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Abstract

Technical Topic: Missile aerodynamics, moving-body simulations, Cartesian

mesh

The proposed paper presents a series of simulations of a geometrically com-

plex, canard-controlled, supersonic missile with free-spinning tail fins. Time-

dependent simulations were performed using an inviscid Cartesian-grid-based
method with results compared to both experimental data and high-resolution

Navier-Stokes computations. At fixed free stream conditions and canard deflec-

tions, the tail spin rate was iteratively determined such that the net rolling mo-

ment on the empennage is zero. This rate corresponds to the time-asymptotic

rate of the free-to-spin fin system. After obtaining spin-averaged aerodynamic

coefficients for the missile, the investigation seeks a fixed-tail approximation to

the spin-averaged aerodynamic coefficients, and examines the validity of this

approximation over a variety of freestream conditions.

1 Introduction

Over the past decade, static Computational Fluid Dynamics (CFD) simulations

over increasingly complex vehicles have become commonplace. In this evolution,

non-body-fitted Cartesian grid methods have proven to be particularly useful for



automatically meshing geometrically complex vehicles[I-6]. Recently this class of

meshing and solution techniques has been extended to dynamic simulations[7-10],

where components of the geometry move in some manner during the simulation.

This makes highly-automated simulations of complex three-dimensional vehicles with

components in relative motion more feasible. The proposed paper adopts a non-body-
fitted Cartesian method to study the performance of a supersonic, canard-controlled

missile with a free-spinning tail. On this type of vehicle, the tail fins are free to spin
as a unit around the missile longitudinal axis. As a result, torque from aerodynamic

loads on the empennage cause the fin system to spin, even under steady-state flight

conditions.
Missiles with dynamic components can pose significant challenges for numerical

simulation. The spinning tail is a by-product of the forces on the missile and is

integral to its aerodynamic performance. Nevertheless, the performance of the missile

is primarily characterized by the spin-averaged aerodynamic coefficients, and hence

time-dependent, moving-body simulations are required to predict even static stability

and control (S&C) information. Moreover, the spin-rate of the fin system is governed

not only by the wind vector and canard deflections, but also by the strength and
location of the convected canard vortices, whose induced velocity field differentially

loads the tail fins at low angles of attack. The need to convect the canard vortices

over the length of the missile to interact with the fin system directly impacts the

size of the computational mesh required for accurate numerical simulation. The
combination of these factors makes for CPU-intensive simulations since the physics

requires both highly-resolved spatial grids and time-dependent, moving-body solution

methodologies.
The proposed paper details the missile geometry under consideration, important

features of the computational mesh, and the numerical method used for the simu-
lations. The numerical investigations first simulate the missile with the fins fixed

at various azimuths around the missile axis to establish a zero-spin-rate baseline.

Dynamic simulations are then performed with an imposed spin rate on the tail. An
iterative process is used to determine the spin rate which predicts a zero spin-averaged

torque on the tail. The final simulations will be compared with both experimental

data and highly-resolved Navier-Stokes numerical simulations. The final paper will

also extend the analysis by comparison of the dynamic and fixed-tail (static) results

in an attempt to find a static fixed-tail approximation to the spin-averaged coeffi-

cients of the dynamic simulations. If such a correlation exists, it would dramatically

decrease the expense of future studies of missiles with free-spinning tails.



2 Numerical Method

2.1 Geometry and Computational Mesh

Figure 1 shows three views of the canard-controlled missile used for this study.
The missile is depicted with the tail in the + position, corresponding to a tail rotation

angle, Ct_,t = 45°. Zero rotation angle is obtained when the tail is in the × position,

and positive rotation is clockwise when observed from the missile nose. The canards
are shown in their deflected position - pitched asymmetrically with 5c = 16° to

command a starboard yaw of the missile. The missile body has a cylindrical cross-

section with a fineness ratio (length/diameter ratio) of about 15.0. Two conduits,

which are raised off the body and anchored at regular intervals leaving a small gap,

run the length of the body. In addition, the missile has a ring of 10 bluff protuberances

at roughly the mid-station of the body, and several others at the aft end near the

free-spinning tail fins. The leading edges of the fins extend forward along the body,
and the root station is cutaway to clear both the conduits and other hardware as the

fins sweep over the missile body. The minimum clearance is about 1/8th of the fin

thickness, and occurs when the fin passes over the protuberances on the aft missile

body.
Detailed enlargements of the surface triangulation near the nose, mid-body and

tail fins are shown in Fig. 2. The tail is in the + position which puts the upper and

lower fins over two of the conduits and the other two fins over protuberances in the aft

missile forebody. This triangulation was produced directly from CAD solids using the

software described in [11]. This software uses the CAPRI library[12, 13] to access the

CAD geometry using the CAD systems' native query routines and geometry engine.
The final triangulation (shown) uses approximately 400,000 triangles which were used

as input to the mesh generation system[5].
Figure 3 shows the non-body-fitted baseline Cartesian mesh used for the simula-

tions. This figure shows the tail fin in the x position (¢t_l = 0°), and the mesh is

displayed by several cutting planes behind and perpendicular to the missile axis. In

computing flows around canard-controlled missiles, it can be very important to avoid

excessively dissipating the canard vortices as they convect the length of the missile

body. To provide this resolution, the mesh has a pre-specified adaptation region cov-

ering the entire missile, and within this region the mesh is refined 3 levels further

driven by surface curvature as described in [5]. In addition to the canard vortices, a

pre-specified adaptation region is designed to capture the shocks generated by many
of the surface features on the missile body. Since streamlines passing through these

shocks will impact the spinning fins, resolution and propagation of these shocks may

be important. Resolution requirements for the baseline mesh were established using

guidelines from previous simulations of canard-controlled missiles[9], and by perform-

ing a mesh resolution study with the current geometry. As the missile tail spins over
the course of the simulation the mesh responds to track the body motion, re-adapting

to the new geometry at each timestep (cf. [9, 10]). The snapshot shown here has ap-



Figure 1: Front, side and isometric view of generic missile with free-spinning tail. For the simu-
lations presented, all 4 canards are deflected dic = 16° to command a starboard yaw of the missile.
The tail is shown in the + configuration which corresponds to a tail rotation angle, ¢t_iz = 45o.

Ct,_it = 0° is obtained with the empennage in the × position.

(a) (b) (c)

Figure 2: Surface mesh detail of missile configuration, 400,000 triangles.

proximately 4 million cells, and this total number of cells remains roughly constant

over the coarse of a dynamic simulation with the tail section spinning.
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Figure 3: Cutting planes through the non-body-fitted Cartesian mesh used in simulations. Missile
is shown with fins in the × position and canards deflected asymmetrically _c -- 16°. 4M Cartesian
cells.

2.2 Cartesian Moving-Body Flow Solver

In order to simulate a missile with a spinning tail section, a scheme that allows

rigid bodies to move relative to each other during a simulation is needed. A general

numerical scheme for solving time-dependent flows with (optional) rigid-body motion

for unstructured Cartesian meshes was developed from the parallel, steady-state solver

described in [14].

2.2.1 Dual-time formulation

Extension of the steady-state flow solver to time-dependent flows was accom-

plished using a dual-time formulation (cf. Refs. [15, 16]),

d___Q+R*(Q) = 0
dr

oq
R"(q) = -bT+ R (q)

(1)

where T is referred to here as "pseudo-time', and is the iterative parameter, and t is

the physical time. Q is the vector of conserved variables, and R (Q) is an appropriate
numerical quadrature of the flux divergence, -_ fs f" ndS. As _q_ --_ 0 the time-

dependent formulation is recovered. The parallel multi-grid solver described in [14]
is used to efficiently converge the inner pseudo-time integration. This is similar to



the schemeoutlinedby Jameson[17],however,the semi-implicitapproachof Melson
et al.[18]is usedherefor the physicaltime-derivativeterm.

Varioustime-dependentschemescan be constructedfor Eqn. 1 by appropri-
ately discretizingthe time derivative. In the current work, it's desirableto use
an unconditionally-stable,implicit schemeto allowa largetimestepto be chosen
baseduponphysicalconsiderationsratherthan apotentiallysmallerstability-limited
timestep. In the Cartesianembedded-boundaryscheme,the cut-cellpolyhedracan
havearbitrarily smallvolumes,and astability limit canbeveryrestrictive.Usinga
largetimestepalsoreducestheamountof computationalworkrequiredto processthe
movinggeometryand meshthrougha completesimulation.In the currentwork, the
backwardEuler and 2nd-orderbackwardtime-integrationschemeshaveboth been
utilized. Full detailsof thetemporaldiscretizationschemearepresentedin Ref. [10].

2.2.2 Relative motion

Figure 4 shows a schematic of a rigid-body moving through a fixed Cartesian mesh
over one discrete timestep. Cells cut at the beginning and end of the timestep are

outlined in black, and the shaded region highlights cells which have been "swept"

by the body through the timestep. These swept cells change volume and shape over

the timestep, and can appear or disappear (or both) as well. Away from the swept

region, the cells dont change and therefore require no special treatment. The swept-

cells, however constitute the major challenge since the deformation of these cells

over the timestep needs to be taken into account in order to satisfy the governing

equations. The equations of motion for the deforming cells can be written in an

integral conservation form as

/v(t) QdV = [_ _s(t)f . ndS] dt (2)

Integrating Eqn. 2 using the backward Euler scheme gives

Qn+l Vn (_n 1 [E ]n+l
v"--¢Tr _ f. nAS (3)

At V '_+1

This can be numerically integrated using the dual-time scheme outlined above, and
w c_n becomes a fixed source term in the dual-time scheme. However, Qnthe term v,÷l -_

is only available on the mesh at time level n, while it is required on the mesh at time
level n + 1 in order to integrate Eqn. 3. Rewriting Eqn. 3 gives

Q,_+I _ Q,_ 1 ,_+1
At Vn+l [E _" nAS] (4)

where Qn represents the state vector at time level n on the mesh at time level n + 1.
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(a) n (b) n+l

Figure 4: Schematic of a ridged body moving through a Cartesian mesh. Cells cut by the geometry

at each timestep are shown in black, and cells swept by the geometry over the timestep are tinted

yellow.

In the current scheme, the vector Q_ is "mapped" from the mesh at time level n

to the new mesh at n + 1 using an interpolation operator I_ +1.

Q" = I:+IQ" (5)

If I_+I v"- v-xTr then Eqn. 3 is satisfied. The interpolation operator I_+1 can be

determined exactly using a space-time approach (cf. Refs. [19, 20]), however doing so

in three dimensions poses a problem in 4-D mesh generation. Instead, an approximate

scheme is desired which maintains conservation away from the region of the relative

motion. The current scheme determines i_+1 exactly for all cells away from the

moving boundary, as well as the majority of the cut cells at both time levels. For

a small minority of the swept cells I_ +1 is approximated. In the current work, the

mapping of the solution between two meshes is processed external to the flow solver

with a single-pass algorithm. Note that since the motion is prescribed, all of the

meshes can be processed a priori, and in parallel. Further details on the relative

motion scheme can be found in [10].

3 Preliminary Numerical Results

The general 3-D Cartesian scheme outlined above is utilized to simulate the
canard-controlled missile with spinning tail section described in Sec. 2.1. Since the

flow conditions considered in this work are supersonic (Moo = 1.6, a = 4.0°), and the

geometry upstream of the tail section is static, the flowfield within the tail section

is periodic every 90 ° of spin. This periodicity was confirmed by the initial dynamic
simulations. As such, it's only necessary to simulate the motion of the tail section

through 90 ° of rotation (after a small initial transient).



3.1 Static Baselines

In orderto providea baselinefor comparisonwith dynamic,spinning-tailcom-
putations,a seriesof static, steady-statesimulationswith the tail fixedat various
(non-uniform)azimuthalorientationswereundertaken.Velocitymagnitudecontours
at cutting planesalongthe longitudinalaxisof the missileareshownwith the fins
in the × positionin Fig. 5, to highlight the convectionof the canardvortices.The
vorticesshedfrom the tips of the NW, NE, and SEcanards(followingthe compass
directionsviewedfromthenose)areseento convectdownthelengthof thebody.The
vortexfromthe NEcanardisstrongerthan the NW or SEvortices,asthat canardis
pitchedup,while theothercanardsarepitcheddown.Thevortexshedfromthe SW
canardis "trapped" by the body asit convectsupwardsand dissipates.The asym-
metricpitchof the canardscausesan inducedvelocitywhichmergesthevorticesinto
theNEquadrant,wherethey impactthetail section.With thetail in the × position,
two vorticesprovidesuctionto the leewardfaceof thefin locatedin theNE quadrant,
whilethe vortexfromtheSEcanardprovidessuctionto thewindwardface.Thiscan
beeseenquantitativelyin Fig. 6, wherethe variationof tail rolling moment,(Cl)t_l,
with angleof rotation from the × positionis shown.A positivetail rolling moment
wouldcausethe tail sectionto rotateclockwisewhenviewedfrom the nose.As the
tail fin encountersthe (strongest)NE canardvortex,the tail rolling momentis at a
maximum(near¢ta_= 80o) • As the tail section moves to the + position (¢t_ = 45°),
the fins are farthest from the strong NE canard vortex, and evenly split (vortex suc-

tion inducing both CW and C-CW rotation) between the remaining two vortices, and

the tail rolling moment is at a minimum. This differential pressure on the tail fin in

the NE quadrant due to the vortices, along with the effects of dynamic pressure and

angle of attack, and the induced velocity field from the canards all combine to cause

the tail section to spin.

3.2 Dynamic Computations with Spinning Tail Section

The rotation rate of the tail section at the current flow conditions is not known a

priori. In order to determine the "natural" roll rate of the tail section - the rate at

which the spin-averaged rolling moment on the tail is zero - an iterative process is

used. First, it's assumed that the tail rotation rate is low enough that the variation

of spin-averaged tail rolling moment with rotation rate is linear. Two rotation rates

are then imposed on the tail; the first a reasonable guess and the second intended to

provide an opposite sign in averaged tail rolling moment to the first. The resulting

spin-averaged tail rolling moments from these two simulations, along with the static

results discussed above (i.e. a zero-spin-rate simulation) are then fit with a straight

line to determine the natural roll rate of the tail section. A third dynamic simulation

is then performed at the natural roll rate in order to confirm the prediction.

An initial guess of 2500 rpm for the tail rotation rate was used. A time-resolution

study was performed at this rotation rate using timesteps that move the tail fins
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Figure 5: Velocity magnitude contours (blue is low, red is high) for static simulation with tail in
× position (M_ = 1.6, c_= 4.0°).
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Figure 6: Tail rolling-moment (Ct)tait for static, fixed-tail simulations (M_ = 1.6, _ = 4.0°).

2 ° , 1 ° , and 0.5 ° of rotation per step respectively. The results of this time-resolution

comparison showed no difference in (Ct)tail vs. rotation angle between the 1° and 0.5 °

of rotation/timestep simulations. As a result 1° of roll per timestep was utilized for



all of the simulations discussed here.
Figure 7 shows the spin-averaged tail roiling moment against the imposed rotation

rate for the iterative process discussed above. The variation of averaged tail roiling

moment with rotation rate is confirmed to be linear, and the predicted natural ro-

tation rate is 3165 rpm for these conditions. A final dynamic simulation with the

imposed natural rotation rate was performed. The variation of tail rolling moment
with rotation angle is shown in Fig. 8 for all computations; the static and the three

dynamic with an imposed rotation rate. The simulation with the natural rotation

rate does provide zero spin-averaged tail rolling moment. As the vortices, canard

downwash, and wind vector do not change when the tail spins, the variation of tail

rolling moment with rotation angle is similar for all simulations, however shifted as
the rotation rate increases. In other words, the rotation of the tail section provides

minor dynamic effects itself, and what effects there are wash downstream without

influencing the aerodynamic loads. When the Velocity of the tail section "balances"

the outer flow effects, a stable spin rate is found.
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Figure 7: Predicted "natural" tail rotation rate (M_ = 1.6, a = 4.0°).

Velocity magnitude contours through the tail section, viewed from the nose, are

shown in Fig. 9 for the natural rotation rate - 3165 rpm. As the fins encounter the

vortices there is a strong interaction, however after the fins pass the vortices reform

in their original positions. A detailed comparison of the flow features between the

dynamic and static simulations has not been performed as yet, however it will be

included in the final paper.
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Figure 8: Tail rolling-moment (C,),,_ a for static, fixed-tail and dynamic, imposed-rotation simula-

tions (M_ = 1.6, a = 4.0°).
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(a) Ct,_. = 0.00/90.00 (b) Ct_it = 22.5°

(c) Ct_il = 45 .00 (d) Ct_il = 67.5°

Figure 9: Velocity magnitude contours through the tail section (red is high, blue is low) viewed

from the nose (¢t_it = 3165 rpm, M_¢ = 1.6, a = 4.0°).
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4 Future Work

A 3-D Cartesian method for simulating the general prescribed motion of rigid

bodies has been applied to the analysis of a canard-controlled airframe with a spinning

tail section. Static simulations with the tail section at various azimuthal angles were

performed as a baseline for comparison with the dynamic simulations. The natural

zero spin-averaged rotation rate of the tail section was determined by an iterative

process, and found to be 3165 rpm.
A major focus for the remaining work is the comparison of the static and dynamic

simulations. The variation of body aerodynamic loads with tail position between

the static and dynamic simulations is fundamental. Further, the possibility of ap-

proximating the dynamic spin-averaged results with a single static simulation is of
interest. In order to model the S&C characteristics of the missile spin-averaged data

is required, which necessitates CPU-intensive time-dependent, moving-body simula-

tions. This is prohibitive for a production CFD environment, which may require

thousands of data points to build an S_:C database. It's preferable to approximate

the dynamic simulations with an appropriate static configuration, and possibly apply

a post-processing correction. The full paper will present an analysis to determine if

approximating the dynamic results with a static configuration is feasible, and if so,

present a methodology.
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