting earlier in the encoder layer [2, 34, 24, 8]. Another

prevalent method is atrous convolution [6, 46], which in-

creases the receptive field size without increasing the num-

ber of parameters, and it is widely adopted in recent seman-

tic segmentation networks [7, 8, 43, 49, 53]. Additionally,

ASPP [7] and pyramid pooling modules [51] address such

challenges caused by diverse scales of objects.

More recently, long-range dependency is captured [54,

21, 16] to improve the performance especially by extend-

ing self-attention mechanism [39]. Focusing on bound-

ary information is another approach in semantic segmenta-

tion [3, 5, 13, 38, 30]. Recent work imposes separate mod-

ules for targeting boundary processing [13, 38] or boundary

driven adaptive downsampling [30]. Also, capturing con-

textual information is widely exploited. ACFNet [48] uses

class center to gather features of pixels in each class as cate-

gorical context, while CFNet [50] learns the distribution of

co-occurrent features and captures co-occurrent context to

relook before making predictions. CiSS-Net [52] adopts re-

inforcement learning to explore the context information in

predicted segmentation maps, not having any supervision.

Exploitation of urban-scene image. In the field of se-

mantic segmentation, several studies exploit the charac-

teristics of the urban-scene images. In general, the scale

of objects significantly vary in the urban-scene images.

FoveaNet [23] localizes a “fovea region”, where the small-

scale objects are crowded, and performs scale normalization

to address heterogeneous object scales. DenseASPP [43]

adopts densely connected ASPP, which connects multi-

ple atrous convolutional layers [20] to address large-scale

changes of the objects. Another recent approach [53] ex-

ploits the fact that the urban-scene images have continuous

video frame sequences and proposes the data augmentation

technique based on a video prediction model to create future

frames and their labels.

Recent approaches in the field of domain adaptation pro-

pose the method to leverage the properties of the urban-

scene images. A class-balanced self-training with spatial

priors [55] generates pseudo-labels for unlabeled target data

by exploiting which classes appear frequently at a particular

position in an image for unsupervised domain adaptation.

Another approach [10] divides an urban-scene image into

several spatial regions and conducts domain adaptation on

the pixel-level features from the same spatial region. Also,

the correlation between depth information and semantic is

exploited to gain additional information from synthetic data

for urban-scene domain adaptation [9].

Channel-wise attention. Our proposed method, HANet,

has strong connections to a channel-wise attention ap-

proach, which exploits the inter-channel relationship of fea-

tures and scales the feature map according to the impor-

tance of each channel. Squeeze-and-excitation networks

(SENets) [19] capture the global context of the entire image

using global average pooling and predict per-channel scal-

ing factors to extract informative features for an image clas-

sification task. This mechanism is widely adopted in subse-

quent studies [40, 49, 44, 22] for image classification and

semantic segmentation tasks. Inspired from ParseNet [27],

which shows the impact of a global context of an entire im-

age in semantic segmentation, previous work [49, 44, 22]

for semantic segmentation exploits the global context of the

entire image to generate channel-wise attention. However,

the urban-scene datasets [12, 1, 32, 4] consist only of road-

driving pictures, which means that the images share similar

class statistics. Therefore, the global context should be rel-

atively similar among urban-scene images. As a result, the

global context of the entire image cannot present distinct in-

formation of each image to help per-pixel classification in

urban-scene images. This explains why the previous work

related to channel-wise attention for semantic segmentation

mainly focuses on the generic scene datasets.

3. Proposed Method

Urban-scene images generally involve common struc-

tural priors depending on a spatial position. Each row of

an image has significantly different statistics in terms of a

category distribution. In this sense, individually capturing

the height-wise contextual information, which represents

the global context of each row can be used to estimate how

channels should be weighted during pixel-level classifica-

tion for urban-scene segmentation. Therefore, we propose

HANet which aims to i) extract the height-wise contextual

information and ii) compute height-driven attention weights

to represent the importance of features (at intermediate lay-

ers) or classes (at last layer) for each row using the context.

In this section, we first describe HANet as a general add-

on module and then present the semantic segmentation net-

works incorporating several HANet at different layers spe-

cialized for urban-scene segmentation.

3.1. Heightdriven Attention Networks (HANet)

HANet generates per-channel scaling factors for each in-

dividual row from its height-wise contextual information as

its architecture illustrated in Fig. 2.

Let Xℓ ∈ R
Cℓ×Hℓ×Wℓ and Xh ∈ R

Ch×Hh×Wh denote

the lower- and higher-level feature maps in semantic seg-

mentation networks, where C is the number of channels,

H and W are the spatial dimensions of the input tensor,

height and width, respectively. Given the lower-level fea-

ture map Xℓ, FHANet generates a channel-wise attention map

A ∈ R
Ch×Hh made up of height-wise per-channel scaling

factors and fitted to the channel and height dimensions of

the higher-level feature map Xh. This is done in a series

of steps: width-wise pooling (Fig. 2(a)), interpolation for
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Figure 2: Architecture of our proposed HANet. Each operation op is notated as Gop, and feature maps are in bold–Xℓ: lower-level feature

map, Z: width-wise pooled Xℓ, Ẑ: down-sampled Z, Qn: n-th intermediate feature map of 1D convolution layers, Â: down-sampled

attention map, A: final attention map, Xh: higher-level feature map, X̃h: transformed new feature map. Details can be found in Section 3.1.

coarse attention (Fig. 2(b,d)), and computing height-driven

attention map (Fig. 2(c)). Moreover, adding positional en-

coding is included in the process (Fig. 2(e)).

After computing the attention map, the given higher-

level feature map Xh can be transformed into a new rep-

resentation X̃h, acquired by an element-wise multiplication

of A and Xh. Note that single per-channel scaling vector

is derived for each individual row or for each set of multi-

ple consecutive rows, so the vector is copied along with the

horizontal direction, which is formulated as

X̃h = FHANet (Xℓ)⊙Xh = A⊙Xh. (2)

Width-wise pooling (Fig. 2(a)). In order to obtain a

channel-wise attention map, we firstly extract height-wise

contextual information from each row by aggregating the

Cℓ ×Hℓ ×Wℓ input representation Xℓ into a Cℓ ×Hℓ × 1
matrix Z using a width-wise pooling operation Gpool, i.e.,

Z = Gpool (Xℓ) . (3)

There are two typical pooling methods, average pooling and

max pooling, to squeeze the spatial dimension. The choice

between max pooling and average pooling for the width-

wise pooling operation is a hyper-parameter and is empiri-

cally set to average pooling. Formally, the h-th row vector

of Z is computed as

Z:,h = [
1

W

W
∑

i=1

X1,h,i; . . . ;
1

W

W
∑

i=1

XC,h,i]. (4)

Interpolation for coarse attention (Fig. 2(b,d)). After

the pooling operation, the model generates a matrix Z ∈
R

Cℓ×Hℓ . However, not all the rows of matrix Z may be

necessary for computing an effective attention map. As il-

lustrated in Fig. 1(b), class distributions for each part highly

differ from each other, even if we divide the entire area into

just three parts. Therefore, we interpolate Cℓ × Hℓ matrix

Z into Cℓ × Ĥ matrix Ẑ by downsampling it (Fig. 2(b)). Ĥ
is a hyper-parameter and is empirically set to 16. Since the

attention map, constructed from downsampled representa-

tions, is also coarse, the attention map is converted to have

the equivalent height dimension with the given higher-level

feature map Xh via upsampling (Fig. 2(d)).

Computation of height-driven attention map (Fig. 2(c)).

A height-driven channel-wise attention map A is obtained

by convolutional layers that take width-wise pooled and in-

terpolated feature map Ẑ as input. Recent work that uti-

lized a channel-wise attention in classification and seman-

tic segmentation [19, 40, 49] adopts fully connected lay-

ers rather than convolutional layers since they generate a

channel-wise attention for an entire image. However, we

adopt convolutional layers to let the relationship between

adjacent rows be considered while estimating the attention

map since each row is related to its adjacent rows.

The attention map A indicates which channels are criti-

cal at each individual row. There may exist multiple infor-

mative features at each row in the intermediate layer; in the

last layer, each row can be associated with multiple labels

(e.g., road, car, sidewalk, etc.). To allow these multiple fea-

tures and labels, a sigmoid function is used in computing

the attention map, not a softmax function. These operations

consisting of N convolutional layers can be written as

A = Gup

(

σ
(

GN
Conv

(

· · · δ
(

G1
Conv

(

Ẑ
)

))))

, (5)

where σ is a sigmoid function, δ is a ReLU activation, and

Gi
Conv denotes i-th one-dimensional convolutional layer. We

empirically adopt three convolutional layers: the first one

G1
Conv

(

Ẑ
)

= Q1 ∈ R
Cℓ

r
×Ĥ for channel reduction, the sec-

ond one G2
Conv

(

δ(Q1)
)

= Q2 ∈ R
2·

Cℓ

r
×Ĥ , and the last

one G3
Conv

(

δ(Q2)
)

= Â ∈ R
Ch×Ĥ for generating an atten-

tion map. The reduction ratio r reduces the parameter over-

head of HANet as well as gives a potential regularization

effect. An analysis on the effect of various reduction ratio

as a hyper-parameter will be presented in Section 4.2.2.

Incorporating positional encoding (Fig. 2(e)). When

humans recognize a driving scene, they have prior knowl-

edge on the vertical position of particular objects (e.g., road

and sky appear in the lower and upper part, respectively). In-

spired by this observation, we add the sinusoidal positional
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encodings [39] to the intermediate feature map Qi at the i-
th layer in the HANet. A hyper-parameter i is analyzed in

the supplementary material. For injecting positional encod-

ings, we follow the strategy proposed in Transformer [39].

The dimension of the positional encodings is same as the

channel dimension C of the intermediate feature map Qi.

The positional encodings are defined as

PE(p,2i) = sin
(

p/1002i/C
)

PE(p,2i+1) = cos
(

p/1002i/C
)

,

where p denotes the vertical position index in the entire im-

age ranging from zero to Ĥ − 1 of coarse attention, and i
is the dimension. The number of the vertical position is set

to Ĥ as the number of rows in coarse attention. The new

representation Q̃ incorporating positional encodings is for-

mulated as

Q̃ = Q⊕ PE, (6)

where ⊕ is an element-wise sum.

Height positions are randomly jittered by up to two posi-

tions to generalize over different camera location from vari-

ous datasets to prevent an inordinately tight position-object

coupling. Additionally, we experiment with using learnable

positional embeddings [17] to find the best way to incorpo-

rate positional information in the supplementary material.

Meanwhile, CoordConv [26] proposed to embed height

and width coordinates in the intermediate features for vari-

ous vision tasks: extra channels containing hard-coded co-

ordinates (e.g., height, width, and optional r) are concate-

nated channel-wise to the input representation, and then a

standard convolutional layer is applied. Unlike this model,

HANet exploits positional information of height to obtain

attention values, C × H × 1, which is used for gating the

output representations of main networks. Therefore, HANet

differs significantly from CoordConv in terms of how to ex-

ploit the positional information. We experimentally com-

pare ours with CoordConv in Section 4.2.2.

3.2. Segmentation Networks based on HANet

We adopt DeepLabv3+ [6] as a baseline for semantic

segmentation. DeepLabv3+ has an encoder-decoder archi-

tecture with ASPP that employs various dilation rates. We

add HANet to the segmentation networks at five different

layers (Fig. 3) after the point where high-level representa-

tion is encoded from backbone networks. This is because

the higher-level feature has a stronger correlation with the

vertical position. We conduct an ablation study to see the

performance gain from adding HANet at different layers.

3.3. Comparison with Other Attention Strategies

Self-attention-based approaches like DANet [16], ob-

tain attention values, (H × W )×(H × W ), C × C, from

the semantic interdependencies in spatial and channel di-

mensions, respectively. However, HANet does not consider

Low-level
features

Conv. layer

(a)
ResNet stage 4

ResNet stage 1~3

(b)
ASPP

Conv. layer

Conv. layers

Conv. layer

Per-pixel predictions

Input Conv.

HANet L1

HANet L2

HANet L3
(c)

HANet L4
(d)

HANet L5
(e)

Figure 3: Semantic segmentation networks incorporating HANet

in five different layers.

the interdependencies among the dimensions. HANet in-

cludes one-dimensional convolutional layers being a sep-

arate branch as a modular design (Fig. 2(a)-(d)), which

specifically consider the structural property in urban-scene

data. In this manner, HANet derives attention values, C ×
H × 1, to gate activation at the horizontal section of a fea-

ture map output in the main networks, considering vertical

position. HANet is significantly more lightweight than self-

attention-based approaches that considers the relationship

between every pair in each dimension. Meanwhile, channel-

wise attention approaches such as SENet [19] generates at-

tention values, C×1×1, only at an image level. This is not

ideal for urban-scene segmentation as most of the images

shares similar circumstances and context.

4. Experiments

In this section, we first describe the implementation de-

tails of HANet. Then, we experimentally demonstrate the

effectiveness and wide applicability of our proposed meth-

ods by extensive quantitative analysis including ablation

studies. We evaluate HANet on two different urban-scene

datasets including Cityscapes [12] and BDD100K [45]. Fur-

thermore, we visualize and analyze the attention map gener-

ated from HANet. For all the quantitative experiments, we

measure the segmentation performance in terms of mean In-

tersection over Union (mIoU) metric.

4.1. Experimental Setup

Base segmentation architecture Our network architec-

ture for semantic segmentation is based on DeepLabv3+ [8].

We adopt various backbone networks including Shuf-

fleNetV2 [29], MobileNetV2 [37], and ResNet [18] to ver-

ify wide applicability of HANet. Note that HANet can

be easily inserted on top of various backbone networks.

The adopted backbone networks are pretrained on Ima-

geNet [36] for all the experiments, unless otherwise noted.

Stronger baseline To strictly verify the effectiveness of

HANet, we improved the performance of the DeepLabv3+

baseline adopting ResNet-101, by integrating SyncBatch-

9377



Backbone OS Models Params GFLOPs mIoU(%)

ShuffleNet
V2 (1×) [29]

32
Baseline 12.6M 64.34 70.27

+HANet 14.9M 64.39 71.30

16
Baseline 12.6M 117.09 70.85

+HANet 13.7M 117.14 71.52

MobileNet
V2 [29]

16
Baseline 14.8M 142.74 73.93

+HANet 16.1M 142.80 74.96

8
Baseline 14.8M 428.70 73.40

+HANet 15.4M 428.82 74.70

ResNet-50
[18]

16
Baseline 45.1M 553.74 76.84

+HANet 47.6M 553.85 77.78

8
Baseline 45.1M 1460.56 77.76

+HANet 46.3M 1460.76 78.71

ResNet-101
[18]

16
Baseline 64.2M 765.53 77.80

+HANet 65.4M 765.63 79.31

8
Baseline 64.2M 2137.82 79.25

+HANet 65.4M 2138.02 80.29

Table 2: Comparison of mIoU, the number of model parameters

and FLOPs between the baseline and HANet on Cityscapes valida-

tion set according to various backbone networks and output stride.

Adding HANet to the baseline consistently increase the mIoU with

minimal cost increase.

Norm (batch statistics synchronized across multiple GPUs)

publicly included in PyTorch v1.1 and by replacing a sin-

gle 7×7 convolution by three 3×3 convolutions in the first

layer of ResNet-101. we also adopted an auxiliary cross-

entropy loss in the intermediate feature map and class uni-

form sampling [35, 53] to handle class imbalance prob-

lems. As a result, our baseline achieves the mIoU of 79.25%

on the Cityscapes validation set, which surpasses the other

baseline models based on DeepLabv3+ architecture with

ResNet-101 of previous work.

Training protocol. We employ SGD optimizer with ini-

tial learning rate of 1e-2 and momentum of 0.9. The weight

decays are 5e-4 and 1e-4 for main networks and HANet,

respectively. The learning rate scheduling follows the poly-

nomial learning rate policy [27]. The initial learning rate is

multiplied by
(

1− iteration
max iteration

)power
, where power is 0.9.

To avoid overfitting, typical data augmentations in seman-

tic image segmentation models are used, including random

horizontally flipping, random scaling in the range of [0.5,2],

gaussian blur, color jittering, and random cropping.

4.2. Cityscapes

The Cityscapes dataset [12] is a large-scale urban-scene

dataset, holding high-quality pixel-level annotations of 5K

images and 20K coarsely annotated images. Finely anno-

tated images consist of 2,975 train images, 500 validation

images, and 1,525 test images. The annotations of test im-

ages are withheld for benchmarks. The resolution of each

image is 2048×1024, and 19 semantic labels are defined.

In all the experiments on Cityscapes validation set, we train

our models using finely annotated training set for 40K itera-

tions with a total batch size of 8 and a crop size of 768×768.

R50-16

R50-16+HANet

M-8

M-8+HANet

R50-8

R50-8+HANet
R101-8

R101-8+HANet

M-16

M-16+HANet

R101-16

R101-16+HANet

S-16

S-16+HANet

S-
32

S-
32

+H
A
N
et

10M 25M 50M

Params(#)

Figure 4: Comparison of the performance and complexity among

the baseline and HANet on the various backbone networks. x-axis

denotes teraFLOPs and y-axis denotes mIoU. The circle size de-

notes the number of model parameters. The texts in the colored cir-

cle indicate backbone networks, output stride, and whether HANet

is adopted to the baseline. S, M, R50, and R101 denote Shuf-

fleNetV2, MobileNetV2, ResNet-50, and -101, respectively. (e.g.,

S-16: Baseline, ShuffleNetV2, and output stride 16)

4.2.1 Effectiveness of the HANet components.

Table 2 shows the effect of adopting HANet through per-

formance increase (mIoU) according to the number of pa-

rameters and FLOPs which indicate model size and com-

plexity, respectively. To demonstrate the wide applicability

of HANet, various backbones are examined including Shuf-

fleNetV2 [29], MobileNetV2 [37], ResNet-50, and ResNet-

101 [18]. Models with HANet consistently outperform

baseline models with significant increases on MobileNetV2

and ResNet-101. Moreover, the model parameters and com-

plexity results indicate that the cost of adding HANet is

practically negligible. From Fig. 4, we can see clearly that

adding HANet (blue arrow) is worth more than it costs in

FLOPs, compared to improving the model through chang-

ing output stride (red arrow). Therefore, HANet has a great

advantage of not only an effective way of improving seman-

tic segmentation accuracy, but also lightweight algorithm

design for practical usage.

4.2.2 Ablation studies

For ablation studies, we use ResNet-101 backbone with out-

put stride of 16 and evaluate on the Cityscapes validation

set. Table 3 shows the performance gain when HANet is

added to the multiple layers and incorporates the positional

encodings. Additionally, we conduct experiments by chang-

ing channel reduction ratio r and pooling method. When we

add HANet including positional encodings at multiple lay-

ers from L1 to L4 (Fig. 3) and the reduction ratio is set to

32, the mIoU significantly increases from 77.80 to 79.31. To

compare with CoordConv [26], we conduct experiments by

replacing standard convolutional layers after the backbone

with CoordConv. Table 3 shows that HANet outperforms

the baseline with CoordConv.
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Layers Positional
encoding

Ratio r
Pooling

method
mIoU

1 2 3 4 5

X X 32 average 78.52

X X X 32 average 78.85

X X X X 32 average 78.72

X X X X X 32 average 79.31

X X X X X X 32 average 78.79

X X X X X 16 average 79.15

X X X X X 64 average 79.08

X X X X 32 average 78.25

X X X X X 32 max 78.87

Baseline 77.80

Baseline + CoordConv [26] (Height + Width) 78.82

Table 3: Ablation studies and hyper-parameter impacts with re-

gard to the HANet injected layers, using positional encodings or

not, and channel reduction ratio. ResNet-101, output stride 16 on

Cityscapes validation set.

4.2.3 Inference techniques.

For further performance improvements, we adopt fre-

quently used techniques such as left-right flipped, multi-

scale (with scales={0.5, 1.0, 2.0}) and sliding inference. In

such manner, our best model achieves 82.05% mIoU on the

Cityscapes validation set as in Table 4.

Inference techniques Baseline +HANet

None 79.25 80.29

Multiscale, Sliding, and Flipping 81.14 82.05

Table 4: mIoU(%) comparison with respect to inference tech-

niques. ResNet-101, output stride 8 on Cityscapes validation set.

4.2.4 Efficacy at segmented regions

As mentioned in Section 1, the average entropy decreases

as we divide the image into multiple horizontal subsections.

This implies the performance improvement in the entire re-

gion of an image. Besides, the entropy of the upper and

lower regions have low entropy compared to the middle re-

gion. In this respect, we expect the performance increase

arising from HANet would be larger in the upper and lower

regions than that in the middle or entire region. Indeed, the

performance significantly rises on the upper and lower re-

gions as in Table 5.

Model Upper Mid-upper Mid-lower Lower Entire

Baseline 78.69 76.35 83.16 70.59 81.14

+HANet 80.29 77.09 84.09 73.04 82.05

Increase(%) +1.60 +0.74 +0.93 +2.45 +0.91

Table 5: mIoU(%) comparison to baseline on each part of image

divided into four horizontal sections. ResNet-101, output stride 8

on Cityscapes validation set.

4.2.5 Comparison to other state-of-the-art models

To compare with other state-of-the-arts, we train our mod-

els using finely annotated training and validation set for

90K iterations. In case of adopting ResNext-101 [42] back-

bone, coarsely annotated images are additionally used and

the model is pretrained on Mapillary [32]. The crop size and

batch size are changed into 864×864 and 12, respectively.

The inference techniques from Section 4.2.3 are used, but

we do not adopt any other techniques such as online boot-

strapping for hard training pixels [41]. We compare our best

models based on ResNet-101 and ResNext-101 with other

recent models on the Cityscapes test set (Table 6). Our mod-

els achieve a new state-of-the-art performance.

4.3. BDD100K

Berkeley Deep Drive dataset (BDD100K) [45] is a large-

scale diverse driving video database. It includes a seman-

tic image segmentation dataset, consisting of 7,000 training

and 1,000 validation images with a resolution of 1280×720.

It is a challenging dataset including images of various driv-

ing circumstance such as day, night, and diverse weather

conditions. Table 7 shows the superior results of HANet in

BDD100K. The training strategy of BDD100K is similar

to Cityscapes, but we change the crop size into 608×608

and train for 60K iterations with a total batch size of 16.

These adjustments simply comes from smaller image size

and larger dataset size compared to Cityscapes.

4.4. Qualitative Analysis

Attention map visualization. We visualize the attention

weights to analyze the behavior of the proposed HANet.

The attention visualization highlights those channels em-

phasized at a different vertical position. Through the visu-

alization, we can find out interesting clues to validate our

Model (Year) Backbone mIoU road swalk build. wall fence pole tligh. tsign veg terr. sky pers. rider car truck bus train mcyc bcyc

BFP [13](’19) ResNet-101 81.4 98.7 87.0 93.5 59.8 63.4 68.9 76.8 80.9 93.7 72.8 95.5 87.0 72.1 96.0 77.6 89.0 86.9 69.2 77.6

DANet [16](’19) ResNet-101 81.5 98.6 86.1 93.5 56.1 63.3 69.7 77.3 81.3 93.9 72.9 95.7 87.3 72.9 96.2 76.8 89.4 86.5 72.2 78.2

CCNet [16](’19) ResNet-101 81.5 98.6 86.1 93.5 56.1 63.3 69.7 77.3 81.3 93.9 72.9 95.7 87.3 72.9 96.2 76.8 89.4 86.5 72.2 78.2

ACFNet [48](’19) ResNet-101 81.8 98.7 87.1 93.9 60.2 63.9 71.1 78.6 81.5 94.0 72.9 95.9 88.1 74.1 96.5 76.6 89.3 81.5 72.1 79.2

Ours ResNet-101 82.1 98.8 88.0 93.9 60.5 63.3 71.3 78.1 81.3 94.0 72.9 96.1 87.9 74.5 96.5 77.0 88.0 85.9 72.7 79.0

DeepLabv3+ [8](’18)† Xception [11] 82.1 98.7 87.0 93.9 59.5 63.7 71.4 78.2 82.2 94.0 73.0 95.8 88.0 73.3 96.4 78.0 90.9 83.9 73.8 78.9

GSCNN [38](’19)‡ WideResNet38 [47] 82.8 98.7 87.4 94.2 61.9 64.6 72.9 79.6 82.5 94.3 74.3 96.2 88.3 74.2 96.0 77.2 90.1 87.7 72.6 79.4

Ours†‡ ResNext-101 [42] 83.2 98.8 88.0 94.2 66.6 64.8 72.0 78.2 81.4 94.2 74.5 96.1 88.1 75.6 96.5 80.3 93.2 86.6 72.5 78.7

Table 6: Comparison of mIoU and per-class IoU with other state-of-the-art models on Cityscapes test set. † denotes training including

Cityscapes coarsely annotated images. ‡ denotes training with Mapillary pretrained model.
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Backbone OS Baseline +HANet

MobileNetV2 16 58.91% 60.05%

ResNet-101 16 63.75% 64.56%

ResNet-101 8 64.84% 65.60%

Table 7: Comparison of mIoU between the baseline and HANet

on BDD100K validation set. The output stride is set to 16 and the

crop size is 608×608.

observations and methods.

Fig. 5 clearly shows that HANet assigns a different

amount of attention to a different vertical position, indicat-

ing that the model properly learns structural priors with re-

spect to the height in urban-scene data.

HANet L1 L2 L3 L4

he
ig
ht

channel
Figure 5: Visualization of attention map from HANet at different

layers. x-axis denotes the channels, and y-axis denotes the height

of the feature map, showing which channels are weighted at dif-

ferent vertical position. The channels focused by each height are

clearly different. To better visualize, the channels are clustered.

Fig. 6 visualizes the attention map from HANet L2,

which computes the attention weights for ASPP layer. In

ASPP layer, the channels are obtained from convolution fil-

ters that have multi-scale receptive fields and grouped for

each scale. Therefore, we can interpret the HANet L2 at-

tention map by each group, with the sequence of channels

remaining unchanged. Colored boxes give us insights of our

method and the urban-scene images. The green boxes in

Fig. 6 shows the low-focused channels of the middle region

of images, while blue box indicates the channels which are

relatively more focused. That is, the channels obtained from

the small receptive field are weighted in the middle region.

Since the middle region is where small objects are crowded

as pointed in the left figure in Fig. 6, small receptive fields

img
pool

conv
1x1

r:6 r:12 r:18
conv3x3

HANet L2

he
ig

ht

100

500

300

pixel #

small

large

objects
/stuff

Figure 6: (left) The color in the heatmap denotes an average num-

ber of pixels that make up an object. Relatively small objects are

crowded in the middle regions, while large objects exist in the

lower region. (right) Visualization of attention map from HANet

at the second layer. Unlike Fig. 5, the sequence of channels re-

mains unchanged.

are effective for this region and vice versa. In this manner,

we verify that HANet properly learns and captures the in-

trinsic features of urban scene.

Fig. 7 illustrates that the distribution of the attention map

(right figure) from HANet at the last layer, which is follow-

ing the actual height-wise class distribution (left figure) ob-

tained from the Cityscapes training images. Each class gives

a different weight according to the vertical position, mean-

ing that the model actually uses vertical positions in the

image. This information corresponds to the observation we

introduced through the class distribution analysis in Fig. 1

and Table 1. For instance, road (class 0) appears only in the

middle and the lower regions, while sky (class 10) is mainly

emphasized in the upper rows.

Visualization of semantic segmentation results are

shown in the supplementary material.

he
ig

ht

0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 10 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 10 1 2 3 4 5 6 7 8

he
ig

ht

HANet L5Real class distribution

Road
Sky

Car

Road
Sky

Car

Figure 7: Height-wise class distributions and attention map visu-

alization (L5). The number ranging from 0 to 18 indicates a dif-

ferent class. The darker it is colored, the higher probability (more

pixels) assigned to a particular class. The attention visualization

follows the patterns in the real class distribution.

5. Conclusions

In this paper, we proposed HANet for urban-scene seg-

mentation as an effective and wide applicable add-on mod-

ule. Our method exploits the spatial priors existing in

urban-scene images to construct a cost-effective architec-

ture. We demonstrated the performance increase by adding

our method to the baseline model with negligible cost in-

crease. Moreover, we visualized and analyzed the atten-

tion maps to show the validity of our initial hypothesis that

exploiting vertical positional information helps for urban-

scene semantic segmentation.
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