
Applied Categorical Structures (2021) 29:1099–1150
https://doi.org/10.1007/s10485-021-09649-7

Cartesian Differential Categories as Skew Enriched Categories

Richard Garner1 · Jean-Simon Pacaud Lemay2

Received: 5 October 2020 / Accepted: 17 May 2021 / Published online: 18 June 2021
© The Author(s) 2021

Abstract
Weexhibit the cartesian differential categories of Blute, Cockett and Seely as a particular kind
of enriched category. The base for the enrichment is the category of commutative monoids—
or in a straightforward generalisation, the category of modules over a commutative rig k.
However, the tensor product on this category is not the usual one, but rather a warping of it
by a certain monoidal comonad Q. Thus the enrichment base is not a monoidal category in
the usual sense, but rather a skewmonoidal category in the sense of Szlachányi. Our first main
result is that cartesian differential categories are the same as categories with finite products
enriched over this skew monoidal base. The comonad Q involved is, in fact, an example
of a differential modality. Differential modalities are a kind of comonad on a symmetric
monoidal k-linear category with the characteristic feature that their co-Kleisli categories
are cartesian differential categories. Using our first main result, we are able to prove our
second one: that every small cartesian differential category admits a full, structure-preserving
embedding into the cartesian differential category induced by a differentialmodality (in fact, a
monoidal differentialmodality on amonoidal closed category—thus, amodel of intuitionistic
differential linear logic). This resolves an important open question in this area.

Keywords Cartesian differential categories · Skew monoidal categories · Differential
categories

1 Introduction

This paper brings together two active strands of research in current category theory. The first
is concernedwith a certain categorical axiomatics for differential structure; it originates in the
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work of Ehrhard and Regnier on the differential λ-calculus [21], with the definitive notions
of tensor differential category and cartesian differential category being identified by Blute,
Cockett and Seely in [7,8], and further studied by the Canadian school of category theorists
[4–6,14,16,17,33]. This has led to novel applications in computer science [11,13,15,20,23,36]
and in other areas such as abelian functor calculus [2].

The second strand which informs this paper is the study of skew monoidal categories, a
certain generalisation of Mac Lane’s monoidal categories. Skew monoidal categories were
introduced by Szlachányi [43] with motivation from quantum algebra, and their general
theory has been developed by the Australian school of category theorists [30–32,41]. This
has led to novel applications in operad theory [29], two-dimensional category theory and
abstract homotopy theory [9], and computer science [1].

These two strands meet in the first main result of this paper, which for the purposes of
this introduction we will term the enrichment theorem: it states that the cartesian differential
categories of [8] are exactly the categories with finite products enriched over a certain skew
monoidal category V. While the notion of a category enriched over a monoidal category [22]
is classical, and has been studied extensively—see, for example, [28]—enrichment over a
skew monoidal base is much less well-developed, having been considered only in [12,41],
and with fewer compelling examples. We feel our result clinches the argument for the value
of skew enrichment, and should serve as a useful test-bed for developing the theory further.

Of course, knowing that a certain structure can be exhibited as a kind of enriched category
is not a priori useful. However, in particular cases, it typically is so, and often because it
makes available the presheaf construction, allowing any instance of the structure at issue
to be embedded into a particularly well-behaved one. This is this case here. Using the
presheaf construction for our enrichment base, we will prove our second main theorem,
the embedding theorem, which states that every cartesian differential category admits a full,
structure-preserving embedding into one induced via the co-Kleisli construction froma tensor
differential category. This answers an important open question in the area.

In order to describe our results further, we now recall some more details of the notions
involved. We begin on the side of the differential structures. The key tension here, reflective
of the subject’s origins in linear logic, is between axiomatising a category of non-linear
(smooth) maps, and a category of linear maps.

The first axiomatisation is perhaps more intuitive, and leads to the cartesian differential
categories of [8]: these are categories with finite products A which are endowed with a
differential operator providing for each f : A → B a newmap D f : A× A → B. This D f is
thought of as assigning to an input pair (x, v) the directional derivative of f at x in the direction
of v. To express the desired linearity of this operation in v needs further structure onA: we ask
that it be left additive, meaning that each hom-set of A has a commutative monoid structure
(+, 0) which is preserved by precomposition, but not necessarily by postcomposition—this
is reasonable since, after all, A is supposed to be a category of non-linear maps. With the
appropriate axioms, this is the notion of cartesian differential category.

The second axiomatisation, in terms of a category of linear maps, leads to the tensor
differential categories of [7] (there called merely differential categories; we say “tensor” to
avoid ambiguity). These are symmetric monoidal, additively enriched categoriesA equipped
with a differential modality !—acomonad onA endowedwith certain extra structure.Much as
in linear logic, this ! is intended to allow “smooth maps” from X to Y to be encoded as “linear
maps”—i.e.,A-maps—from !X to Y . The extra structure of !which allows this interpretation
is cocommutative coalgebra structure on each !X , modelling discard and duplication of non-
linear inputs; and a deriving transformation d : !X ⊗ X → !X , precomposition with which
implements the differential operator. This interpretation is justified by the key result that, in
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Cartesian Differential Categories as Skew Enriched Categories 1101

the presence of finite products, the co-Kleisli categoryKl(!) of the differential modality on a
tensor differential category is a cartesian differential category.

An important refinement of these notions makes explicit the connection with linear logic.
A differential modality is called monoidal if its underlying endofunctor ! : A → A is (lax)
monoidal, in a manner which is compatible with the rest of the structure. This makes ! a
model of the exponential modality of linear logic; if moreover the monoidal structure of A
is closed, then we have a model of intuitionistic differential linear logic [20]. In this case,
the co-Kleisli categoryKl(!) is a cartesian closed differential category, and so a model of the
differential λ-calculus [11,21].

With the refinement just noted, the embedding theorem can be stated as follows:

Theorem Any small cartesian differential category has a full, structure-preserving embed-
ding into the co-Kleisli category Kl(!) of the monoidal differential modality associated to a
model of intuitionistic differential linear logic.

We will obtain this using our other main result, the enrichment theorem, and to describe
that we must now turn to the other side of our story: skew monoidal categories. Recall that
monoidal structure [34] on a category V involves a unit object I , a tensor product functor ⊗,
and invertible coherence constraints α : (A⊗ B) ⊗C → A⊗ (B ⊗C), λ : I ⊗ A → A and
ρ : A → A⊗ I , subject to suitable axioms. Skew monoidal structure [43] generalises this by
dropping invertibility of α, λ and ρ—being careful to give them the stated orientations and
no other.

Many aspects of the theory of monoidal categories can be adapted to the skew context;
in particular, the classical notion [22] of enrichment over a monoidal category. Following
[41], a category A enriched over a skew monoidal category V involves a set of objects;
a hom-object A(A, B) in V for every pair of such objects; and composition and identities
morphisms A(B,C) ⊗ A(A, B) → A(A,C) and I → A(A, A) in V, subject to the three
usual associativity and identity axioms—where suitable attention now has to be paid to
orienting these axioms correctly.

We will be interested in enrichment over skew monoidal categories arising in a particular
way. Given a genuine monoidal category V = (V,⊗, I ), one can warp it [43, § 7] by a
monoidal comonad ! on V to obtain a skew monoidal category V! := (V,⊗!, I ), where
A⊗! B := A⊗ !B, and where the constraint maps α, λ, ρ for V ! come from those for V and
the structure maps of the monoidal comonad !.

A first indicator of the relevance of these ideas to cartesian differential categories is the
following observation, made by Cockett and Lack in 2012, and recorded in passing in [4,
§ 5.1]. Consider the monoidal category CMon of commutative monoids with its usual tensor
product. There is amonoidal comonad K induced by the (monoidal) forgetful–free adjunction
CMon � Set, with action on objects

K (A) = ⊕
a∈A N ,

and it is not hard to see that a category enriched over the skew-warping CMonK is exactly
a left additive category. Our enrichment theorem takes this observation further. It turns out
that to get from left additive to cartesian differential structure, the key step is to replace K
with a more elaborate monoidal comonad Q on CMon, which acts on objects by

Q(A) = ⊕
a∈A Sym(A)

where Sym(A) is the free commutative rig (=semiring) on the commutative monoid A. This
Q is not just a monoidal comonad, but also a monoidal differential modality; in fact, it turns
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1102 R. Garner, J.-S. P. Lemay

out to be the initial monoidal differential modality on CMon, and so our enrichment theorem
can be stated as:

Theorem To give a cartesian differential category is equally to give a CMonQ-enriched
category with finite products, where Q is the initial monoidal differential modality on
(CMon,⊗,N).

We derive the embedding theorem from the enrichment theorem via the mechanism
advertised above: enriched presheaves. As explained in [41], the presheaf construction for
enrichment over a monoidal category [28,40] generalises without difficulty to the skew
monoidal case. Thus, for a small cartesian differential categoryA, seen as aCMonQ-enriched
category, its enriched Yoneda embedding A → Psh(A) corresponds to a full structure-
preserving embedding of cartesian differential categories. A deeper analysis shows that, in
fact, the cartesian differential categoryPsh(A) is induced fromamonoidal differentialmodal-
ity on a symmetric monoidal closed additively enriched category, so yielding our embedding
theorem. Since the proof is entirely constructive, we are able to compute a concrete descrip-
tion of all aspects of the embedding so obtained; and these are delicate enough that there
seems to be little chance of having arrived at them by any other means—so justifying our
approach.

Let us also say a few words about the proof of the enrichment theorem. Perhaps the most
interesting point is the manner in which the initial monoidal differential modality Q comes
into the picture. One point of reference is that the formula QA = ⊕

a∈A Sym(A) is the
same formula as for the cofree cocommutative coalgebra over an algebraically closed field
k; see [13,42]. However, our motivation comes from the striking [14], which proves that the
forgetful functor from cartesian differential categories to cartesian left additive categories
has a right adjoint. The value of this right adjoint atA is the so-called Faà di Bruno category
Faà(A), whose objects are those of A; whose maps f (•) : A � B are N-indexed families of
maps f (n) : A× An → B inA which are symmetric multilinear in their last n variables; and
whose composition law is given by the higher-order chain rule, the so-called Faà di Bruno
formula. This is analogous to the fact that the forgetful functor to commutative rings from
differential rings—commutative rings endowed with a derivation—has a right adjoint, which
sends a ring R to its ring of Hurwitz series [26]; this is the ring whose elements areN-indexed
families of elements r (n) ∈ R, endowed with a suitable multiplication.

In particular, we may look at one of the most basic cartesian left additive categories, the
category CMonw of commutative monoids and arbitrary functions, and construct its cofree
cartesian differential category Faà(CMonw). A natural question is whether this is induced
as the co-Kleisli category of a differential modality on a symmetric monoidal additively
enriched category. The answer turns out to be yes—with the differential modality involved
being precisely the initial differential modality Q on the category CMon of commutative
monoids.

We conclude this introduction with a brief overview of the contents of the paper. In Sect. 2,
we recall the notion of cartesian differential category, and give a range of examples. In Sect. 3,
we describe the Faà di Bruno construction of [14], and give new proofs of the main results
of loc. cit. In Sect. 4, we recall the notion of tensor differential category and its relation
to cartesian differential structure, before showing that every Faà di Bruno category Faà(A)

arises via a co-Kleisli construction (this will later follow from the embedding theorem).
Section 5 develops some of the basics of skew monoidal categories and enrichment over a
skewmonoidal base, before Sect. 6 provides the proof of our first main result, the enrichment
theorem. Section 7 then develops the theory of presheaves for categories enriched over a
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skew monoidal base; before, finally, Sect. 8 exploits this and our first main result to prove
the embedding theorem for cartesian differential categories.

2 Cartesian Differential Categories

In this purely expository section, we recall the necessary background from [8] on cartesian
differential categories. As explained in the introduction, a cartesian differential category is
a category endowed with an abstract notion of differentiation; the motivating example is the
category whose objects are Euclidean spaces Rn and whose maps are smooth functions, but
there are other examples coming from algebraic geometry and linear logic, which we will
recall below.

2.1 Cartesian Left-k-Linear Categories

In the introduction, we saw that cartesian differential structure on a category involved com-
mutative monoid structure (+, 0) on each hom-set. For examples coming from differential
or algebraic geometry, this can generally be enhanced to the structure of a real or complex
vector space, or at least that of an R-module over a commutative ring R. This is by contrast
with examples coming from linear logic, where negatives may not exist all.

To account for these distinctions, we will incorporate into the definitions that follow the
parameter of a commutative rig (or semiring) of scalars k. When k = N we re-find the
original definitions of [7,8]; when k = Z we get variants with negatives; when k is a field we
get versions involving k-vector spaces; and so on.

For the rest of the paper, then, k will be a fixed commutative rig. We write k-Mod for the
category of modules over k, whose objects are commutative monoids M (written additively)
with a multiplicative action k × M → M that respects addition in each variable, and whose
maps are k-linear maps, i.e., functions respecting the additive structure and the k-action.
As with modules over a commutative ring, we have a tensor product ⊗ on k-Mod which
classifies bilinear maps, and this forms part of a symmetric monoidal structure on k-Mod
with unit k. We also have all limits and colimits, but in particular finite biproducts M ⊕ N ,
computed as cartesian products at the underlying set level.

The following is the basic notion onwhich the definition of (k-linear) cartesian differential
category will be built.

Definition 2.1 A left-k-linear category is a category A in which each hom-set A(A, B) is
endowed with k-module structure, and for each f ∈ A(A, B), the precomposition function
(−) ◦ f : A(B,C) → A(A,C) is k-linear. A left-k-linear category A is cartesian if its
underlying category has finite products, and the binary product isomorphisms as below are
k-linear

A(A, B × C) → A(A, B) ⊕ A(A,C) . (1)

The notion of left-k-linear category should be compared with that of k-linear category, in
which we also require that each function g◦(−) : A(A, B) → A(A,C) is k-linear.While the
basic example of a k-linear category is k-Mod, the basic example of a left-k-linear category is
k-Modw , the category of k-modules and arbitrarymaps. In this case, the k-module structure
on homs is given pointwise, and is still preserved by precomposition, but not necessarily by
postcomposition.

123



1104 R. Garner, J.-S. P. Lemay

In fact, those maps of k-Modw by which postcomposition does preserve the k-module
structure are precisely the ones lying in k-Mod. This motivates:

Definition 2.2 A map g : B → C in a left-k-linear categoryA is called k-linear if, for every
A ∈ A, the function g ◦ (−) : A(A, B) → A(A,C) is k-linear. More generally, a map
g : B1 × · · · × Bn → C in a cartesian left-k-linear category A is said to be k-linear in the
i th variable if, for each A ∈ A, the function

A(A, B1) × · · · × A(A, Bn)
∼=−→ A(A, B1 × · · · × Bn)

g◦(−)−−−−→ A(A,C)

is k-linear in its i th argument. If g is linear in all n of its arguments separately, we may say
that it is k-multilinear or simply multilinear.

We make three remarks. Firstly, for a map f : A1 × A2 × A3 → B, say, we could
ask that it be k-linear in the first variable, and also k-linear in the third variable—so a
kind of bilinearity—but also that it be linear in variables 1 and 3 taken together, i.e., that
f ◦ (g0 + g1, h, k0 + k1) = f ◦ (g0, h, k0) + f ◦ (g1, h, k1). In the latter situation, we may
say that f is jointly k-linear in variables 1 and 3.

Secondly, we note that in [8], “additive” is used for what we call “k-linear”, while “linear”
is reserved for a stronger concept which we call “D-linear”; see Definition 2.6.1 Finally,
we can now equate our notion of cartesianness for a left-k-linear category with that in [8].
Indeed, to require the k-linearity of the product isomorphisms in (1) is equally to require the
k-linearity of the two product projections π0 : B × C → B and π1 : B × C → C—which,
by [33, Lemma 2.4], is equivalent to the original definition of “cartesian”.

We conclude this section with some examples of cartesian left-k-linear categories.

Examples 2.3
(i) As already noted, k-Modw is a left-k-linear category; in fact, it is also cartesian, with

finite products computed as in k-Mod. Note that in k-Modw, these finite products are not
biproducts, and so we will write them as A × B rather than A ⊕ B. The k-multilinear maps
in k-Modw are multilinear maps in the usual sense.

(ii) A k-linear category with finite biproducts, such as k-Mod, is the same thing as a
cartesian left-k-linear category in which every map is k-linear. On the other hand, the only
k-multilinear maps in such a catgory are the zero maps.

(iii) The categorySmoothEuc,whose objects are theEuclidean spacesRn , andwhosemaps
are smooth functions, is cartesian left-R-linear. Once again, the R-linear and R-multilinear
maps take on their usual meaning, and finite products are simply cartesian products.

(iv) If k is a commutative rig, we define the category Polyk to have natural numbers as
objects, maps f : n → m given by m-tuples of polynomials f1, . . . , fm ∈ k[x1, . . . , xn],
and composition given by polynomial substitution. Polyk is left-k-linear under the pointwise
addition of polynomials; it ismoreover cartesian, with finite products given by addition of nat-
ural numbers, and (k-linear) projection maps n ← n + m → m given by π0 = (x1, . . . , xn)
and π1 = (xn+1, . . . , xm). The k-linear maps f : n → m in Polyk are those for which
each fi is of the form λ1x1 + · · · + λmxm for some λ1, . . . , λm ∈ k; the k-bilinear maps
f : n +m → r are likewise those for which each fi is a k-linear combination of monomials
xi x j with 1 ≤ i ≤ n < j ≤ n + m.

1 This change of nomenclature will be justified later, when we see that both k-linearity and D-linearity of a
map are examples of a general notion of “linearity” with respect to a skew enrichment; see Example 5.13 and
Theorem 6.4.
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(v) Generalising (iv), we have a category GenPolyk with k-modules M, N , . . . as objects,
and maps from N to M being k-module maps M → Sym(N ), where

Sym(N ) = k ⊕ N ⊕ (N ⊗ N )/S2 ⊕ (N ⊗ N ⊗ N )/S3 ⊕ · · · (2)

is the free symmetric k-algebra on N . Since Sym is a monad on k-Mod, composition in
GenPolyk can be described as Kleisli composition for Sym. Proceeding as before, mutatis
mutandis, yields a cartesian left-k-linear structure on GenPolyk , whose k-linear maps from
N to M are maps M → Sym(N ) in k-Mod which factor through the unit η : N → Sym(N );
and whose bilinear maps from N × M to R are maps in k-Mod of the form

R → N ⊗ M
η⊗η−−−→ Sym(N ) ⊗ Sym(M) ∼= Sym(N ⊕ M) .

2.2 Cartesian Differential Categories

We now recall the key notion from [8]. Note that we omit in (iii) the condition D( f , g) =
(D f ,Dg) which was originally taken as axiomatic, since by [33, Lemma 2.8], this follows
from (iii) and (iv).

Definition 2.4 A k-linear cartesian differential category is a cartesian left-k-linear category
A equipped with operators D : A(A, B) → A(A × A, B) such that:

(i) Each D is k-linear;
(ii) Each D f : A × A → B is k-linear in its second argument;
(iii) D(πi ) = πiπ1 : (A0 × A1) × (A0 × A1) → Ai for i = 0, 1;
(iv) D(1A) = π1 : A × A → A for all A ∈ A;
(v) D(g f ) = Dg

(
f π0,D f

) : A × A → C for all f : A → B and g : B → C .
(vi) D(D f )(x, r , 0, v) = D f (x, v) : Z → B for all x, r , v : Z → A, f : A → B;
(vii) D(D f )(x, r , s, 0) = D(D f )(x, s, r , 0) : Z → B for all x, r , s : Z → A, f : A → B.

In the examples that follow, we emphasise the ground rig k. However, subsequently we
will typically write “cartesian differential category” to mean “k-linear cartesian differential
category”, leaving the parameter k implicit.

Examples 2.5

(i) SmoothEuc is an R-linear cartesian differential category, where for a smooth map
f : Rn → R

m , we take D f : Rn × R
n → R

m to be the directional derivative

D f (x, v) = (∇ f )(x) · v
where (∇ f )(x) is the (vector-valued) gradient ( ∂ f

∂x1
|x . . .

∂ f
∂xn

|x).
(ii) Polyk is a k-linear cartesian differential category, where for each map f : n → m we
define D f : n + n → m by

(D f )(x1, . . . , xn, v1, . . . , vn) =
(∑n

j=1
∂ f1
∂x j

v j , . . . ,
∑n

j=1
∂ fm
∂x j

v j

)

(iii) GenPolyk has a k-linear cartesian differential structure defined in a manner which
extends (ii); we will obtain it rigorously in Examples 4.7(i) below.

(iv) Every k-linear category with finite biproducts is a k-linear cartesian differential category,
where for a map f : A → B we define D f : A⊕ A → B by D f = f π1. While this example
may seem trivial, it plays an important role in [16].
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The axioms for a cartesian differential category express axiomatically the key properties
of the motivating example of SmoothEuc. (i) expresses the linearity of taking derivatives,
and (iii) the compatibility of D with products; (iv) and (v) are the nullary and binary chain
rules; while (vii) gives symmetry of second-order partial derivatives. As for (ii) and (vi), both
express the linearity of the operation (∇ f )(x) · (−), but in different ways. We have already
discussed k-linearity, but in the differential context, we also have a notion of D-linearity. In
the definition, and henceforth, we write 0m for a sequence of m zeroes.

Definition 2.6 A map f : A → B in a cartesian differential category is D-linear if
D f (x, v) = f v for all x, v : Z → A. More generally, a map f : A1 × · · · × An → B
is D-linear in the i th variable if for all suitable v, x1, . . . , xn we have

D f (x1, . . . , xn, 0
i−1, v, 0n−i ) = f (x1, . . . , xi−1, v, xi+1, . . . , xn) .

In these terms, axiom (vi) above says exactly that D f is D-linear in its first argument.
In the motivating example, D-linearity and k-linearity coincide, but in the general case, the
former implies the latter, but not vice versa; see [8, Corollary 2.3.4].

The notion of D-linearity in one variable is conveniently repackaged using partial
derivatives, which will be important later. In terms of the following definition, a map
f : A1×· · ·×An → B is D-linear in its i th variable just whenwe haveDi f (x1, . . . , xn, v) =
f (x1, . . . , xi−1, v, xi+1, . . . , xn).

Definition 2.7 Given a map f : A1 × · · · × An → B in a cartesian differential category and
1 ≤ i ≤ n, its i th partial derivative is the map Di f : A1 ×· · ·× An × Ai → B characterised
by Di f (x1, . . . , xn, v) = D f (x1, . . . , xn, 0i−1, v, 0n−i ).

For example, in Polyk the partial derivative Di f : n + 1 → m of a map f : n → m is

given by (Di f )(x1, . . . , xn, v) =
(

∂ f1
∂xi

v, . . . ,
∂ fm
∂xi

v
)
. Comparing this with Examples 2.5(ii),

we see that in this case the derivative D f is the sum of the partial derivatives. This is true in
general, as the first part of the following lemma shows.

Lemma 2.8 Let f : A1 × · · · × An → B and g : B → C be maps in a cartesian differential
category.

(i) We have D f = D1 f + · · · + Dn f ;
(ii) We have Di (g f )(x1, . . . , xn, v) = Dg

(
f (x1, . . . , xn),Di f (x1, . . . , xn, v)

)
for all suit-

able x1, . . . , xn, v.

Proof. Part (i) is [8, Lemma 4.5.1]. For (ii), we calculate using the chain rule that

Di (g f )(x1, . . . , xn, v) = D(g f )(x1, . . . , xn, 0
i−1, v, 0n−i )

= Dg
(
f (x1, . . . , xn),D f (x1, . . . , xn, 0

i−1, v, 0n−i )
)

= Dg
(
f (x1, . . . , xn),Di f (x1, . . . , xn, v)

)
.

Finally, we record the definition of cartesian closed differential category. In [11], this
structure is called a “differential λ-category”, and is shown to admit an interpretation of the
differential λ-calculus of [21].

Definition 2.9 Acartesian differential categoryA is a cartesian closed differential category if
its underlying category is cartesian closed, and one of the following two equivalent conditions
holds (where bar indicates exponential transpose):

(i) For all f : A × B → C in A, we have D f = D1 f : A × A → CB ;
(ii) For all B,C ∈ A, the counit ev : CB × B → C is D-linear in its first argument.

For the equivalence of these conditions, see [15, Lemma 4.10].
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3 The Faà di Bruno Construction

In this section, we describe the striking main result of [14]. This says that the forgetful
functor U : cDiff → c�kLin from cartesian differential categories to cartesian left-k-linear
categories—with the obvious strict structure-preserving maps in each case—has a right
adjoint and is comonadic. As in [14], we will denote the value of this right adjoint at a
cartesian left-k-linear category A by Faà(A), and call it the Faà di Bruno category of A.

The calculations which describe the Faà di Bruno category, and exhibit its universal
property, are so closely aligned to what we need in this paper that it will be worth going
through them thoroughly. In fact, this will not be pure revision: we give new proofs of the
main results of [14] that avoid the term calculus for cartesian differential categories, and
which sidestep some of the more involved calculations.

3.1 Objects andMorphisms

The notions of cartesian left-k-linear category, and of cartesian differential category, are
essentially algebraic in the sense of Freyd [24], and the functor U : cDiff → c�kLin is
given by forgetting certain essentially-algebraic structure. It follows by the standard theory
[25] of locally finitely presentable categories that U has a left adjoint F , and is monadic.

By contrast, the fact that U has a right adjoint Faà does not follow from any standard
theory; however, to discover the values that such a right adjoint would have to take, we
can employ a standard methodology—namely, that of “probing” from suitable free objects
and using adjointness. In this section, we use this approach to find out what the objects and
morphisms of Faà(A) must be.

First, let 1 be the free cartesian left-k-linear category on an object, and F(1) the free
cartesian differential category on that. Objects of Faà(A) are in bijection with maps F(1) →
Faà(A) in cDiff, and so with maps UF(1) → A in c�kLin. But since the only morphisms
of 1 ∈ c�kLin are ones which must be D-linear in any cartesian differential category, F(1) is
simply 1with the trivial differential of Example 2.5(iv), andUF(1) is again just 1. Therefore
objects of Faà(A) are the same as those of A.

Now let 2 be the free cartesian left-k-linear category on an arrow f : A → B. Arguing
as before, arrows of Faà(A) are in bijection with maps UF(2) → A in c�kLin; to identify
these, we must give a presentation of F(2) qua cartesian left-k-linear category. Of course,
part of this presentation is the arrow f : A → B; but we also have D f : A2 → B and
D2 f : A4 → B, and so on. It turns out2 that the totality of the maps Dn f : A2n → B
generate F(2) as a cartesian left-k-linear category; as such, arrows A → B of Faà(A) can
be identified with families of maps

( f0 : A → B, f1 : A2 → B, . . . , fn : A2n → B, . . .)

in A subject to axioms expressing the relations between f ,D f ,D2 f , . . . in F(2). This is,
in fact, the description of maps of Faà(A) given in [33], but not the original one of [14]. To
reconstruct the latter, we must look more closely at the relations holding between the iterated
differentials of a map.

As motivation, we observe that, for the second iterated differential, we have by axiom (vi)
and Lemma 2.8 that:

(D2 f )(x, r , s, v)=(D1D f )(x, r , s) + (D2D f )(x, r , v)=(D1D f )(x, r , s) + D f (x, v);

2 We will not prove this directly, since this discussion is really only by way of motivation.
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1108 R. Garner, J.-S. P. Lemay

this abstracts away the expression of D2 f in SmoothEuc in terms of the Jacobian and the
Hermitian: (D2 f )(x, r, s, v) = r
 · (H f )(x) · s + (∇ f )(x) · v. More generally, we can
decompose iterated differentials Dn f as sums of higher-order derivatives:

Definition 3.1 [14, § 3.1] For any map f : A → B in a cartesian differential category, we
define its nth derivative as the map f (n) = (D1)

n f : A × An → B.

We now give the decomposition of Dn f : A2n → B in terms of the f (n)’s. In what follows,
given a map x : X → A2n and a subset I ⊆ [n] = {1, . . . , n}, we write xI : X → A for the
projection of x associated to the characteristic function χI ∈ 2n .

Lemma 3.2 Let f : A → B be a map in a cartesian differential category and n ≥ 0.

(i) f (n) : A × An → B is symmetric and D-linear in its last n variables.
(ii) For any x : X → A2n , we have

(Dn f )(x) =
∑

[n]=A1|···|Ak

f (k)(x∅, xA1 , . . . , xAk ) (3)

where the sum is over all (unordered) partitions of [n] into non-empty subsets
A1, . . . , Ak; in particular, when n = 0, the unique partition of [0] = ∅ is the empty
partition with k = 0.

(iii) For any y : X → A × An, we have

f (n)(y) = (Dn f )(y◦) (4)

where y◦ : X → A2n is the unique map with y◦
∅ = π0y, y◦{k} = πk y and y◦

I = 0 for
any I ⊆ [n] of cardinality ≥ 2.

Proof. (i) is [14, Lemma 3.1.1(iii) and Corollary 3.1.2]. For (ii), consider maps x0, . . . ,
xn, y0, . . . , yn : X → A; writing x = x0, . . . , xn and y = y0, . . . , yn we have

D( f (n))(x, y) = ∑n
i=0 Di+1( f (n))(x, yi ) = f (n+1)(x, y0) + ∑n

i=1 f (n)(x[yi/xi ]) (5)

—where x[yi/xi ] indicates the substitution of yi for xi in x—by using Lemma 2.8 at the first
step, and the D-linearity of f (n) in its last n variables at the second. We now prove (3) by
induction. The base cases n = 0, 1 are clear. So let n ≥ 2 and assume the result for n − 1.
We calculate Dn( f )(x) to be given by

∑

[n-1]=A1|···|Ak

D( f (k))(x∅, xA1 , ..., xAk , x{n}, xA1∪{n}, ..., xAk∪{n})

=
∑

[n-1]=A1|···|Ak

(
f (k+1)(xA, x{n}) + ∑k

i=1 f (k)(xA[xAi∪{n}/xAi ])
)

=
∑

[n]=A1|···|Ak

f (k)(xA)

as desired. Here, we write xA for x∅, xA1 , . . . , xAk , and argue as follows. At the first step we
use the inductive hypothesis and axioms (i) and (iv); at the second step, we use (5); and at
the third step, we use that any partition of [n] is obtained in a unique way from a partition of
[n − 1] either by adding a new singleton part {n}, or by adjoining n to an existing part.

Finally, for (iii), consider a map y : X → A × An . By (ii) we have that

(Dn f )(y◦) =
∑

[n]=A1|···|Ak

f (k) (
y◦
∅, y◦

A1
, . . . , y◦

Ak

)
;
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but since y◦
Ai

is zero whenever |Ai | ≥ 2, and since f (k) is D-linear in its last k variables,
the only term in the sum to the right which is not zero is that involving the partition into
singletons [n] = {1}| · · · |{n}. This yields the desired equality:

(Dn f )(y◦)= f (n)
(
y◦
∅, y◦{1}, . . . , y◦{n}

)
= f (n)(π0y, π1y, . . . , πn y)= f (n)(y) .

It follows that the free cartesian differential category on an arrow is generated qua cartesian
left-k-linear category by themaps f (n) : A×An → B for n ∈ N. In fact,3 it is freely generated
by them, subject to the requirement (mandated by part (i) of the preceding lemma) that each
f (n) is symmetric k-linear in its last n variables. Thus, maps f : A � B of Faà(A) are the
same as N-indexed families f (n) : A × An → B in A, where f (n) is symmetric k-linear in
its last n variables.

3.2 Composition

The next step is to understand composition in Faà(A). As before, we can determine this
by probing Faà(A), this time by maps from the free cartesian differential category on a
composable pair of arrows. What this amounts in practice is determining a formula which
expresses the higher-order derivatives of a composite g◦ f in a cartesian differential category
in terms of the derivatives of g and f . This formula is the Faà di Bruno higher-order chain
rule—whence the nomenclature Faà(A).

Definition 3.3 Let f : A → B in a cartesian differential category, and suppose that I =
{n1 < · · · < ni } ⊆ [n]. We write f (I ) : A × An → B for the map determined by

f (I )(x0, . . . , xn) = f (i)(x0, xn1 , . . . , xni ) . (6)

In particular, we have f (∅)(x0, x1, . . . , xn) = f x0.

Lemma 3.4 [14, Corollary 3.2.3] Let f : A → B and g : B → C in a cartesian differential
category. For each n ≥ 0 we have:

(g ◦ f )(n) =
∑

[n]=A1|···|Ak

g(k) ◦ ( f (∅), f (A1), . . . , f (Ak )) . (7)

Proof For each n ≥ 0, define a map f [n] : A × An → B2n by the rule ( f [n])I = f (I ). We
claim that we have

(g ◦ f )(n) = Dng ◦ f [n] : A × An → C . (8)

Given this, the desired result will follow immediately from (3). We prove (8) by induction.
The base case n = 0 is trivial; and assuming the result for n − 1, we verify it for n by the
following calculation, where we write v for v1, . . . , vn−1:

(g ◦ f )(n)(x, v, vn) = D1
(
(g ◦ f )(n−1))(x, v, vn)

= D1
(
Dn−1g ◦ f [n−1])(x, v, vn)

= Dng
(
f [n−1](x, v),D1 f

[n−1](x, v, vn)
)

= Dng( f [n](x, v, vn)) .

Here, we use the definition of (g ◦ f )(n); induction; Lemma 2.8(ii); and the obvious identity
( f [n−1](x, v),D1 f [n−1](x, v, vn)) = f [n](x, v, vn).

3 Again, we will not prove this.
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1110 R. Garner, J.-S. P. Lemay

In a similar manner, we can characterise the identity maps in Faà(A) by way of the
following lemma, whose proof we leave as an easy exercise to the reader.

Lemma 3.5 Let A be an object in a cartesian differential category. We have that

(idA)(0) = idA, (idA)(1) = π1 and (idA)(n) = 0 for n ≥ 2. (9)

So far, then, we have shown that Faà(A) must be the following category.

Definition 3.6 LetA be a cartesian left-k-linear category. The Faà di Bruno category Faà(A)

has:

– Objects those of A;
– Morphisms f (•) : A � B are families ( f (n) : A × An → B)n∈N of maps in A where

each f (n) is symmetric and k-linear in its last n variables;
– Identity maps id(•) : A � A are given by the formula (9);
– Composition of f (•) : A � B and g(•) : B � C is given by the formula (7).

Now by further probing of Faà(A), we discover that cartesian left-k-linear structure must
be given as follows:

Lemma 3.7 The category Faà(A) is cartesian left-k-linear when the hom-sets are endowed
with the k-linear structure inherited from

∏
n∈NA(A × An, B).

Proof. Left-k-linearity is clear from (7). For the cartesian structure, we take the terminal
object to be that of A, and the binary product of A, B to be given by their product A × B in
A endowed with the projections π

(•)
0 , π

(•)
1 specified by

(πi )
(0) = πi , (πi )

(1) = πiπ1 and (πi )
(n) = 0 for n ≥ 2.

Note that f (•) : A1 × · · · × Ak � B in Faà(A) is k-linear in its i th variable just when
each f (n) : (A1 × · · · × Ak)

n+1 → B is jointly k-linear in the n + 1 copies of Ai .

3.3 Differential Structure

We now describe the differential operator making Faà(A) into a cartesian differential cat-
egory. Once again, the definition is forced, and once again we can obtain it by reading off
from what happens in a cartesian differential category.

Lemma 3.8 Let f : A → B in a cartesian differential category and n ≥ 0. We have

(D f )(n)(x0, y0, . . . , xn, yn) = f (n+1)(x, y0) + ∑n
i=1 f (n)(x[yi/xi ]) . (10)

Proof By (5), it suffices to prove that:

(D f )(n)(x0, y0, . . . , xn, yn)=D( f (n))(x, y) .

For this, we calculate that

D( f (n))(x, y) = D(Dn f ◦ idA
[n])(x, y) = Dn+1 f

(
id[n]

A x,D(id[n]
A )(x, y)

)

= Dn+1 f
(
id[n]

A x, id[n]
A y

) = Dn+1 f ◦ id[n]
A×A(x, y) = (D f )(n)(x, y)

using, in turn: (8); the chain rule; the D-linearity of id[n]; the easy calculation from (9) that
(id[n]

A x, id[n]
A y) = id[n]

A×A(x, y); and (8) again.
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This indicates howwemust define the differential operator on Faà(A); it remains to check
that doing so verifies the appropriate axioms.

Proposition 3.9 LetA be a cartesian left-k-linear category. Faà(A) is a cartesian differential
category where for f (•) : A � B, we define the derivative (D f )(•) : A × A � B by (10).

Proof We check the seven axioms. For (i), k-linearity of D is immediate from (10), and it easy
to see that (10) is also jointly linear in the variables y0, . . . , yn , as required for (ii). Next, (iii)
follows from the componentwise nature of products in Faà(A), while (iv) is simply amatter of
instantiating (10) with (9) and comparing with Lemma 3.7. Leaving (v) aside for themoment,
we can dispatch (vi) and (vii) by computing (DD f )(n)(x0, y0, z0, w0, . . . , xn, yn, zn, wn) to
be given by

(D f )(n+1)(x0, y0, . . . , xn, yn, z0, w0)+∑n
i=1 f (n)(x0, y0, . . . , xn, yn[zi , wi/xi , yi ])

= f (n+2)(x, z0, y0) + ∑
i f (n+1)(x[yi/xi ], z0) + f (n+1)(x, w0)

+ ∑
i f (n+1)(x[zi/xi ], y0) + ∑

i �= j f (n)(x[zi/xi , y j/x j ]) + ∑
i f (n)(x[wi/xi ]) ;

clearly, this is unaltered by interchanging the y’s and z’s—yielding (vii)—and reduces to
(D f )(n)(x0, w0, . . . , xn, wn) on zeroing each y—which gives (vi).

It remains to prove the chain rule (v): thus, for all f (•) : A � B and g(•) : B � C in
Faà(A) and n ∈ N, we must prove

(
D(g ◦ f )

)(n) = (
Dg ◦ ( f π0,D f )

)(n)

in A. We have that
(
Dg ◦ ( f π0,D f )

)(n) is given by

∑

[n]=A1|···|Ak

(Dg)(k)
(
( f π0)

(∅), (D f )(∅), ( f π0)
(A1), (D f )(A1), ..., ( f π0)

(Ak ), (D f )(Ak )
)

=
∑

[n]=A1|···|Ak

(
g(k+1)(( f π0)

(A), (D f )(∅)
) +

n∑

i=1

g(k)(( f π0)
(A)[(D f )(Ai )/( f π0)

(Ai )])
)
,

where we write ( f π0)
(A) for f π(∅)

0 , f π(A1)
0 , . . . , f π(Ak )

0 . We now rewrite terms of the form
( f π0)

(I ) or (D f )(I ) via the switch isomorphism σ : A2 × (A2)n ∼= (A × An)2. To do so, let
us write �n� = {1, . . . , n, 0′, 1′, . . . , n′}; now for any I ⊆ [n], we write I 0′

for I ∪{0′} ⊆ �n�

and, for any i ∈ I write I i
′
for I ∪ {i ′}\{i} ⊆ �n�. Then:

( f π0)
(I ) = f (I )σ and (Df )(I ) =

(

f (I 0
′
) +

∑

i∈I
f (I i

′
)

)

σ .

It follows that
(
Dg ◦ ( f π0,D f )

)(n) is the sum

∑

[n]=A1|···|Ak

(
g(k+1)( f (A,{0′})) +

n∑

i=1

g(k)( f (A[A0′
i /Ai ]))+

n∑

i=1

∑

j∈Ai

g(k)( f (A[A j ′
i /Ai ]))

)
σ

=
∑

[n]0′=A1|···|Ak

g(k)( f (A))σ +
∑

1≤ j≤n

[n] j ′=A1|···|Ak

g(k)( f (A))σ .
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We thus conclude that
(
Dg ◦ ( f π0,D f )

)(n)
(x0, y0, . . . , xn, yn) is given by

∑

[n+1]=A1|···|Ak

g(k)( f (A))(x, y0) +
∑

1≤ j≤n
[n]=A1|···|Ak

g(k)( f (A))(x[y j/x j ])

= (g ◦ f )(n+1)(x, y0) +
∑

1≤ j≤n

(g ◦ f )(n)(x[y j/x j ])

= (
D(g ◦ f )

)(n)
(x0, y0, . . . , xn, yn)

as desired.

3.4 Universal Property

It remains to show that Faà(A) is the cofree cartesian differential category on A. To do this,
we will first need to understand higher-order derivatives in Faà(A). Given a Faà di Bruno
map f (•) : A � B, we may consider not only the component f (m) : A × Am → B in A,
but also the mth order derivative in Faà(A), which we will denote by f (m,•) : A× Am � B,
with components f (m,n) : (A × Am) × (A × Am)n → B. We now find an explicit formula
for these components.

Notation 3.10 We write θ : [m] � [n] to denote a partial isomorphism between [m] and
[n], comprising subsets I ⊆ [m] and J ⊆ [n] and an isomorphism θ : I → J . If k is the
common cardinality of I and J , then we define |θ | to be n + m − k, and given a family
(xi j )0≤i≤m,0≤ j≤n , write xθ(1)θ(2) for the list of length |θ | + 1 given by

xθ(1)θ(2) := x00, xi1θ(i1), . . . , xikθ(ik ), xi ′10, . . . , xi ′m−k0
, x0 j ′1 , . . . , x0 j ′n−k

where i1 < · · · < ik enumerates I , i ′1 < · · · < i ′m−k enumerates [m]\I , and j ′1 < · · · < j ′n−k
enumerates [n]\J .

For example, if θ : [3] � [4] is the partial isomorphism with the graph {(1, 2), (3, 4)} then
we have

xθ(1)θ(2) = x00, x12, x34, x20, x01, x03 .

Lemma 3.11 For f (•) : A � B in Faà(A) and x = x00, . . . , xm0, . . . , xnm : X → A in A

we have that

f (m,n)(x) =
∑

θ : [m]�[n]
f (|θ |)(xθ(1)θ(2) )

Proof We proceed by induction on m. The base case is clear; so we now assume the result
for m − 1 and prove it for m. If we write xm̂i for x0i , . . . , xm−1,i , then we have f (m,n)(x) =
f (m,n)(xm̂0, xm0, . . . , xm̂n, xmn) given by

f (m−1,n+1)(xm̂0, ..., xm̂n, xm0, 0
m−1)

+
n∑

i=1

f (m−1,n)
(
(xm̂0, ..., xm̂n)[(xmi , 0

m−1)/xm̂i ]
)

=
∑

θ : [m−1]�[n]
f (|θ |+1)(xθ(1)θ(2) , xm0) +

∑

1≤i≤n
θ : [m−1]�[n]\{i}

f (|θ |+1)(xθ(1)θ(2) , xmi )
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=
∑

θ : [m]�[n]
f (|θ |)(xθ(1)θ(2) )

as desired. Here, at the first step, we use that f (m,•) = D1 f (m−1,•) together with (10). At the
second step, we use the inductive hypothesis: a priori, this would yield for the f (m−1,n+1)

term a sum over isomorphisms θ : I ∼= J with I ⊆ [m − 1] and J ⊆ [n + 1], but the m − 1
trailing zeroes in the arguments of f (m−1,n+1) mean n + 1 cannot be in J ; similarly, for the
i th f (m−1,n) term, we cannot have i ∈ J . Finally, the third step is easiest read backwards:
the penultimate line is a case split of the final line on the cases where m /∈ I , and where
m ∈ I with θ(m) = i .

We are now in a position to prove cofreeness of Faà(A). Let εA : Faà(A) → A be the
functor which is the identity on objects, and is given on morphisms by ε( f (•)) = f (0).
Clearly, εA preserves the k-linear structure on the homs, and preserves cartesian products
strictly. It is thus a map in c�kLin.

Theorem 3.12 For any A ∈ c�kLin, the map εA : Faà(A) → A exhibits Faà(A) as the
cofree cartesian differential category onA. That is, for any B ∈ cDiff and map F : B → A

in c�kLin, there is a unique F̃ : B → Faà(A) in cDiff with F = εA ◦ F̃ .

Proof Given F : B → A as in the statement, we define F̃ to act as F does on objects,
and to be given on morphisms by F̃( f ) = (F f , F( f (1)), F( f (2)), . . .). This assignment
is functorial by Lemmas 3.4 and 3.5, and is easily seen to be (strict) cartesian left-k-linear.
Furthermore, it preserves the differential by Lemma 3.8; so F̃ : B → Faà(A) is a map in
cDiff, and clearly εA ◦ F̃ = F .

It remains to prove unicity of F̃ . If G : B → Faà(A) in cDiff satisfies εA ◦ G = F , then
it must agree with F , and hence with F̃ on objects; while on maps, given f : X → Y in B,
we have for each n ∈ N that

(G f )(n) = (G f )(n,0) = εA
(
(G f )(n,•)

) = εA(G( f (n))) = F( f (n)) = (F̃ f )(n)

using, in succession: Lemma 3.11; definition of εA; that G is a map of cartesian differential
categories; that εA ◦ G = F ; and definition of F̃ .

The composite of the cofree differential category functor Faà : c�kLin → cDiff with its
left adjointU : cDiff → c�kLin yields a comonad on c�kLin, which we also denote by Faà.
By the previous theorem, we easily deduce the main results of [14].

Corollary 3.13 The forgetful functor cDiff → c�kLin is strictly comonadic; that is, the
comparison functor cDiff → Coalg(Faà) is an isomorphism over c�kLin.

Proof The forgetful functor U : c�kLin → cDiff forgets essentially-algebraic structure,
and so is strictly monadic. In particular, it creates all limits, is conservative, and has the
isomorphism lifting property. Since it has a right adjoint, it also creates all colimits, and so
by the Beck theorem, is strictly comonadic.

Explicitly, for a cartesian differential categoryB, its Faà-coalgebra structure is obtained by
applying Theorem 3.12 to the identity functor 1B : B → B. The resulting 1̃B : B → Faà(B)

is the identity on objects, and is given on maps by 1̃B( f ) = ( f , f (1), f (2), . . .). In particu-
lar, we re-find the comonad comultiplication δA : Faà(A) → Faà(Faà(A))—constructed in
detail in [14, § 2.2]—as δA = 1̃Faà(A). Given this description, we can exploit Corollary 3.13
to obtain an alternative characterisation of cartesian differential categories.
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Corollary 3.14 Let A be a cartesian left-k-linear category. To endow A with cartesian dif-
ferential structure is equally to give, for each n ≥ 0, an nth-order differential operator
(−)(n) : A(A, B) → A(A × An, B) such that:

(i) Each (−)(n) is k-linear;
(ii) Each f (n) is k-linear and symmetric in its last n arguments;
(iii) For all binary products A0 × A1 we have π

(1)
i = πiπ1 and π

(n)
i = 0 for n ≥ 2.

(iv) For all A ∈ A we have id(1)
A = π1, and id

(n)
A = 0 for n ≥ 2;

(v) (g f )(n) = ∑
[n]=A1|···|Ak

g(k)( f (∅), f (A1), ..., f (Ak )) for all f : A → B and
g : B → C;

(vi) f (0) = f for all f ∈ A(A, B);
(vii) ( f (n))(m)(x) = ∑

θ : [m]�[n] f (|θ |)(xθ(1)θ(2) ) for all f : A → B and n,m ≥ 0.

Proof These are exactly the data of a Faà-coalgebra structure D : A → Faà(A). (ii), (iv) and
(v) express that D is a well-defined functor, (i) that it is a map of left-k-linear categories,
and (iii) that it preserves the cartesian structure. The counit axiom εA ◦ D = 1 and the
coassociativity axiom Faà(D) ◦ D = δA ◦ D are conditions (vi) and (vii) respectively.

We conclude this section with a brief remark comparing the above construction Faà(A)

of the cofree cartesian differential category with the one given in [33], which we denote by
D(A). Since both categories have the same universal property, they must be isomorphic as
cartesian differential categories; but in fact, the work we have done allows us to construct
the isomorphism explicitly.

As discussed in Sect. 3.1 above, D(A) has the same objects as A, while maps from A
to B are certain N-indexed sequences of maps ( fn : A2n → B) generalising the sequence
( f ,D f ,D2 f , . . .) of iterated differentials of a map in a cartesian differential category. Since,
by contrast, maps in Faà(A) generalise sequences of the form ( f , f (1), f (2), . . .) in a carte-
sian differential category, it is natural to construct the isomorphism Faà(A) ∼= D(A) using
Lemma 3.2. In one direction, we have Faà(A) → D(A) which is the identity on objects,
and defined on morphisms via the formula of Lemma 3.2(ii); while in the other, we have
D(A) → Faà(A)which is again the identity on objects, and defined onmorphisms now using
Lemma 3.2(iii).

4 Differential Modalities and Faà di Bruno

In this section we do two things. The first is to recall the link between cartesian differential
categories and the tensor differential categories of [7]. As explained in the introduction,
the latter are symmetric monoidal k-linear categories V with a certain kind of comonad !
termed a differential modality; the link with cartesian differential categories is that the co-
Kleisli categoryKl(!) of the differential modality on a tensor differential category with finite
products is a cartesian differential category.

Many natural examples of cartesian differential categories are either of the formKl(!), or
at least admit a full, structure-preserving embedding into one of this form. An important open
question is whether every cartesian differential category arises in this way, and our second
main result, given in Sect. 8 below, will answer this in the positive. The second objective of
this section is to take a step in that direction by proving the claim for cartesian differential
categories of the form Faà(A).
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Cartesian Differential Categories as Skew Enriched Categories 1115

4.1 Coalgebra Modalities

Before recalling the notion of a differential modality, we first recall some more basic kinds
of structure which a comonad on a symmetric monoidal category may bear.

Definition 4.1 Let (V,⊗, I ) be a symmetric monoidal category and let ! be a comonad on V,
with counit ε and comultiplication δ.

– We call ! a coalgebra modality if it comes endowed with maps

eA : !A → I and ΔA : !A → !A ⊗ !A , (11)

natural in A, which are such that each (!A, eA,ΔA) is a cocommutative comonoid, and
each δA is a map of comonoids (!A, eA,ΔA) → (!!A, e!A,Δ!A).

– We call ! a monoidal comonad if it comes endowed with maps

mI : I → !I and m⊗ : !A ⊗ !B → !(A ⊗ B) (12)

making ! into a symmetric monoidal functor, and ε and δ into monoidal natural transfor-
mations; see, for example, [38, § 7] for the conditions involved.

If ! is a coalgebra modality, then every !-coalgebra (A, a : A → !A) can be made into a
cocommutative comonoid via the maps:

A
a−→ !A e−→ I and A

a−→ !A Δ−→ !A ⊗ !A ε⊗ε−−→ A ⊗ A ; (13)

these constitute the unique comonoid structure on A forwhicha : A → !A is a comonoidmor-
phism aswell as a !-coalgebramorphism. In this way, we obtain a factorisation of the forgetful
functor Coalg(!) → V through the category Cocomon(V) of cocommutative comonoids in
V, and in fact, making ! into a coalgebra modality is equivalent to giving such a factorisation;
see [5, Theorem 3.12].

On the other hand, if ! is a monoidal comonad, then we can lift the symmetric monoidal
structure of V to Coalg(!); the unit is Î = (mI : I → !I ) and the binary tensor is:

(A
a−→ !A) ⊗̂ (B

b−→ !B) =
(

A ⊗ B
m⊗(a⊗b)−−−−−−→ !(A ⊗ B)

)

.

If ! is both a monoidal comonad and a coalgebra modality, then there are natural compat-
ibilities we can impose between the two structures. The resulting structure is exactly what
is needed to model the exponential modality of linear logic; this explains the origin of the
notation ! for our comonads.

Definition 4.2 Let (V,⊗, I ) be a symmetric monoidal category and (!, ε, δ) a comonad on
V. We call ! a monoidal coalgebra modality if it has the structure of a monoidal comonad
and of a coalgebra modality, in such a way that each map of (11) is a map of !-coalgebras
and each map of (12) is a map of ⊗-comonoids.

Undermild side conditions, the two structures of amonoidal coalgebramodality determine
each other. On the one hand, if ! is a monoidal comonad, then it is a monoidal coalgebra
modality (in a unique way) just when the lifted monoidal structure on Coalg(!) is cartesian;
see [35, Definition 1.17]. On the other hand, if ! is a coalgebra modality and V has finite
products, then ! is a monoidal coalgebra modality (in a unique way) just when the following
storage maps are invertible

χ1 := !(1) e−→ I , χAB := !(A × B)
Δ−→ !(A × B) ⊗ !(A × B)

!π0⊗!π1−−−−−→ !A ⊗ !B . (14)
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1116 R. Garner, J.-S. P. Lemay

Indeed, in this situation, the monoidal constraint maps mI and m⊗ are found as:

I
χ−1
1−−→ !(1) δ1−→ !!(1) !χ1−−→ !I and

!A ⊗ !B χ−1
AB−−−→ !(A × B)

δ−→ !!(A × B)
!χAB−−−→ !(!A ⊗ !B)

!(ε⊗ε)−−−→ !(A ⊗ B) ;
(15)

see [4, Theorem 3.1.6] and the references therein.

4.2 Differential Modalities

We are now ready for the definition of differential modality. We write “symmetric monoidal
k-linear category” for a category Vwhich is symmetric monoidal and k-linear, and for which
the action on homs of the tensor productV(A, B)×V(C, D) → V(A⊗C, B⊗D) is bilinear.

Definition 4.3 Let (V,⊗, I ) be a symmetric monoidal k-linear category and (!, ε, δ) a
comonad on the underlying ordinary category of V.

– We call ! a differential modality if it is a coalgebra modality, and comes endowed with a
deriving transformation: a natural family of maps

dA : !A ⊗ A → !A
rendering commutative the following diagrams, known respectively as the product rule,
the linear rule, the chain rule and the interchange rule.

We call V endowed with its differential modality a tensor differential category.
– We call ! amonoidal differential modality if it is a monoidal coalgebra modality endowed

with a deriving transformation.4

The above notion of deriving transformation refines that of [7] in two standard ways.
Firstly, it drops the constant rule (“[d.1]” in loc. cit.) since this is derivable as in [6,
Lemma 4.2]. Secondly, it adds the interchange rule, which is necessary to ensure that the
following result holds without further side-conditions:

4 Note that in [23], Fiore requires a monoidal differential modality to satisfy an additional axiom relating m⊗
with d; however, as shown in [6], this additional axiom is always satisfied.
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Proposition 4.4 Let V be a symmetric monoidal category k-linear category with finite
(bi)products. For any differential modality ! on V, the co-Kleisli category Kl(!) has a struc-
ture of cartesian differential category. If V is monoidal closed and ! is monoidal, then Kl(!)
is a cartesian closed differential category.

Proof The first assertion is [8, Lemmas 3.2.2 and 3.2.3]. The claim in the final sentence is
[4, Theorem 4.4.2].

While there is no need to recount the proof of this result, we will need to know how the
cartesian differential structure of Kl(!) is obtained. The cartesian left-k-linear structure is
easy: the hom Kl(!)(A, B) inherits k-module structure from V(!A, B), and finite products
in Kl(!) are induced from those of V along the identity-on-objects right adjoint functor
V → Kl(!). As for the differential structure, if f : !A → B is a map in Kl(!)(A, B), then
D f ∈ Kl(!)(A × A, B) is the composite

!(A × A)
χ−−−→ !A ⊗ !A 1⊗ε−−−−→ !A ⊗ A

d−−−→ !A f−−−→ B (16)

whose first part is the storage map of (14). When ! is monoidal and V is monoidal closed, the
exponentials making Kl(!) cartesian closed are given by BA := [!A, B].
Definition 4.5 If ! is the differential modality of a tensor differential category, and A is a
cartesian differential category, then we say that A is induced by ! if A ∼= Kl(!) as cartesian
differential categories.

An extremely important source of differential modalities, and hence of cartesian differ-
ential categories, is the following result:

Proposition 4.6 Let V be a symmetric monoidal k-linear category with finite biproducts, and
suppose the forgetful functor Cocomon(V) → V has a right adjoint. The induced cofree
cocommutative coalgebra comonad R on V can be made into a differential modality which
is terminal among differential modalities on V.

Proof It is well-known that R is a monoidal coalgebra modality; indeed, this is the basis
for Lafont’s semantics for the exponential modality of linear logic. The construction of a
deriving transformation for V is given (in dual form) in [5, § 4], while § 6 of loc. cit. proves
its terminality among differential modalities.5

Examples 4.7

(i) Taking V = k-Modop in the preceding result, we see that the free symmetric algebra
monad Sym of (2) endows k-Modop with a differential modality. The induced cartesian dif-
ferential category is exactly the cartesian differential category GenPolyk of Examples 2.3(v),
while Polyk is its full subcategory on the finitely generated free k-modules.

(ii)WhenV = Rel, the category of sets and relations, the cofree cocommutative comonoid
on X is given by the set of finite multisets of elements of X . So the finite multiset comonad
on Rel is a differential modality; the induced cartesian differential category is described
explicitly in [11, § 5.1].

5 In [5] there is an additional assumption which—in our dual case—amounts to the existence of coreflexive
equalisers preserved by tensor in each variable. However, it is easily checked that this is not necessary for the
proof of terminality.
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1118 R. Garner, J.-S. P. Lemay

(iii) WhenV = Fin, the category of finiteness spaces and finitary relations [19], the cofree
cocommutative comonoid is again given by the set of finite multisets with finiteness structure
as defined in [37]. The induced cartesian differential category is described in [11, § 5.2].

(iv) When V = k-Mod for k an algebraically closed field of characteristic zero, the cofree
cocommutative coalgebra on a k-vector space A is given by

⊕
x∈A Sym(A), where Sym(A)

is the symmetric algebra on A as in (2). This follows from results of [42], and is spelt out in
[39]. In this case, the differential modality structure, and the induced cartesian differential
category, are discussed in [13].

Note that Proposition 4.6 produces monoidal differential modalities which, in the case
of (ii), (iii) and (iv), reside on monoidal closed categories. Thus, by Proposition 4.4, the
co-Kleisli categories of these latter examples are cartesian closed differential categories.
There are also important differential modalities which are not monoidal, for example on the
category of C∞-rings; see [7, § 3] and [17].

Lastly, it may be worth mentioning that monoidal differential modalities have an alterna-
tive axiomatisation as monoidal coalgebra modalities equipped with a codereliction; this is
a natural transformation η : A → !A satisfying certain identities which correspond to evalu-
ating the differential at zero [6,7,20,23]. These identities involve the canonical maps

uA := I
mI−−→ !I !0−→ !A and

∇A := !A ⊗ !A δ⊗δ−−→ !!A ⊗ !!A m⊗−−→ !(!A ⊗ !A)
!(ε⊗e+e⊗ε)−−−−−−−→!A

(17)

definable in any monoidal coalgebra modality on a symmetric monoidal k-linear category,
which together with Δ and e endow each object !A with bialgebra structure. These same
bialgebramaps are involved in the bijective correspondence betweenderiving transformations
and coderelictions, due to [6, Theorem 4]. Indeed, the deriving transformation corresponding
to a codereliction η : A → !A is given by:

!A ⊗ A
1⊗η−−−→ !A ⊗ !A ∇−→ !A ;

while the codereliction of a deriving transformation d : !A ⊗ A → !A is given by

A
u−→ !A ⊗ A

d−→ !A .

While the formulation in terms of a codereliction is more common in the literature on
differential linear logic, for the purposes of the present paper it will be deriving transforma-
tions which are the focus; the algebra structure maps u and ∇ and codereliction η will play
no subsequent role.

4.3 Faà(k-Modw) as a Co-Kleisli Construction

In this section, we show that, for the primordial left-k-linear category k-Modw , its cofree
cartesian differential category Faà(k-Modw) is induced by a particular (monoidal) differential
modality Q on k-Mod. To obtain Q, we could work backwards from Faà(k-Modw) using
the results of [4], but it will be more illuminating to describe it directly.

In fact, we have already seen the formula for Q in Examples 2.5(iv); there, k was an
algebraically closed field of characteristic zero, and the formula

⊕
x∈A Sym(A) in question

gave the terminal differential modality on k-Mod. For more general k, it turns out that this
formula still describes a differential modality Q on k-Mod, but the universal property is
different: it is the initial monoidal differential modality.
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For the purposes in this paper, we will not actually require this universal property, and so
we reserve the proof of Q’s initiality for a follow-up paper—where it will be considered in a
more general context—and content ourselves herewith giving the explicit formulae. Note that
these extend the ones given in [13] for k an algebraically closed field of characteristic zero.

Definition 4.8 The initial monoidal differential modality Q on k-Mod is given as follows.

– On objects, we have QA = ⊕
x∈A Sym(A). We will write 〈x0, . . . , xn〉 ∈ QA for the

image of the pure tensor x1 ⊗ · · · ⊗ xn ∈ A⊗n under the composite

A⊗n � A⊗n/Sn
ιn−→ S(A)

ιx0−−→ ⊕
x∈A Sym(A)

of the quotient map and two coproduct injections. In particular, when n = 0, we write
〈x0〉 for the image of 1 ∈ A⊗0 under the displayed composite. Note that the assessment
x0, . . . , xn �→ 〈x0, . . . , xn〉 is symmetric multilinear in x1, . . . , xn but not x0.

– On a map f : A → B, we determine Q f : QA → QB by

〈x0, . . . , xn〉 �→ 〈 f (x0), . . . , f (xn)〉 .
– For the comonad structure, the counit εA : QA → A is determined by

〈x0〉 �→ x0 , 〈x0, x1〉 �→ x1 and 〈x0, . . . , xn〉 �→ 0 if n ≥ 2.

and the comultiplication δA : QA → QQA is determined by

〈x0, . . . , xn〉 �→
∑

[n]=A1|···|Ak

〈〈x0〉, 〈xA1〉, . . . , 〈xAk 〉〉

for n ≥ 0. Here, as in Sect. 3, the sum is over unordered partitions of [n]; and we write
〈xI 〉 for 〈x0, xi1 , . . . , xik 〉. Note in particular that δA(〈x0〉) = 〈〈x0〉〉.

– For the coalgebramodality structure, the comonoid counit eA : QA → k is determined by

〈x0〉 �→ 1 and 〈x0, . . . , xn〉 �→ 0 if n ≥ 1,

while the comultiplication map ΔA : QA → QA ⊗ QA is determined by

〈x0, . . . , xn〉 �→ ∑
I⊆[n] 〈xI 〉 ⊗ 〈x[n]\I 〉 .

– For the monoidal structure, the nullary constraint mI : k → Qk is determined by the
assignment 1 �→ 〈1〉, while the binary constraint m⊗ : QA ⊗ QB → Q(A ⊗ B) is
determined as follows (using the conventions of Notation 3.10 above):

〈x0, . . . , xn〉 ⊗ 〈y0, . . . , ym〉 �→
∑

θ : [n]�[m]
〈xθ(1) ⊗ yθ(2)〉 .

– Finally, the deriving transformation dA : QA ⊗ A → QA is determined by

〈x0, . . . , xn〉 ⊗ y �→ 〈x0, . . . , xn, y〉 .
The reader should have no trouble checking the axioms showing that (Q, ε, δ) as described

above is a comonad; that the maps (e,Δ) endow it with the structure of a coalgebra modality;
and that d satisfies the deriving transformation axioms. It is then an interesting exercise to
obtain the given form of the monoidal structure maps by first showing that the storage
maps (14) for Q are invertible, and then deriving mI and m⊗ via the formulae (15). For the
sake of completeness, we also note that:
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– The bialgebra maps (17) have the unit uA : k → QA determined by 1 �→ 〈0, 1〉 and the
multiplication ∇ : QA ⊗ QA → QA determined by

〈x0, . . . , xn〉 ⊗ 〈y0, . . . , ym〉 �→ 〈x0 + y0, x1, . . . , xn, y1, . . . , ym〉 .
– The codereliction map ηA : A → QA is given by x �→ 〈0, x〉.

Proposition 4.9 The cartesian differential category Faà(k-Modw) is induced by the initial
monoidal differential modality Q on k-Mod.

Proof Clearly, objects of Kl(Q) and Faà(k-Modw) are the same. On maps, since

QA = ⊕
a∈A SA = ⊕

a∈A(
⊕

n∈N A⊗n/Sn) ∼= ⊕
n∈N(

⊕
a∈A A⊗n/Sn) ,

we have a bijection between maps A → B in Kl(Q) and in Faà(k-Modw) by sending the
k-linear map f : QA → B to the family of functions f (•) : A × An → B with

f (n)(x0, . . . , xn) = f (〈x0, . . . , xn〉) . (18)

It is clear from the formula for εA : QA → A that identity maps correspond under this
bijection. As for composition, we can read off from the formulae for δA and Q f that the
co-Kleisli composite of f : QA → B and g : QB → C is given by

〈x0, . . . , xn〉 �→
∑

[n]=A1|···|Ak

g〈 f 〈x0〉, f 〈xA1〉, . . . , f 〈xAk 〉 〉 .

Transforming this via the formula (18) and comparing with (7), we conclude that this co-
Kleisli composite corresponds to the Faá di Bruno composite (g ◦ f )(•). So we have an
isomorphism of categories Kl(Q) ∼= Faà(k-Modw) which it is an easy exercise to check is
an isomorphism of cartesian left-k-linear categories.

Finally, we compare the differentials D. For Kl(Q), this is computed via formula (16);
taking the image of a basis element of Q(A ⊕ A) under each of the maps in this composite
in succession yields:

〈(x0, y0), . . . , (xn, yn)〉 �→ ∑
I⊆[n] 〈xI 〉 ⊗ 〈y[n]\I 〉

�→ 〈x0, . . . , xn〉 ⊗ y0 + ∑n
i=1 〈x0, . . . , xi−1, xi+1, . . . , xn〉 ⊗ yi

�→ 〈x0, . . . , xn, y0〉 + ∑n
i=1 〈x0, . . . , xi−1, yi , xi+1, . . . xn〉

Transforming this via (18) and comparing with (10), we conclude that Kl(Q) ∼=
Faà(k-Modw) as cartesian differential categories.

We remark in passing that, since k-Mod is symmetricmonoidal closed, andQ is amonoidal
differential modality, Faà(k-Modw) ∼= Kl(Q) is a cartesian closed differential category, with
the exponential BA of A, B ∈ Faà(k-Modw) given by the k-module of Faà di Bruno maps
A � B.

4.4 Faà(A) as a Co-Kleisli Construction

We now show that, for a general left-k-linear category A, there is a full structure-preserving
embedding of Faà(A) into a cartesian differential category induced by a (monoidal) differ-
ential modality.
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Definition 4.10 Let A be a left-k-linear category. We write Psh�(A) for the category
[Aop, k-Mod] of k-Mod-valued presheaves on the underlying ordinary category of A (the
nomenclaturewill be explained in Sect. 7.2 below). The left-k-linearity ofA endows each rep-
resentable A(−, A) : Aop → Set with a lifting through the forgetful functor k-Mod → Set,
and we write yA ∈ Psh�(A) for the object so obtained.

We view Psh�(A) as a symmetric monoidal k-linear category, where both the monoidal
structure and the k-linear structure on the homs is given componentwise. With respect to
this structure, we have a monoidal differential modality on Psh�(A) which is induced by
postcomposition with the initial monoidal differential modality Q on k-Mod. We call this
the pointwise initial monoidal differential modality, and denote it by abuse of notation by Q.

Definition 4.11 Let A be a cartesian left-k-linear category. We write KlA(Q) for the full
subcategory of the co-Kleisli category of the pointwise initial monoidal differential modality
Q on Psh�(A) on those objects of the form yA.

Note that we have y(A× B) ∼= yA× yB, so thatKlA(Q) is closed under finite products
in the full co-Kleisli category, and so is itself a cartesian differential category. Our objective
is to show it is isomorphic to Faà(A); the key to which is a characterisation of objects of the
form Q(yA) ∈ Psh�(A). Towards this, we give:

Definition 4.12 Let A be a cartesian left-k-linear category, and let X ∈ Psh�(A).

(i) We say that x ∈ X A is k-linear if each of the following functions is k-linear:

A(B, A) → XB

f �→ X f (x) .
(19)

In other words, writing x · f for X f (x), we have x · (λ f + μg) = λ(x · f ) + μ(x · g).
(ii) We say that x ∈ X(A1 × · · · × An) is k-linear in the i th variable if it is k-linear as an

element of the presheaf X(A1 × · · · × Ai−1 × (−) × Ai+1 × · · · × An).
(iii) We say that x ∈ X(A×Bn) is symmetric in the last n variables if it is fixed by X(1×σ)

for all permutations σ : Bn → Bn of the product factors.
(iv) A Faà di Bruno sequence of X at stage A is a family of elements

(
x (n) ∈ X(A × An) : n ∈ N

)

such that each x (n) is symmetric and multilinear in its last n variables.

Lemma 4.13 Let A be a cartesian k-linear category, and let A ∈ A. The object Q(yA) ∈
Psh�(A) classifies Faà di Bruno sequences at stage A. More precisely, the following family
of elements is a Faà di Bruno sequence

〈π0, . . . , πn〉 ∈ Q
(
A(A × An, A)

) = Q(yA)(A × An) , (20)

and for any X ∈ Psh�(A) and Faà di Bruno sequence x (•) of X at stage A, there is a unique
ξ : Q(yA) → X in Psh�(A) such that ξ(〈π0, . . . , πn〉) = x (n) for each n.

Proof We first verify that the elements (20) constitute a Faà di Bruno sequence. For any
sequence of maps ( f0, . . . , fn) : B → An in A, we have that

〈π0, . . . , πn〉 · ( f0, . . . , fn) = 〈 f0, . . . , fn〉 ∈ Q(yA)(B) ; (21)

Since for each f0 the assignment f1, . . . , fn �→ 〈 f0, . . . , fn〉 is symmetric multilinear, we
see that 〈π0, . . . , πn〉 is symmetric multilinear in its last n variables, as desired.
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We now show universality of (20). Given x (•) a Faà di Bruno sequence of X ∈ Psh�(A)

at stage A, we define ξ : Q(yA) → X in Psh�(A) to have components

QA(B, A) → XB

〈 f0, . . . , fn〉 �→ x (n) · ( f0, f1, . . . , fn) .

These are well-defined linear maps because of the symmetric multilinearity of x in its last n
variables, and ξ(〈π0, . . . , πn〉) = x (n) · (π0, π1, . . . , πn) = x (n) ∈ X(A × An). Moreover,
if γ : Q(yA) → X in Psh�(A) satisfies γ (〈π0, . . . , πn〉) = x (n) for each n, then we have
γ (〈 f0, . . . , fn〉) = γ (〈π0, . . . , πn〉) · ( f0, . . . , fn) = x (n) · ( f0, f1, . . . , fn) by (21) and
naturality of γ , so that γ = ξ as required.

Given this result, it is now straightforward to prove:

Proposition 4.14 Let A be a left-k-linear category. We have an isomorphism of cartesian
differential categories Faà(A) ∼= KlA(Q), so that Faà(A) admits a full structure-preserving
embedding into the cartesian differential category induced by the pointwise initial monoidal
differential modality Q on Psh�(A).

Proof Clearly, objects of Faà(A) and KlA(Q) are the same. Now maps from A to B in
KlA(Q) are maps f : QyA → yB in Psh�(A); by Lemma 4.13, these correspond to Faà di
Bruno sequences of yB at stage A, whose data is precisely that of a map f (•) : A � B in
Faà(A). Observe that this f (•) is characterised by

f (n)(x0, . . . , xn) = f (〈x0, . . . , xn〉) ∈ A(B, A)

for all X ∈ A and x0, . . . , xn : X → A; noting the formal similarity to (18), we can thus
conclude by transcribing the remainder of the proof of Proposition 4.9.

5 Enrichment Over SkewMonoidal Categories

We have just seen how to use the initial monoidal differential modality Q on k-Mod to
construct cofree cartesian differential categories. This suggests that the notion of cartesian
differential category is somehow controlled by the comonad Q; and the main result of the
paper, to be proved in the next section, will show that this is indeed the case. There, we will
see that that cartesian differential categories arise as categories enriched over k-Mod for a
monoidal structure which is not the usual one, but rather a certain “warping” of it controlled
by the comonad Q.

As explained in the introduction, a slight complication is that this warping is no longer
a monoidal structure in the usual sense, but rather a skew monoidal structure in the sense
of Szlachányi [43]. Since skew monoidal structures, and categories enriched over them, are
likely to be unfamiliar to many, we devote this section to developing the necessary notions.
We note that Sects. 5.1 and 5.2 are revision from [12,41,43], but Sects. 5.3–5.5 are novel
(though straightforward).

5.1 SkewMonoidal Categories

A skew monoidal category generalises a monoidal category by dropping the requirement
that the associativity and unitality constraint maps be invertible. Of course, it then matters
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Cartesian Differential Categories as Skew Enriched Categories 1123

how we choose to orient these maps, and “skew monoidal” refers to the following particular
choice.

Definition 5.1 [43] A skew monoidal category is a categoryV endowed with a tensor product
⊗: V × V → V and unit object I ∈ V, together with natural families

αABC : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C) λA : I ⊗ A → A ρA : A → A ⊗ I

of maps satisfying the Mac Lane associativity pentagon, the condition λI ◦ ρI = 1I , and the
three unit conditions (where we omit tensor symbols for compactness):

AB
1

λA1

AB

λAB

AB
1

ρA1

AB

1λB

AB
1

ρAB

AB

1ρB

(I A)B
αI AB

I (AB) (AI )B
αAI B

A(I B) (AB)I
αABI

A(BI ) .

A skew monoidal category is said to be left closed if each functor (−) ⊗ A : V → V has a
right adjoint [A,−].

More precisely, we have just defined a left-skewmonoidal category; a right-skewmonoidal
category reverses the directions of all three maps, but our convention will always be that
“skew” means “left-skew”.

Example 5.2 Let (M,+, 0) be a monoid. There is a left closed skew monoidal structure on
Set with unit 1 = {∗}, tensor product A ×M B = A × M × B, and constraint maps given as
follows (where juxtaposition denotes cartesian product):

λ : 1MB → B ρ : A �→ AM1 α : (AMB)MC → AM(BMC)

(∗,m, b) �→ b a �→ (a, 0, ∗) ((a,m, b), n, c) �→ (a,m + n, (b, n, c)) .

The associated internal hom is given by B ⇒M C = CM×B .

This example is an instance of the following important construction, which builds skew
monoidal structures from monoidal ones:

Definition 5.3 [43, Proposition 7.2] Let (V,⊗, I ) be a monoidal category endowed with a
monoidal comonad (!, ε, δ,m⊗,mI ). The fusion operator [10, § 2.6] of !, which we use
repeatedly in what follows, is the natural transformation H with components

H := !A ⊗ !B 1⊗δ−−→ !A ⊗ !!B m⊗−−→ !(A ⊗ !B) . (22)

The skew-warping of ⊗ with respect to ! is the skew monoidal structure on V with unit I ,
with tensor A ⊗! B = A ⊗ !B and with constraint cells

(A⊗!B)⊗!C α−→ A⊗(!B⊗!C)
1⊗H−−−→ A⊗!(B⊗!C)

I ⊗ !A λ−→ !A ε−→ A and A
ρ−→ A ⊗ I

1⊗mI−−−−→ A ⊗ !I .
If the monoidal structure (⊗, I ) is left closed, then so too is (⊗!, I ), with the associated
internal hom given by [B,C]! = [!B,C]. We will often write6 V! to denote V endowed with
its warped skew monoidal structure (⊗!, I ).

6 Note that we will never use V! to denote the co-Kleisli category of !.
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1124 R. Garner, J.-S. P. Lemay

For example, if (M,+, 0) is amonoid, thenM×(−) is amonoidal comonad on Set, where
ε and δ involve projection and duplication, andm⊗ andmI involve themonoid structure ofM .
Instantiating Definition 5.3 at this monoidal comonad recovers the skew monoidal structure
of Example 5.2.

The following further example provides a first indication of the relevance of skewmonoidal
structure to cartesian differential categories.

Example 5.4 Let V be a monoidal category with all copowers X · I := ∑
x∈X I of the unit I ,

whose tensor product preserves these copowers in the second variable. We have a monoidal
adjunction

V
V(I ,−)

(−)·I
⊥ Set (23)

inducing a monoidal comonad K on V; in fact, it is the initial monoidal comonad on V. The
warped monoidal structure ⊗K is characterised by the fact that maps A ⊗ K B → C are the
same as functionsV(I , B) → V(A,C). In particular, whenV = k-Mod, maps A⊗K B → C
are exactly left-k-linear maps A × B → C .

5.2 Enrichment in a SkewMonoidal Category

We now turn to the notion of a category enriched in a skew monoidal category. Our defini-
tion follows Street [41, § 10], and mimics exactly the notion of enrichment over a genuine
monoidal category. We remark that [12] gives a subtler notion of skew-enriched category,
involving further extra data beyond the obvious. While there are good reasons to require
these extra data, for our purposes it will prove unnecessary; though see Remark 7.3 below.

Definition 5.5 Let (V,⊗, I ) be a skew monoidal category. A V-enriched category A com-
prises the data of a set ob(A) of objects; hom-objects A(A, B) ∈ V for each A, B ∈ ob(A);
and composition and identity morphisms in V

mABC : A(B,C) ⊗ A(A, B) → A(A,C) and i A : I → A(A, A) ;

for all A, B,C ∈ ob(A). These data are required to satisfy the axioms expressed by the
commutativity of the diagrams

(
A(C, D) ⊗ A(B,C)

) ⊗ A(A, B)
m⊗1

α

A(B, D) ⊗ A(A, B)

m

A(A, D)

A(C, D) ⊗ (
A(B,C) ⊗ A(A, B)

) 1⊗m
A(C, D) ⊗ A(A,C)

m

I ⊗ A(A, B)
i⊗1

λ

A(B, B) ⊗ A(A, B)

m

A(A, B)

A(A, B)⊗ I
1⊗i

ρ

A(A, B)⊗A(A, A)

m

A(A, B)
1

A(A, B) .
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The underlying ordinary category A0 has the same objects as A, hom-sets A0(A, B) =
V(I ,A(A, B)), and composition of f ∈ A0(A, B) and g ∈ A0(B,C) given by

I
ρI−→ I ⊗ I

g⊗ f−−−→ A(B,C) ⊗ A(A, B)
m−→ A(A,C) . (24)

We may speak of a map in A to mean a map in the underlying category A0.

Example 5.6 If the monoidal category V admits an initial monoidal comonad K as in Exam-
ple 5.4, then we can consider categories enriched in the skew-warpingVK . Such a categoryA
involves a set of objects, hom-V-objects A(A, B), identities I → A(A, A) and composition
maps of the form

A(B,C) ⊗K A(A, B) → A(A,C) .

In light of Example 5.4, it follows that when V = k-Mod we recapture exactly the notion of
left-k-linear category; this was observed in passing, and without any details being given, in
[4, § 5.1].

In general, to give aVK -category is to give what we might call a left-V-enriched category:
this is an ordinary category A0 together with, for each B ∈ A0, a lifting of the hom-functor
A0(−, B) : Aop

0 → Set through V(I ,−):

V

V(I ,−)

A
op
0

A(−,B)

A0(−,B)
Set .

5.3 Change of Enrichment Base

In classical enriched category theory, change of base allows us to turn a V-enriched category
into a W-enriched one via a monoidal functor V → W. This works just as well in the skew
context.

Definition 5.7 A monoidal functor (F,mI ,m⊗) : V → W between skew monoidal cate-
gories comprises a functor F : V → W together with a map mI : I → F I and a natural
family of mapsm⊗ : FA⊗ FB → F(A⊗ B), rendering commutative each of the diagrams:

I ⊗ FA
mI⊗1

λ

F I ⊗ FA

m⊗

FA
ρ

Fρ

FA ⊗ I

1⊗mI

FA
Fλ

F(I ⊗ A) F(A ⊗ I )
m⊗

FA ⊗ F I

(FA ⊗ FB) ⊗ FC
α

m⊗⊗1

FA ⊗ (FB ⊗ FC)
m⊗

FA ⊗ F(B ⊗ C)

m⊗

F(A ⊗ B) ⊗ FC
m⊗

F((A ⊗ B) ⊗ C)
Fα

F(A ⊗ (B ⊗ C)) .

If A is a V-enriched category, then its base change F∗A is theW-enriched category with
the same objects, hom objects (F∗A)(A, B) = F(A(A, B)), and identities and composition
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1126 R. Garner, J.-S. P. Lemay

given by

I
mI−−→ F I

Fi−−→ FA(A, A) and

FA(B,C) ⊗ FA(A, B)
m⊗−−→ F(A(B,C) ⊗ A(A, B))

Fm−−→ FA(A,C) .

Examples 5.8 (i) For any skew monoidal category V the functor V(I ,−) : V→ Set is
monoidal, where mI : 1 → V(I , I ) picks out the identity, and where the map
m⊗ : V(I , A) × V(I , B) → V(I , A ⊗ B) takes f , g to the composite

I
ρI−→ I ⊗ I

f ⊗g−−−→ A ⊗ B .

Base change along V(I ,−) sends a V-category A to its underlying category A0.
(ii) If V is a monoidal category and P, Q are monoidal comonads on V, then each map of

monoidal comonads γ : P → Q gives a monoidal functor id : VQ → VP with nullary
constraint mI the identity, and binary constraints given by

id(A) ⊗P id(B) = A ⊗ PB
1⊗γB−−−→ A ⊗ QB = id(A ⊗Q B) .

This induces a base change operation A �→ γ ∗(A) from VQ- to VP -categories; its only
effect is to turn the composition maps A(B,C) ⊗ QA(A, B) → A(A,C) into ones
A(B,C) ⊗ QA(A, B) → A(A,C) by precomposing with 1 ⊗ γ .
For example, if V supports the initial monoidal comonad K , then the unique map to the
terminal monoidal comonad id, namely ε : K → id, gives a change of base functor from
V-enriched categories to left-V-enriched categories. In particular, this is how k-linear
categories can be viewed as left-k-linear.

5.4 V-Linear Maps in an Enriched Category

Since left-k-linear categories can be seen as categories enriched over a skew monoidal base,
it is reasonable to ask if there is an analogue for a general skew monoidal enrichment of the
notion of k-linear map. The answer is “yes”, but some care is needed: in full generality, being
“linear” may be structure on a map, rather than a property of it.

Definition 5.9 Let V be a skew monoidal category, A a V-enriched category and A, B ∈ A.
A V-linear map f : A →� B comprises maps fX : A(X , A) → A(X , B) in V which are
V-natural, in the sense of rendering commutative each diagram

A(Y , A) ⊗ A(X , Y )

m

fY⊗1
A(Y , B) ⊗ A(X , Y )

m

A(X , A)
fX

A(X , B) .

(25)

The underlying map f0 : A → B of f is given by the composite

I
i−→ A(A, A)

f A−−→ A(A, B) .

The objects and V-linear maps form a categoryA�, and the assignment f �→ f0 is the action
on maps of an identity-on-objects functor A� → A0.
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When V is genuinely monoidal, a weak form of the Yoneda lemma shows that V-linear
maps are in bijectionwithmaps of the underlying category, i.e.,A� → A0 is an isomorphism.
However, in the skew case, it may not even be true that a V-linear map f is determined by
its underlying map f0. The following is the diagram which would usually be drawn to prove
this statement:

I ⊗ A(X , A)

f0⊗1

λ

i⊗1
A(A, A) ⊗ A(X , A)

m

fA⊗1
A(A, B) ⊗ A(X , A)

m

A(X , A)
fX

A(X , B) ;

(26)

but in the skew context, λ need not be invertible, so invalidating the formula
fX = m ◦ ( f0 ⊗ 1) ◦ λ−1 which would determine fX from f0.

Example 5.10 Let V be the monoidal category of N-graded k-modules with its usual tensor
product (A⊗B)n = ∑

n=p+q Ap⊗Bq , and letVK be its skew-warping for the initialmonoidal

comonad. A categoryA enriched overVK has graded k-modules of mapsA(A, B), identities
idA ∈ A(A, A)0, and composition given by left-k-linear maps A(B,C)n × A(A, B)0 →
A(A,C)n . The leading example is the category A whose objects are graded k-modules, and
for which A(A, B)n is the set of functions A0 → Bn . In this case, a map in the underlying
category is simply a function A0 → B0, while a VK -linear map can be calculated to be a
genuine map of graded k-modules A → B; clearly, the former does not determine the latter.

This leads us to make the following definition, which captures the situation in which
V-linearity is, in fact, a property rather than a structure:

Definition 5.11 A skew monoidal category (V,⊗, I ) is called left covering if each map
λA : I ⊗ A → A is an epimorphism.

In this case, the standard Yoneda lemma argument via (26) now proves:

Lemma 5.12 If V is a left covering skew monoidal category, and A is a V-category, then to
give a V-linear map f : A →� B is equally to give a map f0 : A → B in (the underlying
category of) A for which each of the following factorisations exists:

I ⊗ A(X , A)
f0⊗1

λ

A(A, B) ⊗ A(X , A)

m

A(X , A)
fX

A(X , B) .

(27)

In particular, when V is left covering, A� → A0 is a faithful functor.

Example 5.13 If ! is a monoidal comonad on the monoidal categoryV, then the skew-warping
V! is left covering just when each counit map εX : !X → X is epimorphic. In particular, if
V admits the initial monoidal comonad K , then VK is left covering precisely when the unit
object I is a generator for V.

In this case, ifA is a VK -category, then a map f ∈ A0(A, B) is VK -linear precisely when
each composition function f ◦ (−) : A0(X , A) → A0(X , B) is the image under the faithful
functor V(I ,−) : V → Set (faithful since I is a generator) of a mapA(X , A) → A(X , B) in
V. In particular, when V = k-Mod, a VK -linear map is precisely a k-linear map in the sense
of Definition 2.2.
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5.5 Finite Products in an Enriched Category

Since we are interested in cartesian differential categories, we will need to understand the
notion of finite product in the skew-enriched context. We conclude this section by discussing
this.

Definition 5.14 Let V be a skew monoidal category and A a V-enriched category.

(i) An object 1 ∈ A is terminal for A if A(X , 1) is terminal in V for all X ∈ A.
(ii) A binary product of A, B ∈ A comprises an object A × B ∈ A and a span of V-linear

maps π0 : A ←� A × B →� B : π1, with the property that each of the components
A(X , A) ← A(X , A × B) → A(X , B) constitutes a product diagram in V.

(iii) A is cartesian when it has a terminal object and all binary products.

From Lemma 5.12 it follows immediately that:

Lemma 5.15 If V is a left covering skew monoidal category, then a V-category A is carte-
sian just when its underlying ordinary category has finite products, and all binary product
projections are V-linear.

Example 5.16 A left-k-linear category A is cartesian qua k-ModK -category precisely when
it is cartesian left-k-linear.

6 Cartesian Differential Categories as Enriched Categories

In this section, we give the first main result of this paper, exhibiting cartesian differential cate-
gories as cartesian k-ModQ-enriched categories, where Q is the initial monoidal differential
modality of Definition 4.8.

6.1 Characterising k-ModQ-Categories

Before proving the main theorem, we identify general k-ModQ-categories; these turn out
to be a variant of cartesian differential categories which do away with the need for finite
products. An example of this notion would be the co-Kleisli category of the differential
modality on a tensor differential category without finite products.

We first record an explicit description of the fusion map (22) for Q.

Lemma 6.1 The fusion map H : QX ⊗ QY → Q(X ⊗ QY ) for the initial monoidal differ-
ential modality Q on k-Mod has action determined by

〈x0, . . . , xm〉 ⊗ 〈y0, . . . , yn〉 �→
∑

[n]=A1|···|Ak
θ : [m]�[k]

〈xθ(1) ⊗ 〈yAθ(2)
〉〉 ,

with the conventions of Notation 3.10, and with A0 := ∅ so that 〈yA0〉 = 〈y0〉.
Proof This can simply be read off from Definition 4.8.

Proposition 6.2 To give a k-ModQ-enriched category A is equally to give a collection of
objects; a k-module A(A, B) of maps between each pair of objects; identity elements idA ∈
A(A, A); and composition functions

A(B,C) × A(A, B) × A(A, B)n → A(A,C)

(g, f0, . . . , fn) �→ g(n)( f0, . . . , fn)
(28)
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for each A, B,C ∈ A and each n ≥ 0, subject to the following axioms:

(i) Each (28) is k-linear in g, and symmetric k-linear in f1, . . . , fn;
(ii) We have g(0)(idA) = g;
(iii) We have id(0)

B ( f ) = f , id(1)
B ( f0, f1) = f1 and id

(n)
B ( f0, . . . , fn) = 0 for all n ≥ 2;

(iv) For all f0, . . . , fn : A → B, g0, . . . , gm : B → C and h : C → D we have

(
h(m)(g0, . . . , gm)

)(n)
(f) =

∑

[n]=A1|···|Ak
θ : [m]�[k]

h(|θ |)(g
(Aθ(2) )

θ(1)
(f)

)
,

where we define g
(A j )

i (f) as in (6).

Proof A k-ModQ-category A has objects A, B, . . .; homs A(A, B) ∈ k-Mod; identity
maps i : k → A(A, A) which pick out elements idA ∈ A(A, A); and composition maps
m : A(B,C) ⊗ QA(A, B) → A(A,C), which, on writing their action as:

g ⊗ 〈 f0, . . . , fn〉 �→ g(n)( f0, . . . , fn) ,

correspond to families of maps (28) satisfying axiom (i) in the statement. Now the right
identity axiom for A requires commutativity of:

A(A, B)
1⊗mI

1

A(A, B) ⊗ QI

1⊗Qi

A(A, B) A(A, B) ⊗ QA(A, B) .
m

Chasing g ∈ A(A, B) around the long side we get g �→ g ⊗ 〈idA〉 �→ g(0)(idA), so that
commutativity is exactly axiom (ii). Next, the left identity axiom requires commutativity in:

QA(A, B)

ε

i⊗1
A(B, B) ⊗ QA(A, B)

m

A(A, B) .

The upper composite takes 〈 f0, . . . , fn〉 to id(n)
B ( f0, . . . , fn), and so comparing with the

formula for ε, commutativity of this diagram is exactly axiom (iii). Finally, the associativity
axiom requires commutativity in:

A(C, D) ⊗ QA(B,C) ⊗ QA(A, B)

1⊗H

m⊗1
A(B, D) ⊗ QA(A, B)

m

A(C, D) ⊗ Q(A(B,C) ⊗ QA(A, B))
1⊗Qm

A(C, D) ⊗ QA(A,C)
m

A(A, D) .

Chasing a generating element h ⊗ 〈g0, . . . , gm〉 ⊗ 〈 f0, . . . , fn〉 around the top composite
yields (h(m)(g0, . . . , gm))(n)(f). On the other hand, chasing this generator around the lower
composite yields in succession (using Lemma 6.1 at the first step):

h ⊗ 〈g0, . . . , gm〉 ⊗ 〈 f0, . . . , fn〉
�→

∑

[n]=A1|···|Ak
θ : [m]�[k]

h ⊗ 〈gθ(1) ⊗ 〈 f Aθ(2)
〉〉
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�→
∑

[n]=A1|···|Ak
θ : [m]�[k]

h ⊗ 〈g(Aθ(2) )

θ(1)
(f)〉 �→

∑

[n]=A1|···|Ak
θ : [m]�[k]

h(|θ |)(g
(Aθ(2) )

θ(1)
(f)

)
,

so that the associativity axiom is equivalent to axiom (iv) in the statement.

6.2 Characterising Cartesian k-ModQ-Categories

We now consider what it means for a k-ModQ-category to have finite products; this will
bridge the gap with cartesian differential categories. Note first that, since the counit maps
εX : QX → X of Definition 4.8 are visibly epimorphic, k-ModQ is a left covering skew
monoidal category. Thus, by Lemma 5.15, a k-ModQ-category is cartesian just when its
underlying ordinary category has finite products, and product projections are k-ModQ-linear.
The following result characterises this notion of linearity.

Proposition 6.3 A map g : A → B of a k-ModQ-category A is k-ModQ-linear just when,
for all X ∈ A and f0, f1, . . . ∈ A(X , A) we have:

g(1)( f0, f1) = g(0)( f1) and g(n)( f0, . . . , fn) = 0 for all n ≥ 2. (29)

Proof By Lemma 5.12, g is k-ModQ-linear just when, for each X ∈ A there is a factorisation
in k-Mod of the form

QA(X , A)
g⊗1

ε

A(A, B) ⊗ A(X , A)

m

A(X , A)
gX

A(X , B) .

Evaluating both ways around the diagram at 〈 f0〉 ∈ QA(X , A), we must have gX ( f0) =
g(0)( f0); evaluating at 〈 f0, f1〉, we must have gX ( f1) = g(1)( f0, f1); and evaluating at
〈 f0, . . . , fn〉 for n ≥ 2, wemust have 0 = g(n)( f0, . . . , fn). This shows the necessity of (29);
the sufficiency follows on noting that gX defined thus is k-linear, since gX ( f ) = g(1)(0, f )
and g(1) is k-linear in its second argument.

We are now ready to prove the first main result of the paper.

Theorem 6.4 To give a cartesian differential category is equally to give a cartesian k-ModQ-
category; under this correspondence, the D-linear maps correspond to the k-ModQ-linear
ones.

Proof Consider first a cartesian differential category A, presented as in Corollary 3.14. The
corresponding k-ModQ-category A will have the same objects, hom-modules, and identity
maps; while its composition functions (28) are defined using the higher-order derivatives and
composition in A. We obtain the various axioms of Proposition 6.2 as follows:

(i) This follows from axioms (i) and (ii) of Corollary 3.14;
(ii) This follows from the category axioms for A;
(iii) This follows from axiom (iv) of Corollary 3.14;
(iv) This follows from the combination of axioms (v) and (vii) of Corollary 3.14.
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To see that A is cartesian, note that its underlying ordinary category—which is A—admits
finite products, and that the product projection maps πi are k-ModQ-linear by axiom (iii) of
Corollary 3.14.

Suppose conversely that A is a cartesian k-ModQ-category. By changing base along the
unique monoidal comonad morphism γ : K → Q, we see that A has an underlying left-k-
linear category A, with the same objects, hom-objects and identities, and with composition
law g ◦ f = g(0)( f ). Moreover, the finite products of A yield finite products in A, which is
thus cartesian left-k-linear.

For each n ≥ 0 and A, B ∈ A, we now define the higher-order derivative

(−)(n) : A(A, B) → A(A × An, B)

f �→ f (n)(π0, π1, . . . , πn)
(30)

on A. We claim that these satisfy the axioms of Corollary 3.14, so yielding a cartesian
differential structure onA. Observe first that, given f0, . . . , fn : A → B and g : B → C , we
can form f = ( f0, . . . , fn) : A → B × Bn and now have

g(n) ◦ f = (g(n)(π0, π1, . . . , πn))
(0)( f )

= g(n)(π
(0)
0 ( f ), . . . , π(0)

n ( f )) = g(n)( f0, . . . , fn) ,
(31)

recapturing the composition operation in A. In verifying the axioms of Corollary 3.14, we
first translate them under (31) to axioms on the composition law (28) in A. On doing so, we
find that:

(i)–(ii) follow from condition (i) of Proposition 6.2;
(iii) follows from the k-ModQ-linearity of product projections in A;
(iv) follows from axiom (iii) of Proposition 6.2;
(v) follows from axiom (iv) of Proposition 6.2 on taking m = 0;
(vi) follows from axiom (ii) of Proposition 6.2;
(vii) follows from axiom (iv) of Proposition 6.2 on taking

(g0, . . . , gm)=(π0, . . . , πm) .

We have thus shown that there are assignments A �→ A and A �→ A between carte-
sian differential categories and cartesian k-ModQ-categories, and it is now easy to see that
these are mutually inverse: in one direction, we use (31), and in the other, the fact that
(π0, . . . , πn) = id : A × An → A × An .

Finally, Proposition 6.3 shows that, under the correspondence just given, the k-ModQ-
linear maps correspond to the D-linear ones.

It is probably worth recording in as concrete a form as possible the two directions of our
main correspondence. On the one hand, for a cartesian differential category A, the corre-
sponding k-ModQ-category has the same objects, the same hom-k-modules, and the same
identities; and has composition laws

A(B,C) ⊗ QA(A, B) → A(A,C)

g ⊗ 〈 f0, . . . , fn〉 �→ g(n)( f0, . . . , fn) ,

where g(n) denotes the nth derivative of Definition 3.1. On the other hand, for a cartesian
k-ModQ-categoryA, the corresponding cartesian differential category has the same objects,
the same hom-k-modules and the same identities; while its composition and its differential
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1132 R. Garner, J.-S. P. Lemay

operator are defined from the k-ModQ-composition maps m : A(B,C) ⊗ QA(A, B) →
A(A,C) via

g ◦ f = m(g ⊗ 〈 f 〉) and D f = m( f ⊗ 〈π0, π1〉) .

7 Presheaves Over a SkewMonoidal Base

In the rest of the paper, we will make use of our first main theorem to prove our second one:
that every small cartesian differential category has a full structure-preserving embedding into
one induced by a monoidal differential modality on a symmetric monoidal closed k-linear
category. The embedding in questionwill be the Yoneda embedding into an enriched presheaf
category, and so in this section we develop the appropriate notions in the skew context. We
note that the definitions in this section draw largely on [41] with some novelties (the notions
of tight V-functor and the identification of the V-linear presheaf maps); while the lemmas
and propositions are all new.

7.1 Enriched Functors

So far, we have discussed categories enriched over a skewmonoidal category in isolation.We
will now need to discuss also functors between enriched categories. The obvious definition
is the following one:

Definition 7.1 LetV be a skewmonoidal category, and letA,B beV-categories. AV-functor
F : A → B comprises an assignment A �→ FA from objects of A to those of B, together
with maps FA,B : A(A, B) → B(FA, FB) inV for all A, B ∈ A, which render commutative
all diagrams of the following form:

I
i

A(A, B)

FAB

A(B,C) ⊗ A(A, B)
m

FBC⊗FAB

A(A,C)

FAC

I
i

B(FA, FB) B(FB, FC) ⊗ B(FA, FB)
m

B(FA, FC) .

However, for various purposes, this definition is insufficient. For example, we would like
to say that a V-functor preserves finite products just when it sends product cones to product
cones. However, a V-functor as defined above does not even induce a mapping on product
cones, because it has no action on V-linear maps. This motivates:

Definition 7.2 Let V be a skew monoidal category, and let A,B be V-categories. A tight
V-functor F : A →t B is a V-functor F : A → B together with an ordinary functor on
categories of linear maps F� : A� → B�, such that for each f : B →� C in A� and A ∈ A,
the following diagram commutes:

A(A, B)
FAB

fA

B(FA, FB)

(F� f )FA

A(A,C)
FAC

B(FA, FC) .
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Remark 7.3 This definition is based on ideas of [12]. If V is a skew monoidal category,
then Campbell in loc. cit. defines a skew-enriched V-category to comprise an ordinary cat-
egory A�, together with a functor A(−,−) : Aop

� × A� → V and maps I → A(A, A) and
A(B,C) ⊗A(A, B) → A(A,C) which are natural in A, B,C ∈ A�, and satisfy the axioms
of Definition 5.5. IfA andB are V-categories in our sense, then they become skew-enriched
V-categories in Campbell’s sense on takingA� andB� to be the categories of V-linear maps;
on doing so, the skew-enriched V-functors between them, in Campbell’s sense, are precisely
our tight V-functors.

While tightness is, in general, extra structure on a V-functor, in the left covering case
which is of primary interest to us, it is a mere property.

Lemma 7.4 Let V be a left covering skew monoidal category, and let A,B be V-categories.
To give a tight V-functor F : A →t B is equally to give a V-functor F : A → B whose
underlying functor F0 : A0 → B0 preserves V-linear maps.

Proof A straightforward argument using Lemma 5.12.

Example 7.5 LetA andB be left-k-linear categories. A k-ModK -functor between them is an
ordinary functor F : A → B whose action on homs preserves the k-module structure. Such
a functor is tight just when it preserves k-linear maps.

Using the notion of tightness, we can now describe what it means for a functor to preserve
cartesian structure.

Definition 7.6 Let V be a skew monoidal category, and let A,B be cartesian V-categories.
A tight V-functor F : A →t B is said to be cartesian if it sends terminal objects to terminal
objects, and F� sends binary product cones A ←� A × B →� B to binary product cones.

Example 7.7 Let A and B be cartesian differential categories, seen as cartesian k-ModQ-
categories. It is a straightforward calculation to see that a k-ModQ-functor from A to B is
an ordinary functor F : A → B which preserves addition on the homs, and for which each
diagram of the following form commutes in B:

F(A × A)

(Fπ1,Fπ2)

F(D f )
FB .

FA × FA

D(F f )

Such a k-ModQ-functor is tight precisely when it preserves D-linearity of maps; and it is
cartesianwhen, in addition, it preserves finite products in the usual sense. In fact, preservation
of D-linearity automatically implies preservation of finite products by the argument of [8,
Lemma 1.3.2] (so in this sense finite products in k-ModQ-categories are absolute limits).

7.2 Enriched Presheaves

We now describe the notion of presheaf on a category enriched over a skew monoidal
category.
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1134 R. Garner, J.-S. P. Lemay

Definition 7.8 [41, § 5] Let V be a skew monoidal category and A a V-enriched category. A
presheaf X onA is given by objects X A ∈ V for each A ∈ A, andmapsm : XB⊗A(A, B) →
X A for each A, B ∈ A, rendering commutative each diagram

(
XC ⊗ A(B,C)

) ⊗ A(A, B)
m⊗1

α

XB ⊗ A(A, B)

m

X A

XC ⊗ (
A(B,C) ⊗ A(A, B)

) 1⊗m
XC ⊗ A(A,C)

m

X A ⊗ I
1⊗i

ρ

X A ⊗ A(A, A)

m

X A
1

X A .

If X , Y are presheaves on A, then a V-linear presheaf map f : X → Y comprises families
of maps f A : X A → Y A which commute with the A-action, in the sense of rendering
commutative each square

XB ⊗ A(A, B)
m

fB⊗1

X A

fA

Y B ⊗ A(A, B) m Y A .

We write Psh�(A) for the category of presheaves on A and V-linear presheaf maps.

Example 7.9 If A is a V-category, then for each A ∈ A, we have a presheaf yA ∈ Psh�(A)

with components yA(B) = A(B, A) and action given by composition in A. Moreover,
V-linear presheaf maps yA → yB are precisely V-linear maps A →� B in A.

Example 7.10 LetV be a monoidal category which supports the initial monoidal comonad K ,
and let A be a VK -enriched category. In this case, Psh�(A) is the ordinary functor category
[Aop

0 ,V]. In particular, if A is a left-k-linear category, then Psh�(A) is [Aop
0 , k-Mod]—so

justifying the notation of Definition 4.10 above.

7.3 Enriched Presheaves as an Enriched Category

Example 7.9 offers a partial justification of the nomenclature “V-linear” for the maps of
Psh�(A). We will now justify it more fully by showing that such maps are in fact the V-
linear maps of a V-category of presheaves Psh(A). Towards this, we make the following key
definition.

Definition 7.11 Let V be a skew monoidal category andA a V-category. Given a presheaf X
onA and V ∈ V, we define V ∗X to be the presheaf with components (V ∗X)(A) = V ⊗X A
and action maps

(V ⊗ XB) ⊗ A(A, B)
α−→ V ⊗ (

XB ⊗ A(A, B)
) 1⊗m−−−→ V ⊗ X A .

This construction is easily seen to underlie a functor ∗: V × Psh�(A) → Psh�(A).
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Definition 7.12 If X , Y are presheaves on A, then a presheaf hom from X to Y is a repre-
sentation for the functor Psh�(A)(− ∗ X , Y ) : Vop → Set, comprising an object �X , Y � ∈ V

and hom-set isomorphisms

Psh�(A)(V ∗ X , Y ) ∼= V(V , �X , Y �) ,

natural in V ∈ V. We write ev : �X , Y � ∗ X → Y for the counit of this representation.

Example 7.13 (Yoneda lemma). For any presheaf X onA and any A ∈ A, there is a V-linear
map m : X A ∗ yA → X whose components are given by the action of A on X . This map
exhibits X A as �yA, X�; for indeed, if γ : V ∗ yA → X is any other V-linear presheaf map,
then the composite

V
ρ−→ V ⊗ I

1⊗i−−→ V ⊗ A(A, A)
γ−→ X A

is the unique factorisation of γ through m.

We will be interested in the situation where all presheaf homs �X , Y � on a given A exist.
This will certainly be the case ifA is small, andV is left closed and complete; see [41, § 5] for
the construction. Note that in this case, the assignment X , Y �→ �X , Y � becomes a functor
Psh�(A)op × Psh�(A) → V such that the bijections Psh�(A)(V ∗ X , Y ) ∼= V(V , �X , Y �)

are natural in X and Y as well as V .

Definition 7.14 Let V be a skew monoidal category and A a V-category. Suppose for all
presheaves X , Y onA that the presheaf hom �X , Y � exists. We define theV-category Psh(A)

to have presheaves onA as objects, and hom-objects the �X , Y �’s. The identities I → �X , X�

are induced by universality of �X , X� applied to the V-linear presheaf map I ∗ X → X with
components

λX A : I ⊗ X A → X A ; (32)

while composition �Y , Z� ⊗ �X , Y � → �X , Z� is induced by universality of �X , Z� applied
to the V-linear presheaf map (�Y , Z� ⊗ �X , Y �) ∗ X → Z with components

(�Y , Z� ⊗ �X , Y �) ⊗ X A
α−→ �Y , Z� ⊗ (�X , Y � ⊗ X A)

1⊗ev−−−→ �Y , Z� ⊗ Y A
ev−→ Z A .

Example 7.15 IfA is a left-k-linear category, then Psh(A) is the left-k-linear category whose
objects are functorsAop

0 → k-Mod, and whose morphisms X → Y are families of functions
(not necessarily k-linear) X A → Y A satisfying the usual naturality condition. The k-module
structure on the homs is given componentwise.

We now justify the name “V-linear” for the morphisms of Psh�(A).

Proposition 7.16 LetA be aV-category for which the functorV-categoryPsh(A) exists. The
V-linear maps in Psh(A) correspond bijectively with maps of Psh�(A).

Proof Let X , Y be presheaves on A. A V-linear map f : X →� Y of Psh(A) comprises a
family of maps fZ : �Z , X� → �Z , Y � in V satisfying the V-naturality condition of Defi-
nition 5.9. When Z = yA, we may by the Yoneda lemma take it that �yA, X� = X A and
�yA, Y � = Y A, so that fyA : X A → Y A for each A ∈ A. We may likewise take it that
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�yB, yA� = A(B, A) so that instantiating (25) as to the left below yields the commuting
diagram as to the right

�yA, X�⊗�yB, yA�

m

fyA⊗1
�yA, Y �⊗�yB, yA�

m

X A⊗A(B, A)

m

fyA⊗1
Y A⊗A(B, A)

m

�yB, X�
fyB

�yB, Y � XB
fyB

X A .

In this way, we obtain a map fy− : X → Y of Psh�(A).
On the other hand, given a map g : X → Y of Psh�(A), we can for each Z ∈ Psh(A)

apply the functor �Z ,−� : Psh� → V to obtain a map gZ : �Z , X� → �Z , Y � in V.
By construction, gZ is unique such that the following square commutes:

�Z , X� ∗ Z
gZ∗1

ev

�Z , Y � ∗ Z

ev

X g Y ,

and it is easy to prove from this that the family of maps gZ constitute a V-linear map
g̃ : X →� Y of Psh(A). Finally, a standard Yoneda argument shows these two processes
f �→ fy− and g �→ g̃ to be mutually inverse.

The preceding result identifies the category ofV-linear maps inPsh(A); the next one iden-
tifies the underlying ordinary category Psh0(A). In the case where V is genuinely monoidal,
these two categories coincide, but not in general.

Proposition 7.17 Let A be a V-enriched category for which the presheaf category Psh(A)

exists. The underlying ordinary category Psh0(A) is isomorphic to the co-Kleisli category
of the comonad on Psh�(A) defined as follows:

– The underlying endofunctor is I ∗ (−) : Psh�(A) → Psh�(A);
– The counit at X is the map I ∗ X →� X with components (32);
– The comultiplication at X is the map I ∗ X →� I ∗ (I ∗ X) with components

I ⊗ X A
ρI⊗1−−−→ (I ⊗ I ) ⊗ X A

α−→ I ⊗ (I ⊗ X A) .

Proof Clearly, objects ofPsh0(A) are presheaves onA.Morphisms X → Y are, by definition,
maps f : I → �X , Y � in V, which by the universal property of �X , Y � are equally maps
f̄ : I ∗ X → Y in Psh�(A). The identity map at X is i : I → �X , X�, which by definition
corresponds to the map I ∗ X f → X with components (32). Finally, the composition of
maps of f̄ : I ∗ X → Y and ḡ : I ∗ Y → Z proceeds via the formula (24), which transposes
to become the composite

I ∗ X
ρI ∗1−−−→ (I ⊗ I ) ∗ X

( f ⊗g)∗1−−−−−→ (�Y , Z� ⊗ �X , Y �) ∗ X
m∗1−−→ �X , Z� ∗ X

ev−→ Z

in Psh�(A). By the definition of m in Psh(A), this is equally the composite

I ∗ X
ρI ∗1−−−→ (I ⊗ I ) ∗ X

α−→ I ∗ (I ∗ X)
f ∗(g∗1)−−−−−→ �Y , Z� ∗ (�X , Y � ∗ X)

ev−→ �Y , Z� ∗ Y
ev−→ Z
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which is, in turn, the composite

I ∗ X
ρI ∗1−−−→ (I ⊗ I ) ∗ X

α−→ I ∗ (I ∗ X)
1∗ḡ−−→ I ∗ Y

f̄−→ Z ,

which is precisely the co-Kleisli composite of f̄ and ḡ, as desired.

Example 7.18 Let A be a left-k-linear category. We saw in Example 7.15 that Psh0(A) is
the category whose objects are functors Aop

0 → k-Mod and whose maps are natural trans-
formations with not-necessarily-linear components. By the preceding result, we can identify
this with the co-Kleisli category of the comonad [1, K ] on [Aop

0 , k-Mod] (i.e., the comonad
which applies K on k-Mod pointwise).

7.4 The Yoneda Embedding

As in classical enriched category theory, we have a Yoneda embedding into the category of
presheaves.

Definition 7.19 Let V be a skew monoidal category, and A a V-category for which Psh(A)

exists. The Yoneda embedding y : A → Psh(A) is the V-functor which on objects, sends
A to yA; and acts on homs via the maps A(B,C) → �yB, yC� induced by universality of
�yB, yC� applied to the presheaf map A(B,C) ∗ yB → yC whose components are given
by composition in A.

ByExample 7.9,V-linearmaps A →� B inA are the same asmaps yA → yB ofPsh�(A);
and by Proposition 7.16, these correspond bijectively with V-linear maps in Psh(A). By way
of this assignment on linear maps, we can make the Yoneda embedding into a tight V-functor
A →t Psh(A). The next result shows that this behaves as expected with respect to cartesian
structure.

Lemma 7.20 Let V be skew monoidal with finite products, and let A be a V-category for
which Psh(A) exists. Psh(A) is cartesian, and the Yoneda embedding A →t Psh(A) is
cartesian and fully faithful (i.e., an isomorphism on homs).

Proof First note that Psh�(A) has finite products. The terminal presheaf of Psh�(A) has all
its components terminal in V, and the unique possible action maps. The binary product of
X , Y ∈ Psh�(A) has components (X × Y )A = X A × Y A and action maps

(
m(π0 ⊗ 1),m(π1 ⊗ 1)

) : (XB × Y B) ⊗ A(A, B) → X A × Y A,

while the projection maps X ← X × Y → Y are given componentwise by those in V.
Now, the span π0 : X ← X×Y → Y : π1 inPsh�(A) corresponds under Proposition 7.16

to a span of V-linear maps π̃0 : X ←� X × Y →� Y : π̃1 of Psh(A), whose components are
the spans �Z , π0� : �Z , X� ← �Z , X × Y � → �Z , Y � : �Z , π1� in V. Each such span is the
image of a product span under a right adjoint functor �Z ,−�, and so is itself a product.
So π̃0, π̃1 exhibit X × Y as a product of X , Y in Psh(A). Similarly, the terminal object of
Psh�(A) is also a terminal presheaf in Psh(A).

Now it follows from the Yoneda lemma, Example 7.13, that y : A →t Psh(A) is fully
faithful. To see that it is cartesian, we must show that a product span A ←� A × B →� B
in V induces a product span yA ←� y(A × B) →� yB in Psh(A). By the preceding part of
the argument, it will suffice to show that the corresponding span yA ← y(A × B) → yB
in Psh�(A) is limiting: which is so since its components are the given by product diagrams
A(X , A) ← A(X , A × B) → A(X , B) in V.
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8 An Embedding Theorem for Cartesian Differential Categories

In this section, we prove our second main theorem: that every small cartesian differential
category has a full structure-preserving embedding into one induced by a differential modal-
ity. In fact, we will do better: our embedding will always be into a cartesian differential
category induced by a monoidal differential modality on a monoidal closed category—so
that our embedding is into the cartesian closed differential category associated to a model of
intuitionistic differential linear logic.

As explained at the start of the previous section, the basic strategy will be to embed a
small cartesian differential categoryA into its k-ModQ-enriched presheaf category Psh(A).
The k-ModQ-enrichment of Psh(A) corresponds to a cartesian differential structure on the
underlying category Psh0(A), and by Proposition 7.17, this latter category is the co-Kleisli
category of the comonad I ∗ (−) on Psh�(A). We will show that this comonad underlies a
monoidal differential modality on Psh�(A) which induces the cartesian differential structure
of Psh0(A); this yields our result.

8.1 Presheaves Over a Skew-Warped Base

Most of the hard work will be in showing thatPsh�(A) bears the appropriate structure: firstly,
symmetric monoidal closed k-linear structure, and secondly, amonoidal differential modality
whose underlying comonad agrees with I ∗ (−). In obtaining these, it will be convenient
to work more generally: thus, for the rest of this section, we suppose that V is a symmetric
monoidal category, that ! is a symmetric monoidal comonad onV, and thatA is aV!-category.

Akey observation is that presheaves on theV!-categoryA can be identifiedwith presheaves
on an associatedV-category, so allowing us tomake use of results from classical enriched cat-
egory theory. To obtain this associated V-category, we will change base along the composite
symmetric monoidal functor

! = (V,⊗!, I ) C−→ (Coalg(!), ⊗̂, Î )
U−→ (V,⊗, I ) , (33)

where here U is the strict monoidal forgetful functor, and C is the cofree functor, made
monoidal via the structure maps

mI : (I ,mI ) → (!I , δI ) and m⊗ := H : (!A, δA) ⊗̂ (!B, δB) → (!(A ⊗ !B), δA⊗!B
)
;

it is a routine diagram chase with the axioms for a symmetric monoidal comonad to show
that these maps do indeed provide monoidal structure.

Now, base change along the composite functor ! of (33) associates to the V!-enriched
categoryA a V-enriched category !∗(A), with the same objects asA, hom-objects !A(A, B),
and identities and composition given by the composites

i� := I
mI−−→!I !i−→!A(A, A) and (34)

m� := !A(B,C) ⊗ !A(A, B)
H−→ !(A(B,C) ⊗ !A(A, B))

!m−→ !A(A,C) . (35)

We now show that the category of V!-presheaves on A is equally well the category of
V-presheaves on !∗(A). This will allow us to study V!-presheaves via the classical theory of
presheaves over a symmetric monoidal enrichment base.

Lemma 8.1 There is an equality of categories Psh�(A) = Psh�(!∗(A)).
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Proof The basic data of an A-presheaf and a !∗A-presheaf are the same: a family of com-
ponents X A ∈ V and action maps m : XB ⊗ !A(A, B) → X A. Moreover, by unfolding the
definitions (34) and (35), we see that the axioms coincide, too.

8.2 LiftingModalities to Presheaves

We now exploit the preceding lemma to show that various kinds of structure can be lifted
from V to Psh�(A). Note first that VobA, the cartesian product of ob A copies of V, bears
all the same structure as V does, defined pointwise; over the next three propositions, we will
show that this structure can be lifted along the obvious forgetful functor Psh�(A) → VobA.
In each case, we will appeal to general results which allow us to do this without needing to
check coherence by hand; however, after the fact, we also give an explicit description of the
lifted structure so obtained.

Proposition 8.2 If ! is amonoidal coalgebramodality, then the pointwise symmetricmonoidal
structure of VobA lifts to a symmetric monoidal structure on Psh�(A). If V is complete and
monoidal closed, and A is small, then the monoidal structure on Psh�(A) is closed; while if
V is symmetric monoidal k-linear, then so is Psh�(A).

Proof Since Psh�(A) = Psh�(!∗(A)), it suffices to prove the claim for the latter category.
Since ! is a monoidal coalgebra modality, each hom !A(A, B) of the V-category !∗(A) is a
cocommutative comonoid, and the identity and composition maps (34) and (35) are maps of
cocommutative comonoids. As explained in [18, § 5], this implies that the pointwisemonoidal
structure on VobA lifts to Psh�(!∗(A)); and that, under the stated further hypotheses, this
lifted monoidal structure is closed.

Suppose now that V is symmetric monoidal k-linear. In this case, Psh�(A) becomes
k-linear on endowing each hom-set with the pointwise k-module structure; note that this
structure is preserved by pre- and post-composition because it is so in V. Moreover, the
tensor product of Psh�(A) preserves in each variable the k-module structure on the homs
because the same is true in V.

Remark 8.3 We can be quite explicit about the monoidal structure on Psh�(A). If X , Y are
presheaves on A, then their componentwise tensor X A ⊗ Y A becomes a presheaf via the
structure maps

(XB ⊗ Y B) ⊗ !A(A, B)
1⊗Δ−−−→ (XB ⊗ Y B) ⊗ (!A(A, B) ⊗ !A(A, B)

)

∼=−→ (XB ⊗ !A(A, B)) ⊗ (Y B ⊗ !A(A, B))
m⊗m−−−→ X A ⊗ Y A ,

(36)

where the unnamed isomorphism uses the associativity and symmetry maps in V. The unit
for this tensor is the presheaf constant at I , with structure maps

I ⊗ !A(A, B)
1⊗e−−→ I ⊗ I

ρ−→ I . (37)

As for the internal hom of presheaves [Y , Z ], this has components given by the following
hom-objects of the V-category Psh(!∗(A)):

[Y , Z ]A = Psh(!∗(A))(!A(−, A) ⊗ Y , Z)

where !A(−, A) is the representable presheaf on A ∈ !∗(A) and the ⊗ is the tensor prod-
uct of presheaves just defined. Recognising the right-hand side as the V-presheaf hom
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1140 R. Garner, J.-S. P. Lemay

�!A(−, A) ⊗ Y , Z�, we obtain the structure map [Y , Z ]B ⊗ !A(A, B) → [Y , Z ]A by trans-
posing the V-linear presheaf map

([Y , Z ]B ⊗ !A(A, B)) ∗ (!A(−, A) ⊗ Y ) → Z

with C-component

[Y , Z ]B ⊗ !A(A, B) ⊗ !A(C, A) ⊗ YC
1⊗m�⊗1−−−−−→ [Y , Z ]B ⊗ !A(C, B) ⊗ YC

ev−→ ZC .

(38)

Proposition 8.4 If ! is amonoidal coalgebramodality, then the pointwisemonoidal coalgebra
modality !obA on VobA lifts to a monoidal coalgebra modality on Psh�(A).

Proof Wewill make use of the following construction. Suppose given a monoidal adjunction
F � G : M → N between (genuine) monoidal categories and a N-category C, we obtain
an adjunction F̃ � G̃ : Psh�(F∗(C)) → Psh�(C) on presheaves as follows. F̃ acts on a
C-presheaf X by applying F componentwise, and endowing the result with the action maps

FXB ⊗ FC(A, B)
m⊗−−→ F(XB ⊗ C(A, B))

Fm−−→ FX A .

On the other hand, G̃ acts on a F∗(C)-presheaf Y by applyingG componentwise, and endow-
ing the result with the action maps

GY B ⊗ C(A, B)
1⊗η−−−→ GY B ⊗ GFC(A, B)

m⊗−−→ G(Y B ⊗ FC(A, B))
Gm−−→ GY A ,

where η is the unit of F � G.
We now apply the construction just described to the cofree-forgetful monoidal adjunction

U � C : (V,⊗, I ) → (Coalg(!),⊗, I ) and the Coalg(!)-category C∗(A). This yields an
adjunction on presheaves as to the left below, which lifts the pointwise adjunction as to the
right:

Psh�(C∗(A))

Ũ

C̃


 Psh�(!∗(A)) Coalg(!)obA
UobA

CobA


 VobA . (39)

Now, we have already seen that the V-category Psh�(!∗(A)) bears a symmetric monoidal
structure lifting that ofVobA, since everyhomhas a cocommutative comonoid structurewhich
is respected by composition. Since ! is a monoidal coalgebra modality, the same properties
hold for the (Coalg(!), ⊗̂, Î )-category C∗(A), and so we can also lift the pointwise monoidal
structure of Coalg(!)obA to Psh(C∗(A)).

In fact, themonoidal structure of the entire adjunction to the right in (39) lifts to the adjunc-
tion to the left. Indeed, the strict monoidal structure of U : (Coalg(!), ⊗̂, Î ) → (V,⊗, I )
clearly lifts to Ũ : Psh�(C∗(A)) → Psh�(!∗(A)), since both monoidal structures lift that of
VobA; and moreover, by [27, Theorem 2.2], any monoidal adjunction is uniquely determined
by the underlying adjunction, and a strong monoidal structure on the left adjoint.

It follows that Ũ C̃ is a monoidal comonad on Psh�(!∗(A)) = Psh�(A) which lifts the
pointwise monoidal comonad !obA on VobA. It remains to show this monoidal comonad is
in fact a monoidal coalgebra modality. By [3, Theorem 3], it suffices for this to show that the
lifted monoidal structure on Psh�(C∗(A)) is cartesian—which follows immediately from
the fact that the monoidal structure of Coalg(!) is itself cartesian (cf. [18, Example 5.2]).
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Remark 8.5 Again, we can be quite explicit about the induced monoidal coalgebra modality
on Psh�(A). The underlying functor acts on a presheaf X ∈ Psh�(A) by applying ! to all
of its components, and equipping it with the following action maps, where H is the fusion
operator of (22):

!XB ⊗ !A(A, B)
H−→!(XB ⊗ !A(A, B))

!m−→ !X A . (40)

The remaining data (ε, δ, e,Δ,mI ,m⊗) are all given componentwise by the corresponding
data for ! on V.

Proposition 8.6 If V is a k-linear symmetric monoidal category, and ! is a monoidal differ-
ential modality on V, then the pointwise monoidal differential modality !obA on VobA lifts
to a monoidal differential modality on Psh�(A).

Proof For this, it will be sufficient to show that, for each presheaf X onA, the family of maps
dX A : !X A ⊗ X A → !X A are V!-linear in A, so comprising the components of a presheaf
map dX : !X⊗X → !X . Once we have this, the fact that d is a natural transformation, and the
axioms for a deriving transformation, follow componentwise from the corresponding facts in
V. The desired V!-linearity amounts to showing that, for all A, B ∈ A, the following square
commutes:

!XB ⊗ XB ⊗ A(A, B)
m!X⊗X

d⊗1

!X A ⊗ X A

d

!XB ⊗ A(A, B)
m!X !X A

where the top and bottom edges are the action maps of the presheaves !X ⊗ X and !X
respectively. Expanding these out, this is equally to show that the outside of the following
diagram commutes, where to avoid an unwieldy presentation, we are writing A, B and H as
ciphers for X A, XB and A(A, B):

Each of the small regions commutes easily using the axioms for a monoidal comonad
plus naturality of d. The large region is the so-called monoidal axiom, which is shown in [6,
Theorem 6.12] to hold for any monoidal differential modality.

8.3 The Embedding Theorem

We are finally ready for our second main result.
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Theorem 8.7 Every small cartesian differential categoryA admits a full structure-preserving
embedding into the cartesian closed differential category induced by a monoidal differential
modality on a symmetric monoidal closed k-linear category.

Proof Viewing A as a cartesian k-ModQ-category, we can form the category of presheaves
Psh(A) and the Yoneda embedding y : A →t Psh(A). By Lemma 7.20 and Example 7.7,
this corresponds to a full structure-preserving embedding of cartesian differential categories;
so it suffices to show that the cartesian differential structure of Psh(A) arises in the desired
manner.

The category on which this cartesian differential structure resides is the underlying ordi-
nary category Psh0(A), which by Proposition 7.17 is the co-Kleisli category of the comonad
I ∗ (−) on Psh�(A). This comonad acts on a presheaf X by sending it to the presheaf with
components (I ∗ X)(A) = I ⊗Q X A = I ⊗ QX A and action

I ⊗ QXB ⊗ QA(A, B)
1⊗H−−−→ I ⊗ Q(XB ⊗ QA(A, B))

1⊗m−−−→ I ⊗ QX A ;

comparing with (40), we see that upon transporting along the (invertible) left unit constraints
of Vwe obtain precisely the lifted comonad on Psh�(A) of Proposition 8.4. Now by Proposi-
tions 8.2, 8.4 and 8.6 , this lifted comonad is a monoidal differential modality on a symmetric
monoidal closed k-linear category, and so its co-Kleisli category—which is Psh0(A)—bears
cartesian closed differential structure.

All that remains is to show that the cartesian differential structure onPsh0(A) coming from
this monoidal differential modality coincides with the cartesian differential structure coming
from the k-ModQ-enrichment. Clearly, it suffices to check that the differential operators
coincide.

Now, a map of Psh0(A) from X to Y is a V-linear presheaf map f : QX → Y with com-
ponents f A : QX A → Y A in k-Mod. By Proposition 4.9, each such component corresponds
to a map f (•)

A : X A � Y A in Faà(k-Modw) upon defining

f (n)
A (x0, . . . , xn) := f A(〈x0, . . . , xn〉) .

Because the monoidal differential modality on Psh�(A) is given pointwise by the initial
differential modality Q on k-Mod, Proposition 4.9 also tells us that that the differential
D f : X × X → Y in Psh0(A) associated to this monoidal differential modality sends an
element 〈(x0, y0), . . . , (xn, yn)〉 of Q(X A × X A) to the element

f (n+1)(x0, x1, . . . , xn, y0) + ∑n
i=1 f (n)(x0, . . . , xi−1, yi , xi+1, . . . , xn) ∈ Y A .

On the other hand, to compute D f via the k-ModQ-enrichment of Psh(A), we view f
as an element of the presheaf hom �X , Y � = Psh�(A)(QX , Y ), and apply the composition
map �X , Y � ⊗ Q�X × X , X� → �X × X , Y � to this f and to 〈p0, p1〉 ∈ Q�X × X , X�.
Here p0, p1 ∈ �X × X , X� = Psh�(Q(X × X), X) are the projection maps of the product
in Psh(A), with components

(pi )A := Q(X A × X A)
ε−→ X A × X A

πi−→ X A . (41)

By definition of composition in Psh(A), to compute D f in this way is equally well to
partially evaluate the following map at f and 〈p0, p1〉 in its first two arguments:

�X , Y � ⊗ Q�X2, X� ⊗ Q(X A)2
1⊗H−−−→ �X , Y � ⊗ Q(�X2, X� ⊗ Q(X A)2)

ev(1⊗Qev)−−−−−−−→ Y A.
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We thus find the action of D f on an element

〈w0, . . . , wn〉=〈(x0, y0), . . . , (xn, yn)〉
of Q(X A × X A) to be given as follows:

f ⊗ 〈p0, p1〉 ⊗ 〈w0, . . . , wn〉 �→
∑

[n]=A1|···|Ak
θ : [1]�[k]

f ⊗ 〈pθ(1) ⊗ 〈wAθ(2)
〉〉

�→
∑

[n]=A1|···|Ak
θ : [1]�[k]

f
(
〈 pθ(1) (〈wAθ(2)

〉) 〉
)

=
∑

θ : [1]�[n]
f
(
〈πθ(1) (wθ(2) ) 〉

)

= f (n+1)(x0, x1, . . . , xn, y0) + ∑
1≤i≤n f (n)(x0, . . . , xi−1, yi , xi+1, . . . , xn) .

Here, we use Lemma 6.1 at the first step, and for the first equality, use that pi = πiε and the
description of ε to see that each Ai must be a singleton. This proves that the two differential
operators on Psh0(A) coincide, as desired.

8.4 An Explicit Description of the Embedding

We now give as explicit a description as possible of the structures involved in the embed-
ding theorem for cartesian differential categories. We begin by describing the presheaves
themselves.

Definition 8.8 Let A be a cartesian differential category. A differential presheaf on A is
a (not necessarily additive) functor X : Aop → k-Mod equipped with family of operators
D : X A → X(A × A) such that:

(i) Each D is k-linear;
(ii) Each Dξ ∈ X(A × A) is k-linear in its second argument (as in Definition 4.12);
(iii) D(ξ · f ) = D(ξ) · ( f π0,D f ) ∈ X(A × A) for all f : A → B and ξ ∈ XB.
(iv) D(Dξ) · (x, r , 0, v) = D(ξ) · (x, v) for all x, r , v : Z → A, ξ ∈ X A;
(v) D(Dξ) · (x, r , s, 0) = D(Dξ) · (x, s, r , 0) for all x, r , s : Z → A, ξ ∈ X A.

Here, as previously, we write ξ · f for X f (ξ).

Proposition 8.9 LetA be a cartesian differential category. The k-ModQ-enriched presheaves
on A are exactly the differential presheaves.

Proof To give a k-ModQ-enriched presheaf X onA is to give k-modules X A for each A ∈ A,
together with action maps XB ⊗ QA(A, B) → X A for each A, B ∈ A obeying unit and
associativity axioms. If we notate the action maps as ξ ⊗ 〈 f0, . . . , fn〉 �→ ξ (n)( f0, . . . , fn)
then by transcribing the proof of Proposition 6.2, we see that to give these is equally to give
functions

XB × A(A, B) × A(A, B)n → X A

(ξ, f0, . . . , fn) �→ ξ (n)( f0, . . . , fn)
(42)

for each A, B ∈ A and n ≥ 0, satisfying the evident analogues of axioms (i)–(iv) of Propo-
sition 6.2. Now by arguing as in the proof of Theorem 6.4, this is in turn equivalent to giving
a functor X : Aop → k-Mod together with higher-order derivative operators

(−)(n) : X A → X(A × An)
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satisfying the analogues of axioms (i)–(ii) and (iv)–(vii) of Corollary 3.14. Finally, by tran-
scribing the argument of Corollary 3.14 itself, we see that giving these higher-order derivative
operators is equivalent to giving the first-order differential operators D : X A → X(A × A)

satisfying the axioms (i)–(v) above.

Just as before, we can be quite concrete about the correspondence between differential
presheaves and k-ModQ-presheaves on the cartesian differential category A. On the one
hand, given a differential presheaf X on A, the corresponding k-ModQ-presheaf has the
same components, and action maps

XB ⊗ QA(A, B) → X A

ξ ⊗ 〈 f0, . . . , fn〉 �→ ξ (n) · ( f0, . . . , fn) ,

where ξ (n) denotes the nth derivative of ξ defined in the same manner as in Definition 3.1.
On the other hand, for a k-ModQ-presheaf X , the corresponding differential presheaf has the
same components, and action maps and differential defined from the k-ModQ-action maps
m : XB ⊗ QA(A, B) → X A via

ξ · f = m(ξ ⊗ 〈 f 〉) and Dξ = m(ξ ⊗ 〈π0, π1〉) .
We now describe the category of differential presheaves and linear maps on a cartesian

differential category A, along with its symmetric monoidal closed k-linear structure and its
differential modality.

Definition 8.10 Let A be a cartesian differential category.

– A linear map α : X →� Y of differential presheaves on A is a natural transformation
α : X ⇒ Y : Aop → k-Mod which preserves the differential, i.e.,

αA×A(Dξ) = D(αA(ξ)) for all A ∈ A and ξ ∈ X A.

We write DPsh�(A) for the k-linear category of differential presheaves on A and linear
maps, where the k-module structure on the homs is given componentwise.

– The pointwise tensor product X ⊗ Y of differential presheaves X and Y has underlying
functor X ⊗ Y : Aop → k-Mod with values (X ⊗ Y )A = X A ⊗ XY and (X ⊗ Y ) f =
X f ⊗ Y f , and differential operator given by

D : X A ⊗ Y A → X(A × A) ⊗ Y (A × A)

ξ ⊗ υ �→ Dξ ⊗ (υ · π0) + (ξ · π0) ⊗ Dυ .
(43)

– The pointwise unit is the differential presheaf whose underlying functor I : Aop →
k-Mod is constant at k ∈ k-Mod, and whose differential operator D : I (A) → I (A× A)

is everywhere zero.
– For a differential presheaf X , the differential presheaf QX has underlying functor given

by Q ◦ X : Aop → k-Mod, where Q is the initial differential modality on k-Mod, and
differential operator D : QX(A) → QX(A × A) given by

〈ξ0, . . . , ξn〉 �→
〈ξ0π0, . . . , ξnπ0,Dξ0〉 +

∑

1≤i≤n

〈ξ0π0, . . . , ξi−1π0,Dξi , ξi+1π0, . . . , ξnπ0〉 .

– The pointwise differential modality Q on DPsh�(A) has the action on objects just
described, and all its remaining data given pointwise by the corresponding data for the
initial differential modality on k-Mod.
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– The pointwise internal hom [Y , Z ] of differential presheaves Y , Z is the functor
[Y , Z ] : Aop → k-Mod with values [Y , Z ]A = DPsh�(QA(−, A) ⊗ Y , Z) and
[Y , Z ] f = (−) ◦ ( f̃ ⊗ 1); here, if f : A → B in A then f̃ : QA(−, A) →� QA(−, B)

is the linear map with components

f̃ : QA(C, A) → QA(C, B)

〈g0, . . . , gn〉 �→
∑

[n]=A1|···|Ak

〈 f (∅)(g), f (A1)(g), . . . , f (Ak )(g)〉 .

Its differential operator is given by (−)◦ (χA ⊗1) : [Y , Z ](A) → [Y , Z ](A× A), where
χA : QA(−, A × A) →� QA(−, A) is the linear map with components

χA : QA(C, A × A) → QA(C, A)

〈( f0, g0), ..., ( fn, gn)〉 �→ 〈 f0, ..., fn, g0〉 + ∑n
i=1 〈 f0, ..., fi−1, gi , fi+1, ..., fn〉 .

Proposition 8.11 Let A be a cartesian differential category. The category Psh�(A) of
presheaves onAqua k-ModQ-category is isomorphic toDPsh�(A). Under this isomorphism,
the symmetric monoidal closed k-linear structure and differential modality on Psh�(A) of
Propositions 8.2 and 8.6 correspond to the pointwise symmetric monoidal closed structure
and differential modality on DPsh�(A).

Proof The non-trivial points are verifying the descriptions of the tensor product, tensor unit,
action of Q, and internal hom for differential presheaves. For the first of these, the tensor
product of X , Y ∈ Psh�(A) has (X ⊗ Y )A = X A ⊗ Y A with the associated action maps
m : XB⊗Y B⊗QA(A, B) → X A⊗Y A given by the composite in (36). Tracing an element
of the form ξ ⊗ ν ⊗ 〈 f 〉 through this composite we get

ξ ⊗ ν ⊗ 〈 f 〉 �→ ξ ⊗ ν ⊗ 〈 f 〉 ⊗ 〈 f 〉 �→ ξ ⊗ ν ⊗ 〈 f 〉 ⊗ 〈 f 〉 �→ (ξ · f ) ⊗ (ν · f )

so that the corresponding differential presheaf satisfies (X ⊗Y ) f = X f ⊗Y f ; while tracing
through ξ ⊗ ν ⊗ 〈π0, π1〉, we get

ξ ⊗ ν ⊗ 〈π0, π1〉 �→ ξ ⊗ ν ⊗ (〈π0, π1〉 ⊗ 〈π0〉 + 〈π0〉 ⊗ 〈π0, π1〉)
�→ ξ ⊗ 〈π0, π1〉 ⊗ ν ⊗ 〈π0〉 + ξ ⊗ 〈π0〉 ⊗ ν ⊗ 〈π0, π1〉 �→ Dξ ⊗ νπ0 + ξπ0 ⊗ Dν

so that the corresponding differential presheaf has differential operator (43).
Similarly, the unit presheaf in Psh�(A) is constant at k, and its action maps (37) act on

elements 1 ⊗ 〈 f 〉 and 1 ⊗ 〈π0, π1〉 via 1 ⊗ 〈 f 〉 �→ 1 and 1 ⊗ 〈π0, π1〉 �→ 0, so that the
corresponding differential presheaf is constant at I , with zero differential.

Next, for any X ∈ Psh�(A), the corresponding QX ∈ Psh�(A) has components QX A,
and action maps QXB ⊗ QA(A, B) → QX A given as in (40). Tracing an element of the
form 〈ξ0, . . . , ξn〉 ⊗ 〈 f 〉 through this composite, we get

〈ξ0, . . . , ξn〉 ⊗ 〈 f 〉 �→
∑

[0]=A1|···|Ak
θ : [n]�[k]

〈ξθ(1) ⊗ 〈 f Aθ(2)
〉〉 = 〈ξ0 ⊗ 〈 f 〉, . . . , ξn ⊗ 〈 f 〉〉

�→ 〈ξ0 · f , . . . , ξ0 · f 〉 ,
so that the corresponding differential presheaf satisfies (QX) f = Q(X f ). On the other hand,
tracing through 〈ξ0, . . . , ξn〉 ⊗ 〈π0, π1〉 yields

〈ξ0, ..., ξn〉 ⊗ 〈π0, π1〉 �→
∑

[1]=A1|···|Ak
θ : [n]�[k]

〈ξθ(1) ⊗ 〈πAθ(2)
〉〉 =

∑

θ : [n]�[1]
〈ξθ(1) ⊗ 〈πθ(2)〉〉
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= 〈ξ0 ⊗ 〈π0〉, . . . , ξn ⊗ 〈π0〉, ξ0 ⊗ 〈π0, π1〉〉
+

∑

1≤i≤n

〈ξ0 ⊗ 〈π0〉, . . . , ξi−1 ⊗ 〈π0〉, ξi ⊗ 〈π0, π1〉, ξi+1 ⊗ 〈π0〉, . . . , ξn ⊗ 〈π0〉〉

�→ 〈ξ0 · π0, . . . , ξn · π0,Dξ0〉
+

∑

1≤i≤n

〈ξ0 · π0, . . . , ξi−1 · π0,Dξi , ξi+1 · π0, . . . , ξn · π0〉

so that the corresponding differential presheaf QX has the differential operator of Defini-
tion 8.10, as desired.

Finally, we consider the internal hom [Y , Z ] in Psh�(A). By Remark 8.3, this has com-
ponents [Y , Z ]A = �QA(−, A) ⊗ Y Z� = DPsh�(QA(−, A)⊗Y , Z) with the action maps
[Y , Z ]B⊗QA(A, B) → [Y , Z ]A obtained by transposing the composites in (38). In particu-
lar, thismeans that for any f : A → B inA, the reindexingmap [Y , Z ] f of the corresponding
differential presheaf sends α ∈ [Y , Z ]B to the element of [Y , Z ]A whose components are
obtained by partially evaluating (38) at α and 〈 f 〉 in its first two parameters. We thus find the
value of the linearmap QA(−, A)⊗Y → Z so induced at 〈g0, . . . , gn〉⊗γ ∈ !A(C, A)⊗YC
to be given by

α ⊗ 〈 f 〉 ⊗ 〈g0, . . . , gn〉 ⊗ γ

�→
∑

[n]=A1|···|Ak

α ⊗ 〈 f ⊗ 〈g0〉, f ⊗ 〈gA1〉, . . . , f ⊗ 〈gAk 〉〉 ⊗ γ

�→
∑

[n]=A1|···|Ak

α ⊗ 〈 f (∅)(g), f (A1)(g), . . . , f (Ak )(g)〉 ⊗ γ

�→
∑

[n]=A1|···|Ak

α(〈 f (∅)(g), f (A1)(g), . . . , f (Ak )(g)〉 ⊗ γ )

so that ([Y , Z ] f )(α) is precisely the composite

QA(−, A) ⊗ Y
f̃ ⊗1−−−→ QA(−, B) ⊗ Y

α−→ Z

as desired. Similarly, for any α ∈ [Y , Z ]A, its differential Dα ∈ [Y , Z ](A × A) is obtained
by partially evaluating (38) at α and 〈π0, π1〉 in its first two parameters. So the value of
Dα : QA(−, A×A)⊗Y → Z at an element 〈( f0, g0), . . . , ( fn, gn)〉⊗γ = 〈h0, . . . , hn〉⊗γ

of QA(C, A × A) ⊗ YC is given by

α ⊗ 〈π0, π1〉 ⊗ 〈h0, . . . , hn〉 �→
∑

[n]=A1|···|Ak
θ : [1]�[k]

α ⊗ 〈πθ(1) ⊗ 〈hAθ(2)
〉〉 ⊗ γ

�→
∑

[n]=A1|···|Ak
θ : [1]�[k]

α
(
〈 π

(Aθ(2) )

θ(1)
(h) 〉

)
=

∑

θ : [1]�[n]
α
(
〈πθ(1) (gθ(2) ) 〉 ⊗ γ

)

= α(〈 f0,1 , . . . , fn, g0〉 ⊗ γ ) + ∑

1≤i≤n
α(n)(〈 f0, . . . , fi−1, gi , fi+1, . . . , fn〉 ⊗ γ ) .

as desired.

We can now read off from the above a description of the cartesian closed differential
category associated to the pointwise differential modality onDPsh�(A)—which, in light of
the preceding proposition, is equally well the cartesian closed differential category associated
to the k-ModQ-category Psh(A)—together with its embedding of A.
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Definition 8.12 Let A be a cartesian differential category.

– A Faà di Bruno map α(•) : X � Y of differential presheaves on A comprises a family
of maps α

(•)
A : X A � Y A in Faà(k-Modw) which are natural in A, i.e., each square of

the following form commutes:

X A × (X A)n
α

(n)
A

X f ×(X f )n

Y A

Y f

X B × (XB)n
α

(n)
B

Y B

and which respect the differential, in the sense that

D
(
α

(n)
A (ξ0, . . . , ξn)

)
= α

(n+1)
A×A (ξ0π0, . . . , ξnπ0,Dξ0)

+∑
1≤i≤n α

(n)
A×A (ξ0π0, . . . , ξi−1π0,Dξi , ξi+1π0, . . . , ξnπ0) .

We write DPsh f (A) for the left-k-linear category of differential presheaves and Faà di
Bruno maps, with k-module structure on the homs and composition given pointwise as
in Faà(k-Modw).

– The cartesian product X×Y of differential presheaves X , Y has components values gives
by (X ×Y )A = X A×Y A and (X ×Y ) f = X f × X f , and componentwise differential;
the projection maps π0 : X ← X ×Y → Y : π1 are given pointwise as in Faà(k-Modw).
The terminal differential presheaf is constant at the terminal object 1 ∈ k-Modw , with
the only possible differential.

– For each A ∈ A, the representable differential presheaf yA has underlying functor
A(−, A) : Aop → k-Mod, and differential operator inherited from A;

– For each f : A → B in A, the Faà di Bruno map y f : yA � yB has components given
by the higher-order derivatives in A:

y f (n)
X : A(X , A) × A(X , A)n → A(X , B)

(g0, . . . , gn) �→ f (n)(g0, . . . , gn) ;

we write y : A → DPsh f (A) for the functor so induced.
– The pointwise cartesian differential structure on DPsh f (A) has the differential map

D f : X×X � Y of a Faà di Brunomap f : X � Y given pointwise as in Faà(k-Modw).
– The exponential ZY of differential presheaves Y , Z has component values given by

(ZY )A = DPsh f (A)(yA×Y , Z) and (ZY ) f = (−)◦ (y f ×1). Its differential operator
sends α : yA × Y � Z to the composite

y(A × A) × Y
∼=−→ yA × yA × Y

D1 f−−−→ Z

whose second component is the partial derivative in the pointwise cartesian differential
structure.

Proposition 8.13 LetA be a cartesian differential category. The cartesian closed differential
category DPsh f (A) is induced by the pointwise differential modality on DPsh�(A), and
so isomorphic to the cartesian closed differential category of k-ModQ-presheaves Psh(A).
Under this isomorphism, the Yoneda embedding y : A → DPsh f (A) corresponds to the
enriched Yoneda embedding A → Psh(A).
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Proof Amap X → Y in the co-Kleisli category of the pointwise differential modality is a lin-
ear map of differential presheaves QX →� Y , and we can read off from Definition 8.10 that
these are precisely Faà di Bruno maps from X to Y . Aside from the exponentials, the identi-
fication of the remaining structure of the co-Kleisli category with that ofDPsh f (A) follows
since the differential modality onDPsh�(A) is induced pointwise from the initial differential
modality Q on k-Mod, and since by Proposition 4.9 we have Kl(Q) ∼= Faà(k-Modw) as
cartesian differential categories.

As for the exponentials: recall that these are obtained from the internal homs in DPsh�

via the formula ZY := [QY , Z ]. Expanding this definition out, we see that (ZY )A =
DPsh�(QyA ⊗ QY , Z) ∼= DPsh�(Q(yA × Y ), Z) ∼= DPsh f (yA × Y , Z), using the stor-
age isomorphisms (14) at the second step. Transporting the action on maps and differential
operator on [QY , Z ] across these isomorphisms yields, by an easy argument, the formula
indicated above.

Putting all of the above together, we get the following concrete form of the embedding
theorem.

Theorem 8.14 Let A be a small cartesian differential category. The Yoneda embedding
y : A → DPsh f (A) of Definition 8.12 is a full structure-preserving embedding ofA into the
cartesian closed differential category induced by themonoidal differentialmodality described
in Definition 8.10.

Remark 8.15 We know from the general theory that y : A → DPsh f (A) is a fully faithful
embedding of cartesian differential categories, but this may not be immediately apparent
from the concrete description. As a sanity check, let us conclude by giving a direct argument
for the full fidelity.

A Faà di Bruno map α(•) : yA � yB is a linear map QyA →� yB of differential
presheaves, i.e., a natural transformation α : QA(−, A) ⇒ A(−, B) : Aop

0 → k-Mod which
commutes with the differentials. Forgetting about the differentials for the moment, just to
give a natural transformation of this form is to give a map of KlA(Q) as in Definition 4.11,
which is by Proposition 4.14 the same as a map f (•) : A � B in Faà(A); concretely, the
correspondence is given by

f (n) = α
(n)
A×An (π0, . . . , πn) ∈ yB(A × An) = A(A × An → B) .

Now adding back in the condition that α preserves the differential is, by a short calculation,
the same as requiring that each f (n) is, in fact, the nth derivative of f (0), so that the Faà di
Bruno map α(•) : yA � yB is necessarily given by

α
(n)
X : A(X , A) × A(X , A)n → A(X , B)

(g0, . . . , gn) �→ f (n)(g0, . . . , gn)

for a unique map f : A → B in A.
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