
CARS: Continuous Evolution for Efficient Neural Architecture Search

Zhaohui Yang1,2, Yunhe Wang2, Xinghao Chen2, Boxin Shi3,4,
Chao Xu1, Chunjing Xu2, Qi Tian2∗, Chang Xu5

1 Key Lab of Machine Perception (MOE), Dept. of Machine Intelligence, Peking University.
2 Noah’s Ark Lab, Huawei Technologies. 3 NELVT, Dept. of CS, Peking University. 4 Peng Cheng Laboratory.

5 School of Computer Science, Faculty of Engineering, University of Sydney.

{zhaohuiyang,shiboxin}@pku.edu.cn; xuchao@cis.pku.edu.cn

{yunhe.wang,xinghao.chen,tian.qi1,xuchunjing}@huawei.com; c.xu@sydney.edu.au

Abstract

Searching techniques in most of existing neural archi-

tecture search (NAS) algorithms are mainly dominated by

differentiable methods for the efficiency reason. In contrast,

we develop an efficient continuous evolutionary approach

for searching neural networks. Architectures in the popula-

tion that share parameters within one SuperNet in the lat-

est generation will be tuned over the training dataset with

a few epochs. The searching in the next evolution genera-

tion will directly inherit both the SuperNet and the popu-

lation, which accelerates the optimal network generation.

The non-dominated sorting strategy is further applied to

preserve only results on the Pareto front for accurately up-

dating the SuperNet. Several neural networks with different

model sizes and performances will be produced after the

continuous search with only 0.4 GPU days. As a result, our

framework provides a series of networks with the number of

parameters ranging from 3.7M to 5.1M under mobile set-

tings. These networks surpass those produced by the state-

of-the-art methods on the benchmark ImageNet dataset.

1. Introduction

Convolutional neural networks have made great progress
in a large range of computer vision tasks, such as recog-
nition [22, 19, 18], detection [12], and segmentation [21].
Over-parameterized deep neural network can produce im-
pressive performance but will consume huge computational
resources at the same time. The efficient block design [57,
56, 55], tensor decomposition [27, 52, 53, 45, 46], prun-
ing [28, 29, 13], distillation [4, 51] and quantization [25]
are popular techniques to make networks efficient. Design-
ing novel network architectures heavily relies on human ex-
perts’ knowledge and experience, and may take many tri-

∗Corresponding author.

Architecture Top-1 % Latency (ms)
DARTS 73.3 113.2
NASNet 74.0 104.7
PNASNet 74.2 157.69

GDAS 74.0 115.47
CARS-Lat-A (ours) 62.6 41.9
CARS-Lat-B (ours) 67.4 44.9
CARS-Lat-C (ours) 69.5 45.6
CARS-Lat-D (ours) 71.9 57.6
CARS-Lat-E (ours) 72.2 64.5
CARS-Lat-F (ours) 74.0 89.3

40 60 80 100 120 140 160
latency (ms)

62

64

66

68

70

72

74

To
p-

1 
ac

c 
(%

)
CARS-Lat (Ours)

DARTS
NASNet PNASNet

GDAS

Figure 1. CARS-Lat models are searched on CIFAR-10 dataset.
The search phase considers validation performance and device-
aware variable, i.e., mobile device latency on HUAWEI P30 Pro.
The Top-1 accuracies are the performances on the ILSVRC2012
dataset.

als before achieving meaningful results [22]. To acceler-
ate this process and make it automated, network architec-
ture search (NAS) [44, 14, 36, 20, 16] has been proposed,
and the learned architectures have exceeded those human-
designed architectures on a variety of tasks. However, these
searching methods usually require lots of computational
resources to search for architectures of acceptable perfor-
mance.

Techniques for searching neural architectures are mainly
clustered into three groups, i.e., Evolution Algorithm (EA)
based, Reinforcement Learning (RL) based, and gradient-
based methods. EA-based works, [38, 37, 48, 42, 40, 41]
initialize a set of models and evolve for better architec-
tures, which is time-consuming, e.g., Real et al. takes 3150
GPU days for searching [38]. RL-based works, [60, 58]
use the controller to predict a sequence of operations, and
train different architectures to gain the rewards. Given an
architecture, these methods have to train it for a large num-

1829



ber of epochs, and then evaluate its performance to guide
for evolution or optimize the controller, which makes the
searching stage less efficient. Gradient-based methods (e.g.,
DARTS [32]) first train a SuperNet and introduce the atten-
tion mechanism on the connections while searching, then
remove weak connections after searching. This phase is
conducted by gradient descent optimization and is quite ef-
ficient. However, the searched architectures suffer from lack
of variety.

Although some experiments in [37] show that the evolu-
tionary algorithm discovers better neural architectures than
RL-based approaches, the search cost of EA is much expen-
sive due to the evaluation procedure of each individual, i.e.,
a neural network in the evolutionary algorithm is indepen-
dently evaluated. Moreover, there could be some architec-
tures with extremely worse performance in the search space.
If we directly follow the weight sharing approach proposed
by ENAS [35], the SuperNet has to be trained to compen-
sate for those worse search space. It is necessary to reform
existing evolutionary algorithms for efficient yet accurate
neural architecture search.

In this paper, we propose an efficient EA-based neural ar-
chitecture search framework. A continuous evolution strat-
egy is developed to maximully utilize the knowledge we
have learned in the last evolution generation. Specifically,
a SuperNet is first initialized with considerable cells and
blocks. Individuals in the evolutionary algorithm represent-
ing architectures derived in the SuperNet will be generated
through several benchmark operations (i.e., crossover and
mutation). Non-dominated sort strategy is adopted to select
several excellent architectures with different model sizes
and accuracies, and corresponding cells in the SuperNet
will be updated for subsequent optimization. The evolution
procedure in the next generation is continuously executing
based on the updated SuperNet and the multi-objective solu-
tion set obtained by the non-dominated sorting. In addition,
we propose to exploit a protection mechanism to avoid the
small model trap problem. The proposed continuous evo-
lution architecture search (CARS) can provide a series of
models on the Pareto front with high efficiency. The superi-
ority of our method is verified on benchmark datasets over
the state-of-the-art methods.

2. Related Works

2.1. Network Architecture Search

Gradient-based Network Architecture Search (NAS)
methods contain two steps: network parameter optimization
and architecture optimization. The network parameter opti-
mization step optimizes the parameters in the standard lay-
ers (i.e., convolution, batch normalization, fully connected
layer). The architecture optimization step learns the pattern
of accurate network architectures.

The parameter optimization step can be divided into two
categories, independent optimization and sharing optimiza-
tion. Independent optimization learns each network sepa-
rately, i.e., AmoebaNet [37] takes thousands of GPU days
to evaluate thousands of models. To accelerate training,
[11, 10] initialize parameters by network morphism. One-
shot methods [1, 17] step further by sharing all the parame-
ters for different architectures within one SuperNet. Rather
than training thousands of different architectures, only one
SuperNet is required to be optimized.

The architecture optimization step includes RL-based,
EA-based, and gradient-based approaches. RL-based meth-
ods [60, 61, 35] use the recurrent network as the network
architecture controller, and the performances of the gener-
ated architectures are utilized as the rewards for training the
controller. The controller converges during training and fi-
nally outputs architectures with superior performance. EA-
based approaches [48, 37] search architectures with the help
of evolutionary algorithms. The validation accuracy of each
individual is utilized as the fitness to evolve the next gen-
eration. Gradient-based approaches [32, 49, 47] view the
network architecture as a set of learnable parameters and
optimize the parameters by the standard back-propagation
algorithm.

2.2. Multiobjective Network Architecture Search

Considering multiple complementary objectives, i.e., ac-
curacy, the number of parameters, float operations (FLOPs),
energy, and latency, there is no single architecture that
surpasses all the others on all the objectives. Therefore,
architectures within the Pareto front are desired. Many
different works have been proposed to deal with multi-
objective network architecture search. NEMO [26] and
MNASNet [44] target at speed and accuracy. DPPNet and
LEMONADE [8, 11] consider device-related and device-
agnostic objectives. MONAS [23] targets at accuracy and
energy. NSGANet [33] considers FLOPs and accuracy.

These methods are less efficient for models are opti-
mized separately. In contrast, our architecture optimization
and parameter optimization steps are conducted alterna-
tively. Besides, the parameters for different architectures are
shared, which makes the search stage much more efficient.

3. Approach

In this section, we develop a novel continuous evolu-
tionary approach for searching neural architectures, namely
CARS. The CARS search stage includes two procedures,
i.e., parameter optimization and architecture optimization.

We use the Genetic Algorithm (GA) for architecture evo-
lution because GA maintains a set of well-performed archi-
tectures that cover a vast space. We maintain a set of ar-
chitectures (a.k.a. connections) C = {C1, . . . , CP }, where
P is the population size. The architectures in the population

1830



are gradually updated according to the proposed pNSGA-III
method during the architecture optimization step. To make
the search stage efficient, we maintain a SuperNet N , which
shares parameters W for different architectures. The pa-
rameter sharing strategy dramatically reduces the compu-
tational complexity of separately training these different ar-
chitectures.

3.1. SuperNet of CARS

Different networks are sampled from the SuperNet N ,
and each network Ni can be represented by a set of full
precision parameters Wi and a set of binary connection pa-
rameters (i.e., {0, 1}) Ci. The 0-element in connection Ci

means the network does not contain this connection to trans-
form data flow, and the 1-element connection means the net-
work uses this connection. From this point of view, each
network Ni could be represented as (Wi, Ci) pair.

Full precision parameters W are shared by a set of net-
works. If these network architectures are fixed, the parame-
ters could be optimized through back-propagation. The op-
timal W fits for all the networks Ni to achieve higher recog-
nition performance. After the parameters are converged, we
could alternately optimize the binary connections C by the
GA algorithm. These two steps form the main optimization
of our proposed method. We will introduce these two opti-
mization steps in the following.

3.2. Parameter Optimization

The parameters W are the collection of all the param-
eters in the network. The parameters Wi of the i-th indi-
vidual are Wi = W ⊙ Ci, i ∈ {1, . . . , P}, where the
⊙ is the mask operation that keeps the parameters of the
complete graph only for the positions corresponding to 1-
elements in the connection Ci. Denote X as the input data,
the prediction of this network is Ni(X), where Ni is the
i-th architecture. The prediction loss can be expressed as
Li = H(Ni(X), Y ), where H is the criterion and Y is the
target. The gradient of Wi can be calculated as

dW i =
∂Li

∂Wi

=
∂Li

∂W
⊙ Ci. (1)

Parameters W should fit all the individuals, and thus the
gradients for all networks are accumulated to calculate the
gradient of parameters W

dW =
1

P

P∑

i=1

dW i =
1

P

P∑

i=1

∂Li

∂W
⊙ Ci. (2)

Any layer is only optimized by networks that use this
layer during forwarding. By collecting the gradients of in-
dividuals in the population, the parameters W are updated
through the SGD algorithm.

As we have maintained a large set of architectures with
shared weights in the SuperNet, we borrow the idea of

stochastic gradient descent and use mini-batch architectures
for updating parameters. Accumulating the gradients for all
networks would take much time for one-step gradient de-
scent, and thus we use mini-batch architectures for updat-
ing shared weights. We use B different architectures where
B < P , and the indices of architectures are {n1, . . . , nB}
to update parameters. The efficient parameter updating of
Eqn 2 is detailed as Eqn 3

dW ≈
1

B

B∑

j=1

∂Lnj

∂Wnj

. (3)

Hence, the gradients over a mini-batch of architectures
are taken as an unbiased approximation of the averaged gra-
dients of all the P different individuals. The time cost for
each update could be largely reduced, and the appropriate
mini-batch size leads to a balance between efficiency and
accuracy.

3.3. Architecture Optimization

As for the architecture optimization procedure, we
use the evolution algorithm together with the non-
dominated sorting strategy. The non-dominated sorting
strategy has been introduced in the NSGA-III [7]. Denote
{N1, . . . ,NP } as P different networks and {F1, . . . ,FM}
as M different measurements we want to minimize. The
measurements, for example, the number of parameters, float
operations, latency, energy, and accuracy, could have some
conflicts, which increase the difficulty in discovering an op-
timal solution that minimizes all these metrics.

In practice, Ni dominates Nj if two conditions are satis-
fied: (1) For any of the measurements, the performance of
Ni is not worse than that of Nj . (2) The model Ni behaves
better than Nj on at least one measurement. Formally, the
definition of domination can be summarized as below.

Definition 1. Considering two networks Ni and Nj , and
a series of measurements {F1, . . . ,FM} we want to mini-
mize. If

Fk(Ni) ≤ Fk(Nj), ∀k ∈ {1, . . . ,M}

Fk(Ni) < Fk(Nj), ∃k ∈ {1, . . . ,M},
(4)

Ni is said to dominate Nj , i.e., Ni � Nj .

According to the above definition, if Ni dominates Nj ,
Nj can be replaced by Ni during the evolution procedure
since Ni performs better in terms of at least one metric and
not worse on other metrics. By exploiting this approach, we
can select a series of excellent neural architectures from the
population in the current generation. Then, these networks
can be utilized for updating the corresponding parameters
in the SuperNet.

Although the above non-dominated sorting strategy uses
the NSGA-III method [7] to select some better models for

1831



0.10 0.15 0.20 0.25 0.30 0.35
Model Size (MB)

0

10

20

30

40

50

60

70

To
p-

1 
ac

c 
(%

)

Generation 1
Generation 2
Generation 3
Generation 4
Generation 5

(a) NSGA-III (1-5 generation)

0.10 0.15 0.20 0.25 0.30 0.35
Model Size (MB)

0

10

20

30

40

50

60

70

80

To
p-

1 
ac

c 
(%

)
(b) NSGA-III (20 generation)

0.10 0.15 0.20 0.25 0.30 0.35
Model Size (MB)

0

10

20

30

40

50

60

70

To
p-

1 
ac

c 
(%

)

Generation 1
Generation 2
Generation 3
Generation 4
Generation 5

(c) pNSGA-III (1-5 generation)

0.10 0.15 0.20 0.25 0.30 0.35
Model Size (MB)

0

10

20

30

40

50

60

70

80

To
p-

1 
ac

c 
(%

)

(d) pNSGA-III (20 generation)

Figure 2. Comparision between different evolution strategies. SuperNet is trained on the train set and evaluated on the validation set.
Figure 2(a) shows five evolution generations using NSGA-III. Evolution with NSGA-III suffers from small model trap, which lead the
distribution bias to smaller models, and Figure 2(b) shows the distribution of evolution with NSGA-III after 20 generations, where the
maintained architectures are all the small models. Figure 2(c) shows the evolution generations using proposed pNSGA-III. Evolution with
pNSGA-III provides protection for larger models, and Figure 2(d) shows the distribution of evolution with pNSGA-III after 20 generations,
where the maintained architectures covers a large range over the model size dimension.

updating parameters, there exists a small model trap phe-

nomenon during the search procedure. Specifically, since
the parameters in the SuperNet still need optimization,
the accuracy of each individual architecture in the current
generation may not always stand for its performance that
can be eventually achieved, as discussed in NASBench-
101 [54]. Thus, some smaller models with fewer parameters
but higher test accuracy tend to dominate those larger mod-
els of lower accuracy but have the potential for achieving
higher accuracies, as shown in Figure 3.

Therefore, we propose to improve the conventional
NSGA-III for protecting these larger models, namely
pNSGA-III. More specifically, the pNSGA-III algorithm
takes the increasing speed of the accuracy into consider-
ation. We take the validation accuracy and the number of
parameters as an example. For NSGA-III method, the non-
dominated sorting algorithm considers two different objec-
tives and selects individuals according to the sorted Pareto
stages. For the proposed pNSGA-III, besides considering
the number of parameters and accuracy, we also conduct a
non-dominated sorting algorithm that considers the increas-
ing speed of the accuracy and the number of parameters.
Then the two different Pareto stages are merged.1 Assum-
ing P is the population size, after having two Pareto stages
R1...n1

, Q1...n2
, we gradually merge two Pareto stages from

1The concerns about better middle sized models: The pNSGA-III pro-
cess two times. For the first time, non-dominated sorting considers model
size and accuracy (larger models with higher accuracy and smaller mod-
els with lower accuracy, the left side sorting). For the second time, non-
dominated sorting considers the model size and increasing speed of ac-
curacy (larger models with slower accuracy increasing speed and smaller
models with faster accuracy increasing speed, the right side sorting). For
the better middle-sized models, because they are larger and have higher
accuracy than the small models, so they are ranked in the first few Pareto
fronts for the first run. Also, the better middle-sized model with higher
precision has a higher accuracy increasing speed than large models. Thus
they are also ranked in the first few Pareto fronts for the second run. The
selected architectures to construct the next generation is a hat-like form.
So our proposed pNSGA-III will keep the accurate middle sized models in
the next generation without omissions.

the first Pareto front, and the union set Ui after merging the
i-th front is Ui = (R1 ∪Q1)∪ · · · ∪ (Ri ∪Qi). We keep the
first P individuals from Umax(n1,n2). In this way, the large
networks with slower performance increasing speed could
be kept in the population.

In Figure 2, the populations of using NSGA-III and
pNSGA-III are visualized. If we use NSGA-III to update
architectures, the small model trap problem is encountered.
It is obvious that the pNSGA-III can protect large models
during evolution and provide a wide range of models. More
detailed discussions are introduced in the following section.

3.4. Continuous Evolution for CARS

In summary, there are two steps for searching optimal
architectures by using the proposed CARS pipeline, 1) Ar-
chitecture Optimization 2) Parameter Optimization. In ad-
dition, the parameter warm-up is also introduced to update
the parameters at first.

Parameter Warmup. Since the shared weights of our
SuperNet are randomly initialized, if the architectures in
the population are also randomly initialized, the most fre-
quently used operations for all the architectures would be
trained more times compared with other operations. Thus,
by following one-shot NAS methods [1, 17, 6, 47], we use
a uniform sampling strategy to initialize the parameters in
the SuperNet. In this way, the SuperNet trains each pos-
sible operation with the same possibility. For example, in
DARTS [32] pipeline, there are eight different operations
for each node, including convolution, pooling, identity map-
ping and no connection. Each operation will be sampled
with a probability of 1

8 .

Architecture Optimization. After initializing the param-
eters of the SuperNet, we first randomly sample P different
architectures, where P is a hyper-parameter and denotes the
number of maintained individuals in the population. During

1832



0 100 200 300 400 500 600
Epochs

40

50

60

70

80

90

100
To

p-
1 

ac
c 

(%
)

Model A: 2.1 MB, 96.87% Acc
Model B: 2.9 MB, 97.17% Acc
Model C: 3.6 MB, 97.20% Acc

(a) Acc curve (epochs=500, window=1)

0 10 20 30 40 50
Epochs

40

50

60

70

80

90

To
p-

1 
ac

c 
(%

)

Model A: 2.1 MB, 96.87% Acc
Model B: 2.9 MB, 97.17% Acc
Model C: 3.6 MB, 97.20% Acc

(b) Acc curve (epochs=50, window=1)

0 10 20 30 40 50
Epochs

40

50

60

70

80

90

To
p-

1 
ac

c 
(%

)

Model A: 2.1 MB, 96.87% Acc
Model B: 2.9 MB, 97.17% Acc
Model C: 3.6 MB, 97.20% Acc

(c) Acc curve (epochs=50, window=5)

Figure 3. The accuracy curves of three models with different model sizes. The left figure shows the accuracy curves of training for 600
epochs, the middle figure shows the accuracy curves for the first 50 epochs, and the right figure shows the curves smoothed by a window
size of 5.

the architecture evolution step, we first generate t × P off-
springs, where t is the hyper-parameter controlling the ex-
pand ratio. We then use pNSGA-III to sort the architectures
and select P individuals from (t+ 1)× P individuals. The
selected P architectures form the next generation.

Parameter Optimization. Given a set of architectures,
we use the proposed mini-batch architectures update
scheme for parameter optimization according to Eqn 3.

Algorithm 1 summarizes the detailed procedure of the
proposed continuous evolutionary algorithm for searching
neural architectures.

3.5. Search Time Analysis

During the search stage of CARS, the train set is used
for updating network parameters, and the validation set is
used for updating architectures. Assuming the average train-
ing time on the train set for one architecture is Ttr, and
the inference time on the validation set is Tval. The first
warmup stage takes Ewarm epochs, and it needs Twarm =
Ewarm × Ttr in this stage to initialize parameters in the
SuperNet N .

Assuming the architectures evolve for Eevo generations
in total. And each generation contains parameter optimiza-
tion and architecture optimization steps. The parameter op-
timization step trains the SuperNet for Eparam epochs on
train set between generations, thus the time cost for param-
eter optimization in one evolution generation is Tparam =
Eparam × Ttr × B, and the B is the mini-batch size. For
the architecture optimization step, all the individuals can be
inferred in parallel, so the time cost in this step could be cal-
culated as Tarch = Tval. Thus the total time cost for Eevo

evolution generations is Tevo = Eevo × (Tparam + Tarch).
All the searching time cost in CARS is,

Ttotal =Twarm + Tevo.

=Ewarm × Ttr+

Eevo × (Eparam × Ttr ×B + Tval)

(5)

Algorithm 1 Continuous Evolution for Efficient Neural Ar-
chitecture Search

Input: SuperNet N , connections C = {C
(0)
1 , . . . , C

(0)
P },

offspring expand ratio t, evolution number Eevo,
multi-objectives {F1, . . . ,FM}, parameter optimiza-
tion epochs Eparam, and criterion H.

1: Warm up the SuperNet N for Ewarm epochs.
2: for e = 1, . . . , Eevo do

3: for i = 1, . . . , Eparam do

4: for Mini-batch data X , target Y in loader do

5: Random sample B indices n1, . . . , nB .
6: Select the corresponding B connections

C1, . . . , CnB
according to the indices.

7: Mask the SuperNet N to form the sampled net-
works N1, . . . ,NnB

.
8: Forward B sampled networks.
9: Calculate loss L = 1

B

∑B

i=1 H (Nni
(X), Y ).

10: Compute the gradients according to Eqn 3.
11: Update the network parameters W .
12: end for

13: end for

14: Update {C
(e)
1 , . . . , C

(e)
P } using pNSGA-III.

15: end for

Output: Architectures C = {C
(Eevo)
1 , . . . , C

(Eevo)
P }.

4. Experiments

In this section, we first introduce the SuperNet, and
experimental details in our experiments. Then, we ex-
amine the small model trap phenomenon, and compare
NSGA-III with our proposed pNSGA-III. We search on
the CIFAR-10 dataset two times, which considers device-
agnostic and device-aware objectives, respectively. All the
searched architectures are evaluated on the CIFAR-10 and
ILSVRC2012 dataset. These two datasets are the bench-
marks for the recognition task.

1833



Table 1. Comparison with state-of-the-art image classifiers on CIFAR-10 dataset. The multi-objectives used for architecture optimization
are performance and model size. We follow DARTS and use the cutout strategy for training.

Architecture Test Error (%) Params (M) Search Cost (GPU days) Search Method
DenseNet-BC [24] 3.46 25.6 - manual
PNAS [30] 3.41 3.2 225 SMBO
ENAS + cutout [35] 2.91 4.2 4 RL
NASNet-A + cutout [61] 2.65 3.3 2000 RL
AmoebaNet-A + cutout [37] 3.12 3.1 3150 evolution
Hierarchical evolution [31] 3.75 15.7 300 evolution
SNAS (mild) + cutout [49] 2.98 2.9 1.5 gradient
SNAS (moderate) + cutout [49] 2.85 2.8 1.5 gradient
SNAS (aggressive) + cutout [49] 3.10 2.3 1.5 gradient
DARTS (first) + cutout [32] 3.00 3.3 1.5 gradient
DARTS (second) + cutout [32] 2.76 3.3 4 gradient
Random Search [32] 3.29 3.2 4 random
RENA [59] 3.87 3.4 - RL
NSGANet [33] 3.85 3.3 8 evolution
LEMONADE [11] 3.05 4.7 80 evolution
CARS-A 3.00 2.4 0.4 evolution
CARS-B 2.87 2.7 0.4 evolution
CARS-C 2.84 2.8 0.4 evolution
CARS-D 2.95 2.9 0.4 evolution
CARS-E 2.86 3.0 0.4 evolution
CARS-F 2.79 3.1 0.4 evolution
CARS-G 2.74 3.2 0.4 evolution
CARS-H 2.66 3.3 0.4 evolution
CARS-I 2.62 3.6 0.4 evolution

4.1. Experimental Settings

SuperNet Backbones. To illustrate the effectiveness of
our method, we evaluate our CARS on a popular used
search space same as DARTS [32]. DARTS is a differen-
tiable NAS system and searches for reduction and normal
cells. The normal cell is used for the layers that have the
same spatial size of input feature and output feature. The re-
duction cell is used for layers with downsampling on input
feature maps. After searching for these two kinds of cells,
the network is constructed by stacking a set of searched
cells. The search space contains eight different operations,
including four types of convolution, two kinds of pooling,
skip connect, and no connection.

Evolution Details. In the DARTS search space, each in-
termediate node in a cell is connected with two previous
nodes. Crossover and mutation are conducted on the cor-
responding nodes. Both crossover ratio and mutation ratio
are set to 0.25, and we randomly generate new architectures
with a probability of 0.5. For the crossover operation, each
node has a ratio of 0.5 to crossover its connections, and for
mutation operation, each node has a ratio of 0.5 to be ran-
domly reassigned.

4.2. Experiments on CIFAR10

Our experiments on CIFAR-10 include the demonstra-
tion of the small model trap phenomenon, the comparison of
NSGA-III and pNSGA-III, the device-agnostic and device-

aware search. The evaluation are conducted on the CIFAR-
10 dataset and the large ILSVRC2012 dataset.

Small Model Trap. In Figure 3, the accuracy curves of
three models are shown. The number of parameters are
2.1M, 2.9M, and 3.6M, respectively. After training for 600
epochs, the accuracies on the CIFAR-10 dataset and the
model sizes have a positive correlation, which are 96.87%,
97.17%, and 97.20%. We observe the accuracy curves of the
first 50 epochs and conclude two main reasons that result in
the small model trap phenomenon. The two reasons are (1)
small models are naturally converge faster, and (2) accu-
racy fluctuates during training. For the largest Model-C, its
accuracy is consistently lower than Model-A and Model-B
in the first 50 epochs. Therefore, if the NSGA-III algorithm
is used, the Model-C will be eliminated, which is the first
motivation for our proposed pNSGA-III. This is because
larger models are more complex, thus harder to be opti-
mized. For Model-B and Model-A, the accuracy curves are
similar (Figure 3(c)). However, due to the accuracy fluctua-
tion during training (Figure 3(b)), if the accuracy of Model-
A is higher than Model-B in one epoch, the Model-B would
be eliminated for the non-dominated sorting strategy, which
is the second reason we proposed. Both two reasons may
lead to the elimination of large models in the process of
architecture update. Thus, the proposed pNSGA-III is nec-
essary to address the small model trap problem.

1834



NSGA-III vs. pNSGA-III. We use CARS to search for
architectures with different NSGA methods during the ar-
chitecture optimization step. The multi-objectives are the
number of parameters and model size. We visualize the dis-
tribution trend of the architectures maintained in the popula-
tion. As Figure 2 shows, updating architectures by using the
NSGA-III would encounter the small model trap problem,
and large models are eliminated during architecture opti-
mization step. In contrast, updating architectures by using
the pNSGA-III protect larger models. The larger models
have the potential to increase their accuracies during later
epochs but converge slower than small models at the begin-
ning. It is essential to maintain larger models in the pop-
ulation rather than dropping them during the architecture
optimization stage if the search target is to find models with
various computing resources.

Search on CIFAR-10. We split the CIFAR-10 train set
into two parts, i.e., 25,000 images for updating network pa-
rameters and 25,000 for updating architectures. The split
strategy is the same as DARTS [32] and SNAS [49]. We
search for 500 epochs in total, and the parameter warmup
stage lasts for the first 10% epochs (50). After that, we ini-
tialize the population, which maintains 128 different archi-
tectures and gradually evolve them using proposed pNSGA-
III. We use pNSGA-III to update architectures after the net-
work parameters are updated for ten epochs.

Evaluate on CIFAR-10. After finishing the CARS search
stage, there are N = 128 architectures maintained in
the population. We evaluate some architectures that have
the similar model sizes with previous works [32, 49] for
comparison. We retrain the searched architectures on the
CIFAR-10 dataset. All the training parameters are the same
as DARTS [32].

We compare the searched architectures with state-of-the-
arts in Table 1. All the searched architectures can be found
in the supplementary material2. Our searched architectures
have the number of parameters that vary from 2.4M to 3.6M
on CIFAR-10 dataset, and the performances of these archi-
tectures are on par with the state-of-the-arts. Meanwhile, if
we evolve architectures by using NSGA-III method rather
than pNSGA-III, we could only search for a set of architec-
tures with approximately 2.4M parameters without larger
models, and the models perform relatively poor.

Compared to previous methods like DARTS and SNAS,
our method is capable of searching for architectures over a
broad range of the searching space. The CARS-G achieves
comparable accuracy with DARTS (second-order), result-
ing in an approximate 2.75% error rate with smaller model
size. Using the same 3.3M parameters as DARTS (second-

2https://github.com/huawei-noah/CARS

Figure 4. CARS-H and DARTS. On the top are the normal and
reduction blocks of CARS-H, and the bottom are the normal and
reduction blocks in DARTS (second order).

order), our CARS-H achieves lower test error, 2.66% vs.
2.76%. For the small models, our searched CARS-A/C/D
also achieve comparable results with SNAS. Besides, our
large model CARS-I achieves a lower error rate 2.62% with
slightly more parameters. The overall trend from CARS-A
to CARS-J is that the error rate gradually decreases while
increasing the model size. These models are all Pareto so-
lutions. Compared to other multi-objective methods like
RENA [59], NSGANet [33] and LEMONADE [11], our
searched architectures also show superior performance over
these methods.

Comparison on Searched Cells. In order to have an
explicit understanding of the proposed method, we fur-
ther visualize the normal and reduction cells searched by
CARS and DARTS in Figure 4. The CARS-H and DARTS
(second-order) have a similar number of parameters (3.3M),
but the CARS-H has higher accuracy compared to DARTS
(second-order). It can be found in Figure 4, there are more
parameters in the CARS-H reduction block for preserving
more useful information, and the size of the normal block of
CARS-H is smaller than that of the DARTS (second-order)
to avoid unnecessary computations. The CARS maintains a
population that covers a large range of search space.

4.3. Evaluate on ILSVRC2012

We evaluate the transferability of the searched architec-
tures by training them on the ILSVRC2012 dataset. We use
8 Nvidia Tesla V100 to train the models, and the batch size
is 640. We train 250 epochs in total. The learning rate is 0.5
with a linear decay scheduler, and we warm up the learning
rate for the first five epochs. Momentum is 0.9, and weight
decay is 3e-5. Label smooth is also used with a smooth ratio
of 0.1.

The results in Table 2 show the transferability of our
searched architectures. Our models cover an extensive range
of parameters. The model sizes range from 3.7M to 5.1M,
and the FLOPs range from 430 to 590 MFLOPs. For differ-
ent deploy environments, we can easily select an architec-
ture that satisfies the computing resources. This experiment
considers the device-agnostic variables, model size and per-
formance, thus the latencies of CARS A-I are not strictly

1835



Table 2. An overall comparison on ILSVRC2012 dataset. The CARS models are the architectures searched on the CIFAR-10 dataset.

Architecture
Top-1 Top-5 Params +× Search Cost Search

Acc (%) Acc (%) (M) (M) (GPU days) Method
ResNet50 [22] 75.3 92.2 25.6 4100 - manual
MorphNet [15] 75.2 - 15.5 3880 - manual
InceptionV1 [43] 69.8 90.1 6.6 1448 - manual
MobileNetV2 (1×) [39] 72.0 90.4 3.4 300 - manual
ShuffleNetV2 (2×) [34] 74.9 90.1 7.4 591 - manual
PNAS [30] 74.2 91.9 5.1 588 224 SMBO
AutoSlim [55] 75.4 - 8.3 532 - greedy
SNAS (mild) [49] 72.7 90.8 4.3 522 1.5 gradient
DARTS [32] 73.3 91.3 4.7 574 4 gradient
PDARTS [5] 75.6 92.6 4.9 557 0.3 gradient
PARSEC [3] 74.0 91.6 5.6 548 1 gradient
ProxylessNAS (GPU) [2] 75.1 92.5 7.1 465 8.3 gradient
FBNet-C [47] 74.9 - 5.5 375 20 gradient
RCNet [50] 72.2 91.0 3.4 294 8 gradient
GDAS [9] 74.0 91.5 5.3 581 0.8 gradient
NASNet-A [61] 74.0 91.6 5.3 564 2000 RL
MNASNet-A1 [44] 75.2 92.5 3.9 312 - RL
AmoebaNet-A [37] 74.5 92.0 5.1 555 3150 evolution
CARS-A 72.8 90.8 3.7 430 0.4 evolution
CARS-B 73.1 91.3 4.0 463 0.4 evolution
CARS-C 73.3 91.4 4.2 480 0.4 evolution
CARS-D 73.3 91.5 4.3 496 0.4 evolution
CARS-E 73.7 91.6 4.4 510 0.4 evolution
CARS-F 74.1 91.8 4.5 530 0.4 evolution
CARS-G 74.2 91.9 4.7 537 0.4 evolution
CARS-H 74.7 92.2 4.8 559 0.4 evolution
CARS-I 75.2 92.5 5.1 591 0.4 evolution

positive related to the final performance. The latencies are
82.9, 83.3, 83.0, 90.0, 93.8, 92.2, 98.1, 97.2, 100.6 (ms) on
HUAWEI P30 Pro.

The CARS-I surpasses PNAS by 1% Top-1 accuracy
with the same number of parameters and approximate
FLOPs. The CARS-G shows superior results over DARTS
by 0.9% Top-1 accuracy with the same number of parame-
ters. Also, CARS-D surpasses SNAS (mild) by 0.6% Top-1
accuracy with the same number of parameters. For different
models of NASNet and AmoebaNet, our method also has
various models that achieve higher accuracy using the same
number of parameters. By using the proposed pNSGA-III,
the larger architectures like CARS-I could be protected dur-
ing architecture optimization stages. Because of the effi-
cient parameter sharing strategy, we could search a set of su-
perior transferable architectures during the one-time search.

For the experiment that considers device-aware vari-
ables, i.e., runtime latency and performance, we evaluate
the searched architectures on the ILSVRC2012 dataset. The
results are shown in Figure 1. The searched architectures
cover an actual runtime latency from 40ms to 90ms and sur-
pass the counterparts.

5. Conclusion

The EA-based NAS methods are able to find models
with high-performance, but the search time is extremely
long because each candidate network is trained separately.
In order to make this efficient, we propose a continuous evo-
lution architecture search method, namely, CARS. During
evolution, CARS maximally utilizes the learned knowledge
in the latest evolution generation, such as architectures and
parameters. A SuperNet is constructed with considerable
cells and blocks. Individuals are generated through the
benchmark operations in the evolutionary algorithm. The
non-dominated sorting strategy (pNSGA-III) is utilized to
select architectures for updating the SuperNet. Experiments
on benchmark datasets show that the proposed CARS can
efficiently provide several architectures on the Pareto front.
The searched models are superior to the state-of-the-arts in
terms of model size/latency and accuracy.

Acknowledgement This work is supported by National
Natural Science Foundation of China under Grant No.
61876007, 61872012, Australian Research Council under
Project DE180101438, and Beijing Academy of Artificial
Intelligence (BAAI).

1836



References

[1] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay
Vasudevan, and Quoc V. Le. Understanding and simplifying
one-shot architecture search. ICML, 2018.

[2] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. ICLR,
2019.

[3] Francesco Paolo Casale, Jonathan Gordon, and Nicolo Fusi.
Probabilistic neural architecture search. arXiv, 2019.

[4] Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang,
Chuanjian Liu, Boxin Shi, Chunjing Xu, Chao Xu, and Qi
Tian. Data-free learning of student networks. ICCV, 2019.

[5] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive
darts: Bridging the optimization gap for nas in the wild.
arXiv, 2019.

[6] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fair-
nas: Rethinking evaluation fairness of weight sharing neural
architecture search. arXiv, 2019.

[7] Kalyanmoy Deb and Himanshu Jain. An evolution-
ary many-objective optimization algorithm using reference-
point-based nondominated sorting approach, part i: Solving
problems with box constraints. TEC, 2014.

[8] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei,
and Min Sun. Dpp-net: Device-aware progressive search for
pareto-optimal neural architectures. ECCV, 2018.

[9] Xuanyi Dong and Yi Yang. Searching for a robust neural
architecture in four gpu hours. CVPR, 2019.

[10] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Sim-
ple and efficient architecture search for convolutional neural
networks. ICLR, 2018.

[11] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Ef-
ficient multi-objective neural architecture search via lamar-
ckian evolution. ICLR, 2019.

[12] Ross Girshick. Fast r-cnn. ICCV, 2015.
[13] Aidan N. Gomez, Ivan Zhang, Kevin Swersky, Yarin Gal,

and Geoffrey E. Hinton. Learning sparse networks using tar-
geted dropout. arXiv, 2019.

[14] Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang
Wang. Autogan: Neural architecture search for generative
adversarial networks. ICCV, 2019.

[15] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Tien-Ju
Yang, and Edward Choi. Morphnet: Fast & simple resource-
constrained structure learning of deep networks. arXiv, 2017.

[16] Jianyuan Guo, Kai Han, Yunhe Wang, Chao Zhang, Zhaohui
Yang, Han Wu, Xinghao Chen, and Chang Xu. Hit-detector:
Hierarchical trinity architecture search for object detection.
CVPR, 2020.

[17] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot
neural architecture search with uniform sampling. arXiv,
2019.

[18] Kai Han, Yunhe Wang, Han Shu, Chuanjian Liu, Chunjing
Xu, and Chang Xu. Attribute aware pooling for pedestrian
attribute recognition. IJCAI, 2019.

[19] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu,
and Chang Xu. Ghostnet: More features from cheap opera-
tions. arXiv, 2019.

[20] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Mile-
nas: Efficient neural architecture search via mixed-level re-
formulation. CVPR, 2020.

[21] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. ICCV, 2017.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. CVPR, 2016.

[23] Chi-Hung Hsu, Shu-Huan Chang, Da-Cheng Juan, Jia-
Yu Pan, Yu-Ting Chen, Wei Wei, and Shih-Chieh Chang.
Monas: Multi-objective neural architecture search using re-
inforcement learning. arXiv, 2018.

[24] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. CVPR, 2017.

[25] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Binarized neural networks.
NIPS, 2016.

[26] Ye-Hoon Kim, Bhargava Reddy, Sojung Yun, and Chanwon
Seo. Nemo : Neuro-evolution with multiobjective optimiza-
tion of deep neural network for speed and accuracy. ICMLW,
2017.

[27] Shaohui Lin, Rongrong Ji, Chao Chen, Dacheng Tao, and
Jiebo Luo. Holistic cnn compression via low-rank decompo-
sition with knowledge transfer. T-PAMI, 2019.

[28] Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue
Huang, and Baochang Zhang. Accelerating convolutional
networks via global & dynamic filter pruning. IJCAI, 2018.

[29] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang,
Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doer-
mann. Towards optimal structured cnn pruning via genera-
tive adversarial learning. CVPR, 2019.

[30] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. ECCV, 2018.

[31] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha
Fernando, and Koray Kavukcuoglu. Hierarchical represen-
tations for efficient architecture search. ICLR, 2018.

[32] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. ICLR, 2019.

[33] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,
Kalyanmoy Deb, Erik Goodman, and Wolfgang Banzhaf.
Nsga-net: A multi-objective genetic algorithm for neural ar-
chitecture search. GECCO, 2019.

[34] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. ECCV, 2018.

[35] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. ICML, 2018.

[36] Ruijie Quan, Xuanyi Dong, Yu Wu, Linchao Zhu, and Yi
Yang. Auto-reid: Searching for a part-aware convnet for per-
son re-identification. ICCV, 2019.

[37] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. AAAI, 2019.

1837



[38] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Sax-
ena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey
Kurakin. Large-scale evolution of image classifiers. ICML,
2017.

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. CVPR, 2018.

[40] Mingzhu Shen, Kai Han, Chunjing Xu, and Yunhe Wang.
Searching for accurate binary neural architectures. ICCVW,
2019.

[41] Han Shu, Yunhe Wang, Xu Jia, Kai Han, Hanting Chen,
Chunjing Xu, Qi Tian, and Chang Xu. Co-evolutionary com-
pression for unpaired image translation. ICCV, 2019.

[42] Dehua Song, Chang Xu, Xu Jia, Yiyi Chen, Chunjing Xu,
and Yunhe Wang. Efficient residual dense block search for
image super-resolution. AAAI, 2020.

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. CVPR, 2015.

[44] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
and Quoc V Le. Mnasnet: Platform-aware neural architec-
ture search for mobile. CVPR, 2018.

[45] Yunhe Wang, Chang Xu, Chunjing Xu, Chao Xu, and
Dacheng Tao. Learning versatile filters for efficient convolu-
tional neural networks. NIPS, 2018.

[46] Yunhe Wang, Chang Xu, Shan You, Dacheng Tao, and Chao
Xu. Cnnpack: packing convolutional neural networks in the
frequency domain. NIPS, 2016.

[47] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient
convnet design via differentiable neural architecture search.
CVPR, 2019.

[48] Lingxi Xie and Alan Yuille. Genetic cnn. ICCV, 2017.

[49] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas:
stochastic neural architecture search. ICLR, 2019.

[50] Yunyang Xiong, Ronak Mehta, and Vikas Singh. Resource
constrained neural network architecture search. ICCV, 2019.

[51] Yixing Xu, Yunhe Wang, Hanting Chen, Kai Han, Chunjing
Xu, Dacheng Tao, and Chang Xu. Positive-unlabeled com-
pression on the cloud. NeurIPS, 2019.

[52] Yingzhen Yang, Jiahui Yu, Nebojsa Jojic, Jun Huan, and
Thomas S. Huang. Fsnet: Compression of deep convolu-
tional neural networks by filter summary. ICLR, 2020.

[53] Zhaohui Yang, Yunhe Wang, Chuanjian Liu, Hanting Chen,
Chunjing Xu, Boxin Shi, Chao Xu, and Chang Xu. Legonet:
Efficient convolutional neural networks with lego filters.
ICML, 2019.

[54] Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen,
Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards
reproducible neural architecture search. ICML, 2019.

[55] Jiahui Yu and Thomas Huang. Autoslim: Towards one-shot
architecture search for channel numbers. arXiv, 2019.

[56] Jiahui Yu and Thomas S. Huang. Universally slimmable net-
works and improved training techniques. ICCV, 2019.

[57] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas
Huang. Slimmable neural networks. ICLR, 2019.

[58] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-
Lin Liu. Practical block-wise neural network architecture
generation. CVPR, 2018.

[59] Yanqi Zhou, Siavash Ebrahimi, Sercan Ö Arık, Haonan Yu,
Hairong Liu, and Greg Diamos. Resource-efficient neural
architect. arXiv, 2018.

[60] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. ICLR, 2017.

[61] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. CVPR, 2018.

1838


