
CarTel: A Distributed Mobile Sensor Computing System

Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel Goraczko,
Allen Miu, Eugene Shih, Hari Balakrishnan and Samuel Madden

MIT Computer Science and Artificial Intelligence Laboratory

cartel@nms.csail.mit.edu

Abstract
CarTel is a mobile sensor computing system designed to

collect, process, deliver, and visualize data from sensors lo-
cated on mobile units such as automobiles. A CarTel node
is a mobile embedded computer coupled to a set of sensors.
Each node gathers and processes sensor readings locally be-
fore delivering them to a central portal, where the data is
stored in a database for further analysis and visualization. In
the automotive context, a variety of on-board and external
sensors collect data as users drive.

CarTel provides a simple query-oriented programming in-
terface, handles large amounts of heterogeneous data from
sensors, and handles intermittent and variable network con-
nectivity. CarTel nodes rely primarily on opportunistic wire-
less (e.g., Wi-Fi, Bluetooth) connectivity—to the Internet,
or to “data mules” such as other CarTel nodes, mobile phone
flash memories, or USB keys—to communicate with the por-
tal. CarTel applications run on the portal, using a delay-
tolerant continuous query processor, ICEDB, to specify how
the mobile nodes should summarize, filter, and dynamically
prioritize data. The portal and the mobile nodes use a delay-
tolerant network stack, CafNet, to communicate.

CarTel has been deployed on six cars, running on a small
scale in Boston and Seattle for over a year. It has been used
to analyze commute times, analyze metropolitan Wi-Fi de-
ployments, and for automotive diagnostics.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed ap-

plications

General Terms
Design, Implementation, Experimentation

Keywords
Sensor networks, mobility, intermittent connectivity, data man-

agement, query processing, data visualization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’06, November 1–3, 2006, Boulder, Colorado, USA.
Copyright 2006 ACM 1-59593-343-3/06/0011 ...$5.00

1 Motivation

CarTel is a distributed sensor computing system moti-
vated by the hypothesis that an important and emerging cat-
egory of sensor networks is mobile and involves hetero-
geneous sensor data. The motivation for mobile, hetero-
geneous sensor networks comes from both a “technology
push”, which is rapidly making the underlying hardware
components available, and an “application pull,” which gen-
erates the demand for such systems.

The technology push is driven by the commoditization
of cheap, embedded, sensor-equipped computers and mobile
phones. When connected to cars and carried by people, these
devices can form a distributed mobile sensor computing sys-
tem. These systems can sense the environment at much finer
fidelity and higher scale than static sensor networks, partic-
ularly over large areas. For example, to monitor commute
delays on our roadways, one approach would be to deploy
static sensors on roads. While this approach may be tenable
for the major roadways in any area, given the large expanse
of backroads that many commuters use, it may not be a prac-
tical way to cover the entire area around a city. A comple-
mentary approach, which we adopt, is to instrument each car
with a GPS sensor to opportunistically obtain information
about traffic delays observed as cars move and to use that
information in traffic monitoring and route planning applica-
tions.

In addition to traffic monitoring, mobile sensors, particu-
larly on vehicles, can be used for:

1. Environmental monitoring, by using mobile chemical
and pollution sensors.

2. Civil infrastructure monitoring, by attaching vibration
and other sensors to cars to monitor the state of roads
(e.g., potholes, black ice).

3. Automotive diagnostics, by obtaining information from
a vehicle’s on-board sensors, which can help in preven-
tive and comparative diagnostics. This information can
also be used to monitor bad driving tendencies.

4. Geo-imaging, by attaching cameras on cars and us-
ing mobile phone cameras to capture location-tagged
images and video for various applications, including
landmark-based route finding.

5. Data muling, by using cars (and people) as “delivery
networks” for remote sensornets, sending data from
these networks to Internet servers.

Open Wireless
Access Point

Portal

ICEDB Server
Answers local snapshot queries
Logs continuous query results
Prioritizes data

CafNet
Delay-tolerant relay via
802.11, Bluetooth, etc.

ICEDB Remote
Adapters log gps, Wi-Fi, OBD, camera data
Data sent via prioritized continuous queries

Queries

GUIs/
Viz

Clients

User's Wireless
Access Point

Internet

Ad-hoc
network

Figure 1. The CarTel system architecture showing the
different components of the platform. Cars collect
data as they drive, and log them to their local ICEDB
databases. As connectivity becomes available, data on
cars is delivered via CafNet to the portal, where users
can browse and query it via a visualization interface and
local snapshot queries.

These example applications motivate our design of Car-
Tel. Of course, static sensor networks have been success-
fully used for some of these applications, particularly in en-
vironmental and civil monitoring [38, 3, 52, 7, 11]. Mobile
sensor networks, however, offer the potential to instrument
a much larger geographical area with a smaller number of
sensors, relying on node movement to cover different areas
in time. This approach may be particularly useful for certain
chemical and biological sensing tasks where the sensors are
costly,1 or in situations where the number of sensors is so
large that a static deployment is either too expensive or too
cumbersome to establish and maintain.

CarTel makes it easy to collect, process, deliver, and vi-
sualize data from a collection of remote, mobile, and inter-
mittently connected nodes. It provides a simple, centralized
programming interface, handles large volumes of heteroge-
neous sensor data, and copes with variable, intermittent net-
work connectivity, hiding these details from the application
developer. Because an interesting class of mobile sensing
applications are enabled by automotive sensor networks, we
use CarTel nodes embedded in cars as the test case and de-
velop schemes to cope with vehicular movement.

The rest of this paper describes the design, implementa-
tion, and evaluation of CarTel, and discusses some case stud-
ies. We start by presenting an overview of the system and the
contributions of this paper.

������

��������		�
���
��

�����

������

������������

�������

������
���
���
��

�����
��

�	������

�����

 ��!��
"
#
�

$��
���
��%���

"�&������

�����%
�'�

���������

����(�)���
��*�

���	���

+��(

��$�

�,

Figure 2. The CarTel portal software architecture. Ap-
plications, such as those that measure traffic delays or
request terrain photos from the camera, run snapshot
queries against the relational DBMS in ICEDB to ac-
cess data, displaying the results of those queries on ge-
ographic overlays using the data visualization API. They
can also issue continuous queries and create adapters
that are pushed to mobile nodes via CafNet. Mobile
nodes stream sensor data back as connectivity permits;
this data is stored in the relational database.

2 Overview and Contributions
CarTel provides a reusable software platform that can be

used to build many mobile sensing applications. Each node
in CarTel is a mobile, embedded computer coupled to a set
of sensors. This computer runs software that functions as a
gateway between the sensors attached to it (either physically
or via short-range radio) and the rest of the system.

The technical design of CarTel meets the following goals:
1. Provide a simple programming interface. Our goal

is to centralize and simplify the development of mo-
bile sensor network applications. CarTel applications
should be as easy to write as standard Web applications,
and application developers should not have to deal with
distribution or mobility.

2. Handle large amounts of heterogeneous sensor data.
CarTel should not constrain sensor data types, and
should make it easy to integrate new kinds of sensors,
new mobile nodes, and new data types into the sys-
tem. Moreover, since the rate at which data is collected
by media-rich mobile sensors such as cameras will of-
ten exceed the available network bandwidth to Internet
hosts, CarTel requires local buffering and processing on
the mobile nodes.

3. Handle intermittent connectivity. The primary mode
of network access for mobile CarTel nodes is via op-
portunistic wireless (e.g., Wi-Fi, Bluetooth). Wi-Fi ac-
cess points run by users in homes and other locations

1For, example, mass spectrometers are the best known way to
detect various organic pollutants, and even “low-cost” spectrome-
ters cost tens of thousands of dollars [42].

can opt in to the CarTel system, allowing mobile Car-
Tel nodes to communicate with Internet hosts.2 In most
urban areas, such connectivity will be intermittent, al-
ternating between periods of relatively high bandwidth
(tens of kilobytes per second today) and no connectiv-
ity. In addition, a CarTel node can use mobile storage
devices such as USB keys and flash memory (e.g., on
Bluetooth-equipped mobile phones) as “data mules”,
relying on those mules to deliver data in best-effort
fashion. Finally, as the density of CarTel-equipped
nodes increases, they may be able to exchange data with
each other as they move via Wi-Fi or Bluetooth.

2.1 CarTel Components
The system has three main components. The portal is

the central location that hosts CarTel applications and func-
tions as the point of control and configuration for the dis-
tributed system. The portal is also the “sink” for all data
sent from the mobile nodes. CarTel applications use two
other CarTel components to specify how the mobile nodes
should collect, process, and deliver sensor data: ICEDB (in-
termittently connected database), a delay-tolerant continuous
query processor, and CafNet (carry-and-forward network), a
delay-tolerant network stack. Figure 1 shows a high-level
view of the CarTel distributed system.

The CarTel programming model is centralized and sim-
ple, and is shown schematically in Figure 2. Applications
running on the portal issue continuous queries using an API
exported by ICEDB. These queries cause mobile nodes to
stream responses using CafNet’s data delivery mechanism.
Unlike in traditional stream processing applications, how-
ever, results are not directly sent to the querying application.
Instead, CarTel uses the following alternate approach:

1. Queries specify what sensor data must be acquired and
at what rate, how the data should be sub-sampled, fil-
tered, and summarized on the mobile node, and in what
(dynamic) priority order results should be sent back to
the portal. Because sensors often produce more data
than the network can promptly deliver to the portal (e.g.,
due to insufficient bandwidth or lack of connectivity),
applications on the portal need a way to specify how
to prioritize data (e.g., preferring summaries to be de-
livered before detailed values). The ICEDB continuous
query interface allows an application to express intra-
and inter-query priorities.

2. Query results stream in across an intermittently con-
nected network and populate a relational database at the
portal.

3. Applications issue SQL queries on the portal’s rela-
tional database to retrieve data they need for further
analysis, visualization, etc. These are snapshot queries
that run on whatever data is currently available. Ap-

2As in emerging metropolitan Wi-Fi deployments and wireless
mesh networks, our belief (perhaps misguided) is that users will opt
in because of financial incentives or because of the mutual benefit it
provides. In our current deployment, communication occurs when
users drive by access points controlled by the set of CarTel users,
which turns out to be enough to upload data collected on drives
within a few minutes to a few hours of the drive.

plications do not wait synchronously for the results of
continuous queries.

This design is well-suited to intermittently connected op-
eration, as well as to achieving low-latency responses to ap-
plication queries (step 3). The continuous queries are logi-
cally centralized, but run in distributed fashion on each node.
ICEDB uses CafNet to deliver these continuous queries to
the remote nodes in situ whenever the node connects to the
portal and new queries need to be “pushed” to the node. The
node begins executing queries as soon as they are received.

CarTel handles heterogeneous sensor data, allowing the
set of sensors to be expanded without requiring major soft-
ware changes on the remote nodes. Each sensor has an
adapter running on the node that handles the details of con-
figuring and extracting information from that sensor and con-
verting it into a normalized form. To ease management and
deployment, when a new sensor is added, or when the func-
tions of an adapter need to be modified, only the adapter
module needs to change. CarTel also provides the facility
for more massive software upgrades (e.g., to fix bugs in Car-
Tel or node’s the operating system), but these are expected
to be much less frequent than updating adapters.

The portal includes a geo-spatial data visualization sys-
tem that stores sensor data from cars. It organizes data in
terms of traces, which are sets of sensor readings collected
during a particular drive. Users are given a simple graphi-
cal query interface for selecting the traces they are interested
in and visualizing various summaries, statistics, and maps
within or across the traces they select.

2.2 Contributions
CarTel builds on the results of much previous work on

mobile systems, sensor data management, and delay-tolerant
networks (Section 8 discusses related work). Our primary
contribution is the synthesis of ideas—some of which are
novel—in each of these areas, into a single system that satis-
fies the goals mentioned at the beginning of this section. The
result is a working system that has been running on six cars
in a small-scale deployment for over a year. This system
currently collects road traffic data, monitors the quality of
Wi-Fi access points on routes, captures images along drives,
and gathers a variety of data from the On-Board Diagnostic
(OBD-II) interface on cars. Although our experience with
these applications is somewhat limited, we have found that
CarTel greatly simplifies the task of collecting, processing,
delivering, and visualizing data in this environment.

This paper makes the following contributions:

• Extending the notion of continuous queries [39, 13,
2] to handle intermittent connectivity. In particular,
this extension requires data streaming from the mobile
nodes to be buffered locally, and the ability to dynami-
cally prioritize data both on a single stream and between
different streams. Section 3 describes this scheme in the
context of ICEDB.

• Enabling modular upgrades to integrate new sensors
and data types using adapters (Section 3.1).

• The CafNet “carry-and-forward” delay-tolerant net-
work stack that delivers data in intermittently connected
environments (Section 4). Unlike the traditional sock-

ets interface, the CafNet interface uses callbacks across
all its layers. By issuing callbacks whenever network
conditions change, CafNet makes it possible for the
sender to dynamically prioritize data. At the same
time, CafNet’s network layer provides some buffering
to achieve high utilization when network connectivity
is fleeting (e.g., a few seconds), a common situation at
vehicular speeds.

• The design of the portal and its visualization interface
(Section 5).

• A discussion of the results from four case studies—road
traffic monitoring, traffic simulation, Wi-Fi network
monitoring, and automotive diagnostics (Section 6)—
that illustrate the ease with which a variety of sensor
data processing applications can be built using CarTel.

3 ICEDB
ICEDB distributes query execution and result delivery be-

tween the ICEDB server running on the portal and the remote
nodes. The ICEDB server maintains a list of continuous
queries submitted by applications that are pushed to the re-
mote nodes using CafNet. The nodes in the field run ICEDB
remote to process the sensor data and return the query results
using CafNet, prioritizing the result streams in order of im-
portance. Finally, as the ICEDB server receives results from
remote nodes, it places them into a per-query result table in
the relational database at the portal. The rest of this section
describes the ICEDB data model and its delay-tolerant con-
tinuous queries.

3.1 Data Model
ICEDB supports heterogeneous data types and makes the

addition and removal of sensors relatively easy. Because
all results are eventually stored in a relational database, this
requirement implies that the system be able to parse and
store tuples that sensors produce and must be able to evolve
schemas as users add new sensors and application developers
introduce new data types.

ICEDB’s mechanism for handling new sensor types and
managing schemas is a meta-data package called an adapter,
which consists of the attributes of a sensor as well as an ex-
ecutable program (usually a script) that interfaces with the
sensor and triggers data collection. These attributes provide
ICEDB with enough information to: (1) automatically create
local tables to store sensor readings (i.e., without any manual
configuration on the remote node), (2) acquire tuples from
the sensor, and (3) parse sensor readings to store them in the
database and process them as specified by subsequent contin-
uous queries. This scheme is similar to the wrappers found
in Mediation systems [57].

The CarTel administrator and application developers can
specify attributes on a per-adapter basis. A typical adapter
includes the following attributes:

1. ID and name: Each adapter must be uniquely identified.
2. Type: An adapter can either push data to ICEDB over a

local TCP socket, or ICEDB can pull data by invoking
the executable at a specified rate. ICEDB invokes the
executable for each push adapter once, so that it runs
as a daemon in the background. Pull adapters, on the

other hand, produce readings each time ICEDB invokes
the executable program.

3. Rate: For pull type adapters, the rate at which ICEDB
should invoke the executable.

4. Forwarding flag: Specifies whether or not raw data
should be forwarded to the portal. Setting this flag is
a shortcut for specifying a continuous query that selects
all attributes from the sensor.

5. Schema: A list of (name, type) pairs that specifies
the attributes produced by the sensor. In our current
implementation, the type field must be a valid Post-
greSQL [45] data type.

6. Priority: The priority assigned to forwarded tuples
when the forwarding flag is set (priorities are explained
in the next subsection).

Applications can define adapters programmatically.
Adapters can also be specified by the CarTel administrator
using a Web form interface in the portal. Once defined,
adapters reside inside the ICEDB server on the portal and
are pushed out to remote nodes using CafNet.

CarTel currently has adapters for node diagnostics, the
GPS receiver, the OBD-II interface, the Wi-Fi interface, and
the digital camera. There may not be a one-to-one corre-
spondence between adapters and physical sensors; a single
physical sensor may be abstracted using multiple adapters.
For example, the Wi-Fi interface uses three adapters, which
handle the data resulting from access points scans, access
point connections, and network configurations.

3.2 Continuous Query Model
Queries in ICEDB are written in SQL with several ex-

tensions for continuous queries and prioritization. These
queries are run over data as it is produced by the adapters.3

To support continuous queries in ICEDB, queries include a
sample rate specified by a RATE clause. For example, con-
sider the query:

SELECT carid,traceid,time,location FROM gps
WHERE gps.time BETWEEN now()-1 mins AND now()
RATE 5 mins

Here, each car will report its last one minute of GPS data
once every five minutes. These batches of results will be
delivered whenever the car is next able to send data to the
portal.

To ensure that readings captured across cars are compa-
rable (for example, in join or aggregate queries run over the
data stored at the portal), cars synchronize their clocks using
GPS (when available). Readings are acquired when the clock
is divisible by the RATE (so if the current time is 10:02 AM,
the above query would acquire readings at 10:05, 10:10, etc.)

In an intermittently-connected, bandwidth-constrained
environment, delivering all data in FIFO order is sub-
optimal. The “value” of any data is often application-
dependent (for example, one application may be interested
in data that shows times when a car is speeding, whereas an-
other application may be interested in times when a car is

3 In our current implementation, data produced by the adapters
is stored in a local database table that continuous queries run over.
This allows us to implement a simple continuous query processor
that repeatedly invokes queries over a local relational database.

subject to unusual slowdowns). For this reason, ICEDB pro-
vides a declarative way for applications to express what data
is important. ICEDB uses these specifications to develop a
total ordering on the local query results that need to be sent
over the network.

To prioritize data for delivery, the ICEDB query language
assigns each result tuple a “score” corresponding to its deliv-
ery priority. Local prioritization produces scorings of data
tuples that can dynamically change over time based on other
data present at the local node. However, local prioritization
is limited because it cannot receive feedback from the portal,
which has a global view of the data and can hence make more
informed choices regarding what data to send first. Global
prioritization is a scoring of tuples influenced by feedback
from the portal. In order to achieve global prioritization,
each time a node establishes a connection, it sends to the
portal a synopsis of its query results, and the portal responds
with a global prioritization of this coarse representation of
the data.

On each node, query results are stored into a named buffer
as they are produced. The different prioritization schemes
result in different orderings of this buffer; as connections
occur, this buffer is drained in order. We have chosen to
specify these different prioritization schemes via additional
statements attached to the continuous queries in the system.
There is nothing fundamental about coupling the query lan-
guage and prioritization language in this way; prioritization
statements could also be sent separately from queries, but it
is convenient to use the query language to express dynamic
priorities.

3.2.1 Local Prioritization
Local prioritization uses two language extensions for

specifying the local transmission order of query results:
PRIORITY and DELIVERY ORDER.

The PRIORITY clause is specified at the end of a query
and assigns a numeric priority to the query’s result buffer.
ICEDB transmits query result buffers strictly in order of pri-
ority, ensuring that high priority queries (e.g., small, event
detection queries) are transmitted before low priority queries
(e.g., raw GPS data).

The DELIVERY ORDER clause allows the remote node to
locally determine the transmission order of results within a
given query buffer. Like a traditional SQL ORDER BY clause,
DELIVERY ORDER can take attribute names to statically or-
der by those columns. However, when prioritizing deliv-
ery for intermittent network connectivity many types of data
would benefit from a more dynamic ordering that depends
on the entire set of tuples. To enable this dynamic ordering,
DELIVERY ORDER can take the name of a user-defined func-
tion that takes as input the entire set of pending results and
produces a new score for each result. Because the DELIVERY
ORDER function has direct access to the entire result set, the
ordering of results can depend on the other results in the
buffer, which cannot be done with a traditional SQL ORDER
BY clause.

As an example, when collecting a car’s GPS position re-
ports, the user may wish to order the points such that an ap-
plication on the portal can construct a piecewise linear curve
approximating a particular trace. One simple implementa-

tion would be to recursively bisect (in the time domain) the
trace: first, our DELIVERY ORDER function would transmit
the endpoints of the trace; then, it would send the point ex-
actly between those endpoints to bisect the trace, and then
continue recursively bisecting the sub-traces in exactly the
same manner. Simple ORDER BY cannot do this, however,
because the score it assigns to each tuple cannot depend on
the other tuples in the buffer—meaning, for example, the
score of a midpoint of a segment cannot depend on previ-
ously chosen endpoints. Using the bisect approach, the res-
olution of the route is progressively enhanced as more data
is received. This bisection algorithm and other commonly
used prioritization functions are available in a standard li-
brary, and users can implement their own local prioritization
functions.

3.2.2 Global Prioritization

ICEDB applications express global priorities using the
SUMMARIZE AS clause, which specifies a query that will
compute a summary, which consists of a set of tuples that
summarize the entire buffer of result tuples. When connec-
tivity occurs, before any query results are transferred, this
summary is sent to the portal. The portal applies a user-
specified function to order the tuples in the summary, and
send this prioritization back to the node, which it then uses
to order the entire set of result tuples. The basic syntax of
this clause is shown in this query:

SELECT ...
EVERY ...
BUFFER IN bu f name

SUMMARIZE AS
SELECT f1, . . . , fn,agg(fn+1), . . . ,agg(fn+m)
FROM bu f name WHERE pred1 . . . predn

GROUP BY f1, . . . , fn

The SUMMARIZE AS clause uses grouping and aggregation
to partition the buffered result data into groups and compute
summary statistics over each group. For example, if cars
are collecting tuples of the form <lat, lon, roadname,
speed>, the summary query might partition the data by
roadname and compute the average speed over each road.
On the server, the user specifies a function that orders the
summary – in our example, it might order roads according
to those which it has heard the least information about in
the past day. Once this ordering is returned from the server,
the remote ICEDB instance automatically orders the result
tuples in the same order as specified in the server’s order-
ing of the summary (using a join query between the server’s
summary table and the raw data.) Once this total ordering
has been computed, the complete set of in-order results are
delivered in order to the server.

Server prioritization is useful in situations in which there
are several nodes collecting similar data about the same loca-
tion, or when a portal application has changing information
needs. The server requests that data be returned in an order
that will provide the most information about areas other cars
have not observed or that are of particular interest to current
portal applications.

4 CafNet
CafNet is a general-purpose network stack for delay-

tolerant communication. Applications can use it to send mes-
sages across an intermittently connected network. Its mech-
anisms allow messages to be delivered across two kinds of
intermittency: first, when end-to-end connectivity is avail-
able between the sending and receiving application, but is
intermittent; and second, when the only form of connectivity
is via one or more intermediate mules. In CarTel, the por-
tal and the mobile nodes communicate with each other using
CafNet across both forms of intermittent connectivity.

4.1 Overview
All CafNet nodes are named using globally unique flat

identifiers that don’t embed any topological or organizational
semantics.4 CafNet offers a message-oriented data trans-
mission and reception API to applications, not a stream-
oriented connection abstraction like TCP. As previous work
has shown [10, 19], a message abstraction is better suited to
a network whose delays could be minutes or hours.

The unit of data transport in CafNet is an Application
Data Unit (ADU) [15]. Each ADU has an identifier; the com-
bination of source, destination, and ADU ID is unique. (The
terms “message” and “ADU” refer to the same thing.)

Unlike the traditional sockets interface, a CafNet applica-
tion does not call send(ADU) when it has data to send. The
reason is that if the host is currently not connected to the des-
tination, this message would simply be buffered in the proto-
col stack (e.g., at the transport layer). Such buffers could
grow quite large, but more importantly, all data in those
buffers would end up being sent in FIFO order. FIFO packet
delivery is a mismatch for many delay-tolerant network ap-
plications, including ICEDB, which require and benefit from
dynamic priorities. In general, only the application knows
which messages are currently most important.

What is needed is a scheme where the network stack
buffers no data, but just informs the application when con-
nectivity is available or when network conditions change.
If all data buffers were maintained only by the application
(which already has the data in RAM or on disk), and if it
were able to respond quickly to callbacks from the network
stack, then dynamic priorities and fine-grained departures
from FIFO delivery order would be easier to achieve. CafNet
adopts this basic approach: CafNet informs the application
when connectivity is available or changes, and in response,
the application decides what data to send “at the last mo-
ment”, rather than committing that data to the network in
advance.

CafNet defines a three-layer protocol stack. In this stack,
the CafNet Transport Layer (CTL) provides this notification
to the application. In the basic version of the stack, the API
consists of just one callback function: cb get adu(), which
causes the application to synchronously return an ADU for
(presumably) immediate transmission. The CTL also pro-
vides a (standard) input() function to receive messages
from the lower layers of the stack.

4As in previous work such as DOA [56], making these identi-
fiers a hash of a public key (and a random salt) would ease message
authentication.

Figure 3. The CafNet communication stack.

CafNet hides the details of the communication medium
(Wi-Fi, Bluetooth, flash memory, etc.) from the CTL and
the application. All media-dependent tasks are performed
by the lowest layer of the CafNet stack, the Mule Adapta-
tion Layer (MAL), which presents a media-independent in-
terface to the higher layers. The MAL implements media-
specific discovery protocols, and sends and receives mes-
sages across several possible communication channels (TCP
connections to Internet hosts, TCP or media-specific proto-
cols to mules across a “one-hop” channel, writes and reads
of data on portable disks, etc.). When the MAL detects any
connectivity, it issues a callback to the higher layers inform-
ing them of that event. This callback propagates until the ap-
plication’s cb get adu() returns an ADU for transmission
to some destination.

Bridging the CTL and the MAL is the CafNet Network
Layer (CNL), which handles routing. In our current imple-
mentation, the CNL implements only static routing (it can
also flood messages to all mules it encounters). On any in-
termediate node muling data, the CNL also buffers messages.
In the basic version of the stack, the CTL, CNL, and MAL
on the sending application’s node do not buffer more than
one message at a time.

Section 4.2 describes some additional details of these
three layers. In Section 4.3, we describe an important set of
optimizations to improve the performance of this basic stack,
which requires some buffering in the network stack as well
as an API extension.

4.2 The Basic CafNet Stack
Figure 3 depicts the CafNet communication stack. The

functions shown in the picture for each layer are for the ver-
sion that includes the performance optimizations; for now,

assume that all the message buffering is in the application
alone. The CTL can be implemented as a library that ap-
plications link against or as a separate process that commu-
nicates with the application using remote procedure calls,
while the CNL and MAL are separate daemons that the CTL
library communicates with over a socket interface. No kernel
changes are required.

The CTL provides optional delivery confirmation service.
The application can specify what type of delivery confirma-
tion it wants by setting a flag (NONE or END2END) on the ADU
header when it returns the ADU in the cb get adu() call.
END2END requires the CTL to periodically retransmit a given
ADU until either: (1) an acknowledgment is eventually re-
ceived from the destination node, or (2) the ADU is “can-
celed” by the sending application, or (3) a certain maximum
number of retransmissions have been attempted.

The CNL’s API is simple: when the CTL gets an ADU
from the application, it can call the CNL’s send(dest,
ADU) function, which forwards the ADU towards the des-
tination. The CNL uses its routing tables to decide how to
forward the message. The CNL’s send() provides only best
effort semantics.

In addition to send(nexthop, ADU), which sends a
given ADU to the node with ID nexthop, the MAL in-
vokes a callback function implemented by the CNL to up-
date the list of currently reachable CafNet nodes. This
cb neighbor list(neighbor list) call always provides
a complete list of reachable neighbors to save the higher lay-
ers the trouble of detecting if any given CafNet “link” is
working or not.

CafNet provides peer discovery in the lowest layer (MAL)
of its stack because those mechanisms are media-specific.
For example, our current implementation includes a MAL
layer for Wi-Fi; in order to provide Wi-Fi connectivity at
vehicular speeds, it provides fast scans and associations.
We are implementing other MALs, which will require other
media-specific support. For example, a Bluetooth-enabled
cellphone might present itself as a single next-hop contact
whose discovery requires Bluetooth protocols. A passive de-
vice such as a USB Key would present itself as a set of peers
that it had visited in the past. Any connection to the Internet
would present itself as a list of CafNet-enabled peers (or a
more concise “Internet” peer, saying that the link has Inter-
net connectivity).

4.3 Optimizations and Enhancements
The above design is “pure” (no network buffering), but

performs poorly when the average duration of connectiv-
ity is not significantly larger than the time required for
the application to package and return data in response to
a cb get adu() call. This problem is not academic—for
some ICEDB queries, it takes several seconds to package
data, reading tuples from a relational database on the mobile
nodes. At vehicular speeds, Wi-Fi connectivity often lasts
only a few seconds.

To solve this problem (which we experienced in our ini-
tial implementation), CafNet introduces a small amount of
buffering in the stack. The CNL (rather than the CTL) is the
natural place for this buffering, because intermediate mules
already require such buffers.

Applications no longer receive callbacks upon discover-
ing connectivity, but do so as soon as any space is avail-
able in the CNL buffer. This notification from the CNL,
clear to send(nbytes), allows the CTL to send() up to
nbytes worth of messages to the CNL. This modification to
the basic stack allows CafNet to achieve high network uti-
lization when connectivity is fleeting.

Setting the CNL buffer to be too large, however, hinders
the application’s ability to prioritize data. For example, be-
cause ICEDB dynamically re-evaluates the importance of
each chunk of data based on the latest queries and sen-
sor inputs, a problem arises when priorities of data already
buffered for transmission need to change. A plausible so-
lution might be to expand the CafNet interface to make the
CNL buffer visible to the application, allowing it to change
priorities of buffered messages. Unfortunately, this approach
is both complicated and violates layering.

To mitigate the problem, CafNet simply allows the appli-
cation to set a desired size for its CNL buffer. Applications
that require dynamic priorities set a buffer size just large
enough to mask the delay in re-prioritizing and packaging
data when network connectivity is made available.

The above API focuses on the novel aspects of our design
and is not complete; for instance, it does not include the data
reception path, which is similar to traditional protocol stacks.
It also does not include some other details such as the appli-
cation being informed of what destinations are now reach-
able in the callback invocation, functions to manage the CNL
buffer, functions to cancel previous transmissions, etc.

5 The Portal
Users navigate sensor data in CarTel using web-based

applications hosted within the portal environment, shown
schematically in Figure 2. An example of such an application
is shown in Figure 4(b) in which a user views the velocity
and location of his car overlaid on a map. In general, CarTel
applications use the three main components of the portal en-
vironment: (1) the portal framework, (2) the ICEDB server
to retrieve sensor data, and (3) a data visualization library to
display geo-coded attributes.

The portal framework provides the scaffolding for build-
ing applications that share a common user authentication
mechanism and a common look-and-feel. Currently, to alle-
viate privacy concerns, users are only allowed to view sensor
data collected from remote nodes that they host. Some ap-
plications may also report aggregate or anonymized statistics
from many users.

Applications communicate with ICEDB to issue contin-
uous queries and to view the results of these queries using
snapshot queries on the relational database. Once submitted,
the ICEDB server pushes these continuous queries out to the
remote nodes. Because the results of each continuous query
are stored in a table on the ICEDB server, applications can
display intermediate results at any time using values from
a query’s result table. We envision applications interacting
with the ICEDB server in different ways, including those that
repeatedly issue and withdraw continuous queries based on
user input, as well as those that derive all necessary sensor
data from a few long-running continuous queries.

Figure 4. The CarTel portal, showing a user (a) querying for traces corresponding to his commute and (b) viewing the
speed overlay for one trace.

Because a large class of collected data is geo-spatial, a
natural way for users to interact with the data is using a visual
interface. To this end, the portal provides a library that ap-
plications can use to display geographic overlays. The fun-
damental data segmentation abstraction in this visualization
library is called a trace. Traces are designed to encompass
all sensor data collected during a single trip (i.e., between
“ignition on” and “ignition off”). This library provides two
classes of functions: (1) an interface for searching for traces
using spatial queries and (2) an interface for overlaying geo-
graphic attributes on a map (Google maps [21] in our current
implementation) for a given trace.

Figure 4(a) shows the user interface to navigate traces. By
default, summary statistics for the most recently collected
traces are presented alongside a map that shows the geo-
graphic extent of this data, as derived from GPS readings.
The number of traces becomes large quickly after any sig-
nificant amount of usage. If a user wants to find all traces
that correspond to his commute, doing so would be quite te-
dious if the data is sorted chronologically. To make it easier
to mine the traces to answer these sorts of questions easier,
we allow users to “visually query” their data using graphi-
cally defined “interest regions” and operators. This feature
is shown in in Figure 4(a) where the user has selected two
regions—the dashed rectangles—that correspond to the be-
ginning and end of his commute. The operator that he se-
lected is “intersects”. Additionally, if the user was only in-
terested in those traces from the last month, filtering by date
can be specified in the query options. When the user pushes
the refine button, only those traces that intersect both interest
regions and are from the last month are returned.

Once a user finds a trace of interest, he can view the sen-
sor data associated with it. Each application can export a ge-
ographic overlay that a user selects from within this detailed
view of the trace data. Figure 4(b) shows the travel delay ap-
plication being used to show the speed overlay for a trace in
which a color-coded sequence of line segments corresponds
to the car’s route and velocity. This application also places
a marker at the position of the vehicle for each quartile of
elapsed time, giving users an idea as to which segments of
their routes account for their time. Other examples of ap-
plications implemented on the portal include those that visu-

alize OBD-II data, Wi-Fi connectivity, street-level imagery,
and altitude.

Not all applications will find the abstractions made by the
visualization library appropriate for displaying their results.
For example, one such application displays the top ten traffic
congestion hot spots seen by a user. For this type of appli-
cation the trace abstraction does not make sense because its
goal is to present an aggregate view of the user’s driving ex-
perience. However, such applications still take advantage of
the rest of the portal framework and issue both continuous
and snapshot queries.

6 Case Studies
This section presents three case studies conducted using

CarTel: road traffic monitoring, wide-area Wi-Fi measure-
ments, and automotive diagnostics.

6.1 Road Traffic Analysis
CarTel is well-suited for studying issues related to traf-

fic, congestion, and navigation. Each GPS-equipped node
on a car serves as a fine-grained probe of the roadways, al-
lowing us to measure delays along road segments and to infer
congestion hot spots. Moreover, by equipping cars with cam-
eras, we can build applications that help users better navigate
unfamiliar terrain.

6.1.1 Commute Time Analysis
Most people have a handful of heuristics that help them

decide which of many routes to take on their daily commute.
We have observed users of CarTel quantitatively analyzing
various alternative routes by comparing drive times of dif-
ferent routes at different times.

Using the GPS adapter and a continuous ICEDB query,
the commute time application keeps an accurate record of the
routes a driver takes and the delays along those routes. Users
can display a detailed view of any trip that shows a trace
color coded by vehicle speed and displays quartile progress
markers indicating the distance traveled after each successive
25% of elapsed time. These visualizations help users identify
heavily congested segments within a given route that should
be avoided.

During our initial deployment, one of our users took par-
ticular interest in optimizing his commute. The following
table shows sample travel times for his three routes between
work and home:

Route Avg. Dist. Avg. Time Std-dev
Freeway 9.94 miles 19:52 02:14

City Streets 9.83 miles 29:34 02:19
Frontage Road 9.27 miles 31:51 03:54

Prior to using CarTel, this user estimated that using
Frontage Road would provide the shortest travel times. Also,
the user felt that using Frontage Road results in a shorter
commute compared to city streets, but this is not true. The
user perceived the freeway as being the longest route due to
frustrating delays at on-ramps and off-ramps. As this data in-
dicates, the freeway route provides the shortest travel times
with the least amount of variance while the frontage road
provides the longest travel times. However, this data may be
slightly skewed by the user’s avoidance of the freeway dur-
ing peak commute hours, which almost certainly would have
increased the average route duration. In addition, this user
has reported that he was able to use the quartile markers and
color codes to mix and match routes to find faster paths.

The relatively small standard deviation in travel times
indicates that routes are reasonably predictable. This pre-
dictability suggests that it is possible to build accurate mod-
els of traffic delays by aggregating GPS traces across all
users. We can use these models to predict travel times for
routes and times of day that an individual user may never
have driven. This would help users answer such questions
as “What time should I leave for the airport to get there by
9?” or “When is the latest I can leave for a meeting down-
town and still be within 25% of the minimum travel time?”
Answering such questions is an area for future work.

6.1.2 Traffic Hot Spot Heuristics
Although a detailed, street-level model of traffic delays is

desirable, in many areas, simply knowing the main “traffic
hot spots” is sufficient to construct a reasonable route that
reduces traffic delays. This observation motivates an appli-
cation on the portal that computes traffic hot spots.

We calculate traffic hot spots from the GPS records col-
lected once per second. First, we define a grid on the map
(.001 decimal degrees of latitude and longitude, which is ap-
proximately 100 meters by 80 meters) and assign each GPS
point to the grid cell in which it is located. Next, we exam-
ine the velocity of the car at each point, as reported by the
GPS unit, and compute the standard deviation of the veloc-
ities over all GPS records in a given cell. After filtering out
cells with an insufficient number of samples, we place mark-
ers on a map at the center of the top ten cells with the greatest
variation in velocity. In addition, users can restrict the query
to run over a given interval during the day.

Figure 5 shows the top ten hot spots this application cal-
culated for the areas around Boston and Seattle. Not surpris-
ingly, in Seattle, many sections of I-5 show high variation
in speed during commute times. Likewise, in Boston, I-93
is a key area of congestion. However, in both areas some
intersections on back-roads display congestion too.

6.1.3 Image Acquisition
Driving to an unfamiliar location can be difficult, even

with detailed driving directions. Streets are often unmarked
and inclement weather can reduce visibility. One way of

Figure 6. The CarTel portal, showing a street-level view
just prior to a turn.

making turn-by-turn driving directions more useful would
be to include photographs of landmarks preceding each turn.
People often verbally give these types of directions: “turn
left at the red barn” or “you’ve gone too far if you see the
McDonald’s.”

CarTel makes it easy to collect the photographs needed to
augment driving directions with the requisite landmarks (we
have not build route-finding application yet). As mentioned
in Section 2, we have integrated a small camera into the sen-
sor package deployed with one of the nodes installed in a
user’s car. Currently, a script is used to take a picture every
few seconds. The portal uses these images to automatically
generate a large repository of geo-coded, street-level images.
This archive can be integrated with a driving direction appli-
cation to provide images just prior to every turn, giving users
a set of visual way-points along their journey. Although Car-
Tel does not have any data types or functions specifically
designed to manipulate images, PostgreSQL supports binary
arrays that are adequate for storing and indexing our image
data. Application-specific image processing could easily be
added via an adapter that processes the images prior to inser-
tion.

Currently, the images are delivered in no particular order.
However, higher resolution images or more frequent acqui-
sition would require a smarter scheme. One such scheme is
the “bisect” DELIVERY ORDER BY function of Section 3.

Figure 6 shows a street-level view just prior to a turn on a
user’s route.

6.2 Wide-area Wi-Fi Measurements
According to Jupiter Research, 65% of on-line house-

holds have installed Wi-Fi access points (APs) at home. One
could imagine that in areas with reasonably high population
density, such APs (and the broadband links connecting them
to the Internet) could provide Internet access to other users.
In one model, a single large “virtual ISP” empowers the own-
ers of these APs to function as “micro ISPs”, providing In-
ternet service. Of course, there are many important legal,
business, privacy and other issues that must be resolved be-
fore this idea becomes practically viable, but the interesting

Figure 5. The CarTel portal, showing users’ traffic hot spots for the Boston area (left) and the Seattle area (right).

question for us is what the performance of such a network is
likely to be, particularly for mobile users moving at vehicular
speeds.

To address this question, we used an earlier version of
CarTel (without ICEDB) to collect over 290 “drive hours”
of data about Wi-Fi connectivity in urban environments over
several months. Below, we summarize a few of the main re-
sults. A more detailed discussion of the study and the results
can be found in [8].

In addition to the GPS adapter used for traffic analysis,
we collected connectivity data using a Wi-Fi adapter. Our
data collection program continually scanned for APs, at-
tempted associations, and collected statistics about the fol-
lowing events as our users traveled on their daily paths:

• Wi-Fi scans, which are reports that list nearby APs.

• Wi-Fi associations, which are attempts to establish link-
layer connectivity with APs.

• IP address acquisitions, which are attempts to acquire
an IP address using DHCP (optimized with a cache
from previous trips).

• Ping and upload statistics, which are connectivity and
throughput statistics of TCP uploads through open APs.

We used this data to calculate the density of urban Wi-Fi
networks to estimate the feasibility of using such networks
for vehicular Internet access. In total, we discovered about
32,000 distinct APs, of which we were able to associate with
about 5,000 and acquire an IP address from about 2,000.
Moreover, the likelihood of a successful association was the
same across a large range of urban vehicular speeds up to 60
km/hour.

The following table summarizes some of our local and
end-to-end connectivity data:

Mean association duration 25 seconds
Mean time between connections to Internet 260 seconds
Median upload throughput 30 KBytes/s

These findings [8] suggest that such unplanned in situ Wi-
Fi networks can in fact be used with a delay-tolerant pro-
tocol stack such as CafNet to provide connectivity for mo-
bile users traveling at vehicular speeds in urban and subur-

ban areas. This Wi-Fi study of connectivity is a good exam-
ple of large-scale infrastructure monitoring enabled by Car-
Tel. Using a database split between the central server and
the mobile nodes (which eventually became the ICEDB sys-
tem described in this paper) and a single data-independent
upload mechanism on CarTel units allowed us to make it-
erative changes with only minor side-effects. Because our
experiments evolved with time and numerous enhancements
were driven by previous findings (as is typical in such stud-
ies), having a flexible data acquisition and analysis system
proved invaluable.

6.3 Automotive Diagnostics
This section illustrates a driving pattern analysis that we

were able to perform using CarTel and briefly discusses some
of the additional car sensor data we currently collect.

6.3.1 Analyzing Driving Patterns
The U.S. Environmental Protection Agency (EPA) main-

tains a Federal Test Procedure (FTP75) by which cars are
rated for fuel economy and emission levels. The procedure
performs measurements as the car is driven along a particu-
lar schedule of speeds. This driving schedule is designed to
be representative of typical urban driving patterns including
highway driving. The test has been criticized for assuming
gentle braking and acceleration that is not representative of
actual real-world driving patterns [16]. In 1996, the EPA
introduced a new driving cycle (US06) that includes harder
acceleration and higher speeds, but this test is not used for
fuel economy purposes. According to research in the fields
of air and waste management [54, 53], strong correlations
exist between emission levels and both speed and accelera-
tion. There appears to be some controversy about which of
acceleration and velocity dominates emissions. In our exper-
iments, we compare measures of both from our drives with
those of the driving schedules of FTP75 and US06.

We collected speed data from the GPS sensor. This GPS
data is sampled once per second and is forwarded to the por-
tal unfiltered. The speed data for FTP75 and US06 is also
available in the Code of Federal Regulations [12]. Accel-
eration is derived from these two different speed data sets
from the difference of each pair of consecutive speed read-
ings. We compared the performance of two CarTel drivers
to these Federal Standards (the first driver has logged about

2250 miles in CarTel; the second has logged about 1400
miles.)

Figure 7 compares the speeds and accelerations of the two
CarTel users with the profiles of FTP75 and US06. The
graphs show the cumulative distribution functions of speed
and acceleration, where the accelerations are grouped into
discrete ranges spanning 1 mph per second.5 Interestingly,
the acceleration distributions of both CarTel drivers are in
fact more similar to each other and the FTP75 schedule than
the more aggressive US06 schedule. User 1, in particular,
has driving habits that are very well matched by FTP75.

In conducting this experiment, no new data had to be col-
lected since historic GPS data was readily available in the
database. This analysis was extremely easy and quick to con-
duct, illustrating the ease with which interesting real-world
automotive analysis can be carried out using the CarTel plat-
form.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90

F
ra

c
ti
o

n
 o

f
ti
m

e

Speed range (mph, range width = 5mph)

User 1
User 2
FTP75
US06

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12

F
ra

c
ti
o

n
 o

f
ti
m

e

Acceleration range (mph/s, range width = 1mph/s)

User 1
User 2
FTP75
US06

Figure 7. Comparison of speed and acceleration data
from CarTel users and from federal test procedures
FTP75 and US06.

6.3.2 On-Board Diagnostic Data
Our system collects a range of data regarding the emis-

sions, engine status, and fuel consumption of cars over time
via the OBD-II interface. We have logged about 60,000

5Accelerations exceeding 10 mph per second are filtered out as
noise.

records over the past few months, including data about trou-
bleshooting codes, engine load, fuel consumption and pres-
sure, engine RPMs, engine timing, air intake temperature,
engine throttle position, and oxygen sensor status. We plan
to use this data to study the performance of cars over the
same roads on over many months to measure performance
degradation and to validate the EPA fuel economy ratings.

7 Implementation
The CarTel node software runs on the Linux 2.4.31 ker-

nel. Currently, the node hardware is a Soekris net4801 that
has a 586-class processor running at 266 MHz with 128 MB
of RAM and 1 GByte of flash memory. Each embedded com-
puter has a high-powered 802.11b miniPCI Wi-Fi card, the
Senao NL-2511MP with the Prism 2.5 chipset flashed with
firmware v1.7.4. We have attached a 5.5 dBi gain omni-
directional rubber-duck antenna to each Wi-Fi card. Figure 8
shows this platform. Each node also includes a PostgreSQL
database as part of ICEDB remote and a number of adapters
for various sensors, including the Rayming TN200 GPS unit.

To power a CarTel node, we plug it directly into the
cigarette lighter socket present in the vehicle. In most ve-
hicles, these ports are active only when the ignition is on.
Hence, our nodes are powered only when the engine is on.
This property turns out to be attractive because we do not
have to worry about inadvertently draining a car’s battery
and because the notion of a “trace” is easy to achieve. We
have also experimented with various battery-operated Car-
Tel nodes, both on cars and on bicycle rides.

To date, we have installed around ten CarTel nodes into
vehicles owned by members of our research group; six nodes
are in regular use today. Our plan over the next few months
is to scale the system up to more than 20 nodes.

To manage software on remote nodes without requiring
them to be removed from cars, we use two mechanisms. The
primary mechanism is the adapter framework described in
Section 3.1. For software upgrades of lower-level software,
we use the Debian dpkg package management system and
CafNet. To reduce the size of updates, CarTel is partitioned
into a small number of packages for each of its major compo-
nents, including CafNet, ICEDB, and the adapter subsystem.
Remote nodes periodically check the portal for new versions
of these packages and copy them via CafNet. Packages are
installed as they arrive.

8 Related Work
Over the past few years, advances in wireless network-

ing and embedded computing have led to the “first genera-
tion” of wireless sensor networks, including some impres-
sive field deployments [52, 3, 38, 11]. In general, these are
for monitoring or tracking applications characterized by low
data rates and static deployments, in contrast to our focus on
mobility, intermittent connectivity, and heterogeneous sen-
sor data.
Mobile sensor networks. Recent work in the NIMS
project [31, 33] and underwater sensing [55] has focused on
using mobility when it is not feasible to build a dense net-
work of fixed sensors, due to sensor or instrumentation costs
or a large geographic area that needs to be covered. In these
cases, mobile nodes are typically robots that follow a con-

Figure 8. The CarTel node hardware.

trolled movement pattern to collect data about regions of in-
terest. ZebraNet [30] exploits inherent mobility in the sens-
ing deployment, as we do; by placing sensors on animals
roaming in Africa, researchers have been able to observe
their movement and socialization patterns. CarTel differs in
that it provides a more general purpose platform, involves
significantly higher local processing using a delay-tolerant
query processor, integrates a visualization framework, and
handles mobility at vehicular speeds.

Delay-tolerant networking. Many researchers have stud-
ied the potential throughput and energy benefits of mul-
ing [33, 22, 28, 5, 32]; though energy constraints are not an
issue in the current implementation of CarTel, we exploit the
throughput advantages that muling offers in CafNet.

There are several mule-based, delay-tolerant network ar-
chitecture proposals in the community [19, 48, 29, 36,
43, 59, 24, 35, 47, 23]. These systems typically provide
some mechanism for buffering data that applications want to
send while disconnected, possibly with some custody trans-
fer [19] whereby intermediate nodes accept responsibility
for reliably delivering data connected by remote endpoints.
Much of this related work focuses on issues related to rout-
ing over multiple hops in such networks; we plan to utilize
this work as we move forward with our CafNet implemen-
tation Thus far, we have concentrated on API design using
callbacks to handle dynamic priorities.

Several research groups have been exploring the use of
Wi-Fi or other short-range networks to provide connectivity.
For example, in work on Infostations [22, 49], researchers
have studied networks in which there there are pockets of
good connectivity; their focus is on analyzing the throughput
and latency of such networks rather than on designing data
management and application infrastructures for them.

Finally, there has been some research into using mobile
nodes for emissions and pollution monitoring [40, 20]; we
hope to integrate similar solutions into CarTel.

Query Processing. Many research projects have noted the
need for in-network query processing [37, 58, 27] in sensor
networks. Like CarTel, these systems are typically motivated
by a need to reduce the bandwidth consumption that collect-
ing all data from a network would require. Unlike CarTel,
however, these systems have typically focused on low-data
rate, well-connected sensornets.

ICEDB also bears some similarity to previous work on
stream processing for continuous queries [39, 9, 13]; how-
ever, intermittent connectivity is not a failure case in CarTel
as it is in these systems. Furthermore, dynamic prioritization
of results and the simple SQL extensions to express priori-
ties are important features of ICEDB that are largely missing
from other systems. In a few cases, prioritization schemes
are used to decide what data to cache on clients when con-
nectivity is available [6, 34, 14] rather that on what data to
transmit, as in ICEDB.

The juggle operator [46] developed as part of the CON-
TROL project provides a method for allowing users to pri-
oritize the delivery of results from particular groups in long
running queries over disk-based data. Their approach is only
suitable to aggregate queries, and requires users to priori-
tize results as query results arrive (typically via a GUI). In
ICEDB, we are concerned with all types of queries, and need
a prioritization approach that does not require users to spec-
ify priorities for tuples as they stream into the portal. Hence,
we chose a declarative approach that allows the system to use
the PRIORITIZE clause to automatically assign priorities to
tuples as they are produced.

Mediation systems [57] serve as an intermediate layer
between data sources and the user applications that query
for data, accessing and merging data from multiple poten-
tially heterogeneous data sources. ICEDB’s mechanism of
adapters are similar to the wrappers found in mediators,
which transform the data at each distinct data source into
a common, uniform representation and semantics so that the
mediator can integrate the homogenized data.

Amsaleg et al. presented query scrambling [4] as an ap-
proach to query processing where data arrival may be de-
layed. By reordering and restructuring the query plan, the
query processor can perform other useful work while wait-
ing for data from a data source. Query scrambling addresses
initial delays that arise from difficulty connecting to the data
source, or when the data source experiences heavy load, and
assumes stable connectivity thereafter. ICEDB handles de-
lays that may be considerably longer.

Road traffic monitoring. Using sensor networks for road
traffic monitoring has recently become a hot topic. For
example, in the TrafficLab project at Rutgers [17, 41], re-
searchers use an ad hoc networks of cars to collect and dis-
seminate traffic information to cars on the same road. Their

system is largely focused on networking issues, however,
rather than on the sensing and data collection issues that are
at the core of CarTel. In particular, CarTel does not currently
use car-to-car communication.

JamBayes [25] is a probabilistic traffic forecasting ser-
vice. They used historical and real time traffic data to build
models that predict the onset of congestion up to an hour in
advance for freeway bottlenecks throughout the Seattle area.
The service sends alerts to users’ smartphones and can fore-
cast unexpected delays along user-configurable routes. Car-
Tel is a complementary system that could be used to collect
and analyze traffic data for roads outside of the highway net-
work that are not instrumented.

The PATH project [44] at UC Berkeley has investigated
a number of issues related to smart transportation systems,
including the use of sensor networks for on-road monitor-
ing [18]. On-road networks present an alternative to the
monitoring approach taken in CarTel: they provide relatively
fine resolution about a small area of the roadway, whereas
CarTel provides spottier information about a much larger ge-
ographic area.

There has also been recent interest in using cellular
phones as traffic monitoring devices: by using the location
features in most cellular devices, it is possible to determine
how fast different roadways are moving [51]. Although this
approach is likely to be good for road speed monitoring
(modulo privacy concerns), it does not offer the ability to
collect other types of information that CarTel also monitors.
We are targeting cellular phones and other handheld devices
as a future platform for CarTel software; we envision mo-
bile users collecting information about the environment just
as cars do in our system today.

Finally, there are specialized traffic services like Inrix [26]
and SmarTraveler [50] that aggregate information from var-
ious online traffic information sources to present a view of
road speeds and hazards in urban areas. In addition, Dash
Navigation [1] is developing a system that uses cars as float-
ing probes to provide real-time traffic reports disseminated
via a combination of peer-to-peer networks, Wi-Fi access
points, and pager networks.

9 Conclusion
With hundreds of millions of automobiles (to which em-

bedded computers can be attached) and over a billion mobile
phone-equipped people in the world, cars and humans may
turn out to be the carriers of the world’s largest and most
dynamic sensor networks in the coming years. Such mobile
sensor networks have the potential to sense large expanses
of the world at much finer fidelity and scale than possible
by static deployments. CarTel is a step towards a general-
purpose mobile sensor computing system to realize this vi-
sion.

CarTel provides software to collect, process, deliver, and
visualize data from sensors located on mobile devices to a
portal. Applications specify the properties of the data they
want using continuous queries, which are executed using a
delay-tolerant continuous query processor, ICEDB, on the
remote nodes. CarTel’s networking stack, CafNet, delivers
data between the portal and the remote nodes in the face of

intermittent connectivity. Result streams from the continu-
ous queries populate a relational database at the portal, which
portal applications query to obtain results to analyze and pro-
cess. The portal provides a geo-spatial visualization package
for presenting information to users, as well as a management
subsystem.

CarTel has been deployed on six cars, running on a small
scale in several metropolitan areas in the US for over a year.
Over this time, we have collected over 240 hours and 6200
miles worth of data from drives, including data about road
traffic speed and delays, the quality and prevalence of Wi-
Fi access points on drive routes, images from an attached
camera, and on-board automotive diagnostic data using the
OBD-II interface. All this data is accessible to users via a
Web site, which uses CarTel’s geo-spatial visualization inter-
face. Our experience, though limited, suggests that CarTel’s
three components—the portal, ICEDB, and CafNet—are an
effective way to collect, process, deliver, and visualize data
from mobile sensor networks.

We plan to pursue several avenues of work in the near
future, some of which we mention here. First, CarTel cur-
rently does not offer a way to aggregate information gathered
across different users while also preserving privacy. Users
do have password access, so unauthorized users cannot gain
access to others’ data, but it would be possible to make infer-
ences about another user’s location at a given time given the
results of certain aggregate queries. Second, our data shows
that predicting delays along routes before embarking on a
trip is likely to have fairly high accuracy, and we are inter-
ested in using our data to develop a map-based route finding
application that integrates delay information, and answers
questions like “How late can I leave home tomorrow morn-
ing, and what route should I take, to make sure that I will be
at the airport by 8am?” Third, we plan to process and analyze
more data obtained from the OBD sensors, as mentioned in
Section 6.3.2. Fourth, we plan to incorporate simple routing
algorithms into CafNet using information about past move-
ments of mules, and also incorporate the connectivity predic-
tion model as an online algorithm. Fifth, on the portal side,
we plan to develop techniques to efficiently answer questions
about trace similarity and other geographic queries, while
being resilient to noisy and missing data. Sixth, we plan to
incorporate a larger number of continuous queries for vari-
ous applications than we currently have, and also expand the
number of applications to include other sensors (acoustics,
pollution detectors, video streams, etc.). And last but not
least, we plan to increase the number of users of our system
in the coming months.

Acknowledgments

We thank Daniel Abadi, Philippe Bonnet (our shepherd),
Lewis Girod, Kyle Jamieson, and the other SenSys review-
ers for their many useful comments. This work was sup-
ported by the National Science Foundation under grants
CNS-0205445, CNS-0520032, and CNS-0509261, and by
the T-Party Project, a joint research program between MIT
and Quanta Computer Inc., Taiwan.

10 References
[1] Dash Navigation Inc. home page. http://www.dash.net/.

[2] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H.
Hwang, W. Lindner, A. Maskey, N. Tatbul, Y. Xing, and S. Zdonik. Design
issues for second generation stream processing engines. In Proc. of the

Conference for Innovative Database Research (CIDR), Asilomar, CA, Jan.
2005.

[3] R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan, L. Krishnamurthy,
N. Kushalnagar, L. Nachman, and M. Yarvis. Design and Deployment of
Industrial Sensor Networks: Experiences from the North Sea and a
Semiconductor Plant. In ACM SenSys, 2005.

[4] L. Amsaleg, M. J. Franklin, A. Tomasic, and T. Urhan. Scrambling query plans
to cope with unexpected delays. In PDIS, pages 208–219, 1996.

[5] N. Bansal and Z. Liu. Capacity, delay and mobility in wireless ad-hoc networks.
In INFOCOM, 2003.

[6] D. Barbara and T. Imielinski. Sleepers and workaholics: caching strategies in
mobile environments. In SIGMOD, pages 1–12, 1994.

[7] T. Brooke and J. Burrell. From ethnography to design in a vineyard. In
Proceeedings of the Design User Experiences (DUX) Conference, June 2003.

[8] V. Bychkovsky, B. Hull, A. K. Miu, H. Balakrishnan, and S. Madden. A
Measurement Study of Vehicular Internet Access Using In Situ Wi-Fi
Networks. In 12th ACM MOBICOM Conf., Los Angeles, CA, September 2006.

[9] D. Carney, U. Centiemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring Streams—A New Class
of Data Management Applications. In VLDB, 2002.

[10] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, E. Travis, and
H. Weiss. Interplanetary Internet (IPN): Architectural Definition.
http://www.ipnsig.org/reports/memo-ipnrg-arch-00.pdf.

[11] A. Cerpa, J. Elson, D.Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat
monitoring: Application driver for wireless communications technology. In
ACM SIGCOMM Workshop on Data Comm. in Latin America and the

Caribbean, 2001.

[12] Code of Federal Regulations. Title 40 Section 86 Subsection AA Appendix I.

[13] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. R. Madden, V. Raman, F. Reiss, and M. A.
Shah. TelegraphCQ: Continuous dataflow processing for an uncertain world. In
CIDR, 2003.

[14] M. Cherniack, M. Franklin, and S. Zdonik. Expressing User Profiles for Data
Recharging. IEEE Personal Communications, pages 32–38, Aug. 2001.

[15] D. Clark and D. Tennenhouse. Architectural Considerations for a New
Generation of Protocols. In ACM SIGCOMM, pages 200–208, 1990.

[16] Emission Test Cycles: SFTP-US06.
http://www.ietf.org/internet-drafts/draft-coene-sctp-multihome-04.txt, Apr.
2004.

[17] M. D. Dikaiakos, S. Iqbal, T. Nadeem, and L. Iftode. VITP: an information
transfer protocol for vehicular computing. In Workshop on Vehicular Ad Hoc

Networks, pages 30–39, 2005.

[18] S. C. Ergen, S. Y. Cheung, P. Varaiya, R. Kavaler, and A. Haoui. Wireless
sensor networks for traffic monitoring (demo). In IPSN, 2005.

[19] K. Fall. A delay-tolerant network architecture for challenged internets. In Proc.

ACM SIGCOMM, pages 27–34, 2003.

[20] M. Ghanem, Y. Guo, J. Hassard, M. Osmond, and M. Richards. Sensor Grids
for Air Pollution Monitoring. In Proc. 3rd UK e-Science All Hands Meeting,
Nottingham, UK, Sept. 2004.

[21] Google Maps API. http://www.google.com/apis/maps/.

[22] D. Goodman, J. Borras, N. Mandayam, and R. Yates. Infostations: A new
system model for data and messaging services. In Proc. IEEE Vehicular

Technology Conference, pages 969–973, May 1997.

[23] K. Harras and K. Almeroth. Transport layer issues in delay tolerant mobile
networks. In IFIP Networking, May 2006.

[24] M. Ho and K. Fall. Poster: Delay tolerant networking for sensor networks. In
SECON, October 2004.

[25] E. Horvitz, J. Apacible, R. Sarin, and L. Liao. Prediction, expectation, and
surprise: Methods, designs, and study of a deployed traffic forecasting service.
In Twenty-First Conference on Uncertainty in Artificial Intelligence, July 2005.

[26] Inrix home page. http://www.inrix.com/.

[27] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A Scalable
and Robust Communication Paradigm for Sensor Networks. In MOBICOM,
2000.

[28] S. Jain, R. C. Shah, G. Borriello, W. Brunette, and S. Roy. Exploiting mobility
for energy efficient data collection in sensor networks. In WiOpt, March 2004.

[29] D. Jea, A. A. Somasundara, and M. B. Srivastava. Multiple controlled mobile
elements (data mules) for data collection in sensor networks. In DCOSS, pages
244–257, 2005.

[30] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein.
Energy-efficient computing for wildlife tracking: Design tradeoffs and early
experiences with zebranet. In Proc. Architectural Support for Programming

Languages and Operating Systems, 2002.

[31] W. Kaiser, G. Pottie, M. Srivastava, G. Sukhatme, J. Villasenor, and D. Estrin.
Networked Infomechanical Systems (NIMS) for Ambient Intelligence. Ambient

Intelligence, 2004.
[32] A. Kansal, M. Rahimi, W. Kaiser, M. Srivastava, G. Pottie, and D. Estrin.

Controlled Mobility for Sustainable Wireless Networks. In IEEE SECON, 2004.
[33] A. Kansal, A. A. Somasundara, D. Jea, M. B. Srivastava, and D. Estrin.

Intelligent fluid infrastructure for embedded networking. In USENIX MobiSys,
2003.

[34] U. Kubach and K. Rothermel. Exploiting location information for
infostation-based hoarding. In MOBICOM, pages 15–27, 2001.

[35] J. Lebrun, C.-N. Chuah, D. Ghosal, and M. Zhang. Knowledge-based
opportunistic forwarding in vehicular wireless ad hoc networks. In IEEE

Vehicular Tech. Conf., pages 2289–2293, 2005.
[36] Q. Li and D. Rus. Sending messages to mobile users in disconnected ad-hoc

wireless networks. In ACM MOBICOM, pages 44–55, 2000.
[37] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tag: A tiny aggregation

service for ad-hoc sensor networks. In proc. of OSDI, 2002.
[38] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless Sensor

Networks for Habitat Monitoring. In WSNA, 2002.
[39] R. Motwani, J. Widom, A. Arasu, B. Babcock, S.Babu, M. Data, C. Olston,

J. Rosenstein, and R. Varma. Query Processing, Approximation and Resource
Management in a Data Stream Management System. In CIDR, 2003.

[40] Mobile Pollution Monitoring.
http://www.toolkit.equator.ecs.soton.ac.uk/infrastructure/
repository/mobilepollutionmonitor/web/index.html.

[41] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode. TrafficView: Traffic data
dissemination using car-to-car communication. MC2R, 8(3):6–19, 2004.

[42] Executive summary of the conference on the prospect for miniaturization of
mass spectrometry. Technical report, NSF, 2003. http:
//www.nsf-mass-spec-mini-forum.umd.edu/final_report.html.

[43] J. Ott and D. Kutscher. A Disconnection-Tolerant Transport for Drive-thru
Internet Environments. In INFOCOM, 2005.

[44] PATH Project. http://www.path.berkeley.edu/.
[45] PostgreSQL home page. http://www.postgresql.org/.
[46] V. Raman, B. Raman, and J. M. Hellerstein. Online dynamic reordering for

interactive data processing. In The VLDB Journal, pages 709–720, 1999.
[47] A. Seth, P. Darragh, S. Liang, Y. Lin, and S. Keshav. An Architecture for

Tetherless Communication. In DTN Workshop, 2005.
[48] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data Mules: Modeling a

Three-tier Architecture for Sparse Sensor Networks. In Proc. 1st IEEE SNPA

Workshop, 2003.
[49] T. Small and Z. J. Haas. The shared wireless infostation model: A new ad hoc

networking paradigm (or where there is a whale, there is a way). In MOBIHOC,
pages 233–244, 2003.

[50] SmartTraveler. http://www.smartraveler.com.
[51] B. Smith, H. Zhang, M. Fontaine, and M. Green. Cellphone probes as an ATMS

tool. Technical Report STL-2003-01, Center for Transportation Studies, Univ.
of Virginia, 2003. http://ntl.bts.gov/card_view.cfm?docid=23431.

[52] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,
T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A macroscope in the
redwoods. In ACM SenSys, pages 51–63, 2005.

[53] H.-Y. Tong, W.-T. Hung, and C. Chun-shun. On-road motor vehicle emissions
and fuel consumption in urban driving conditions. Journal of the Air and Waste

Management Association, 50:543–554, Apr. 2000.
[54] A. Unal, H. C. Frey, and N. M. Rouphail. Quantification of highway vehicle

emissions hot spots based upon on-board measurements. Jour. of the Air &

Waste Management Assn., 54:130–140, Feb. 2004.
[55] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke. Data collection,

storage, and retrieval with an underwater sensor network. In ACM SenSys,
pages 154–165, 2005.

[56] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and S. Shenker.
Middleboxes no longer considered harmful. In USENIX OSDI 2004, 2004.

[57] G. Wiederhold. Mediators in the architecture of future information systems. In
M. N. Huhns and M. P. Singh, editors, Readings in Agents, pages 185–196.
Morgan Kaufmann, San Francisco, CA, USA, 1997.

[58] Y. Yao and J. Gehrke. Query processing in sensor networks. In CIDR, 2003.
[59] W. Zhao, M. H. Ammar, and E. W. Zegura. A message ferrying approach for

data delivery in sparse mobile ad hoc networks. In MobiHoc, pages 187–198,
2004.

http://www.dash.net/
http://www.ipnsig.org/reports/memo-ipnrg-arch-00.pdf
http://www.google.com/apis/maps/
http://www.inrix.com/
http://www.toolkit.equator.ecs.soton.ac.uk/infrastructure/repository/mobilepollutionmonitor/web/index.html
http://www.toolkit.equator.ecs.soton.ac.uk/infrastructure/repository/mobilepollutionmonitor/web/index.html
http://www.nsf-mass-spec-mini-forum.umd.edu/final_report.html
http://www.nsf-mass-spec-mini-forum.umd.edu/final_report.html
http://www.path.berkeley.edu/
http://www.postgresql.org/
http://www.smartraveler.com
http://ntl.bts.gov/card_view.cfm?docid=23431

	1 Motivation
	2 Overview and Contributions
	2.1 CarTel Components
	2.2 Contributions

	3 ICEDB
	3.1 Data Model
	3.2 Continuous Query Model
	3.2.1 Local Prioritization
	3.2.2 Global Prioritization

	4 CafNet
	4.1 Overview
	4.2 The Basic CafNet Stack
	4.3 Optimizations and Enhancements

	5 The Portal
	6 Case Studies
	6.1 Road Traffic Analysis
	6.1.1 Commute Time Analysis
	6.1.2 Traffic Hot Spot Heuristics
	6.1.3 Image Acquisition

	6.2 Wide-area Wi-Fi Measurements
	6.3 Automotive Diagnostics
	6.3.1 Analyzing Driving Patterns
	6.3.2 On-Board Diagnostic Data

	7 Implementation
	8 Related Work
	9 Conclusion
	10 References

