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Abstract

Genetic mapping is an important step in the study of any or-
ganism. An accurate genetic map is extremely valuable for
locating genes or more generally either qualitative or quanti-
tative trait loci (QTL). This paper presents a new approach to
two important problems in genetic mapping: automatically
ordering markers to obtain a multipoint maximum likelihood
map and building a multipoint maximum likelihood map us-
ing pooled data from several crosses.

The approach is embodied in an hybrid algorithm that mixes
the statistical optimization algorithm EM with local search
techniques which have been developed in the artificial in-
telligence and operations research communities. An effi-
cient implementation of the EM algorithm provides max-
imum likelihood recombination fractions, while the local
search techniques look for orders that maximize this max-
imum likelihood. The specificity of the approach lies in the
neighborhood structure used in the local search algorithms
which has been inspired by an analogy between the marker
ordering problem and the famous traveling salesman prob-
lem.

The approach has been used to build joined maps for the
wasp Trichogramma brassicae and on random pooled data
sets. In both cases, it compares quite favorably with existing
softwares as far as maximum likelihood is considered as a
significant criteria.

Introduction

The aim of genetic mapping is to locate genetic markers at
loci on the chromosomes. The specific content of a locus
in a given chromosome is termed the allele. Given a lo-
cus on a chromosome, individuals of diploid species have
two alleles, one on each of the corresponding chromosomes
contributed by the parents. An individual is said to be ho-
mozygous at a locus if the two alleles are identical at this
locus, else the individual is said to be heterozygous.

Each chromosome contributed by each parent is built,
during the meiosis, by using sections of either member of
each pair of chromosomes of the parent, changes in the
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chromosome used being called crossovers. At a given lo-
cus, there is a 50% chance of having either one of the
parental allele. However, the “closer” two loci are on the
chromosome, the higher the probability that both alleles on
this chromosome will appear together on the contributed
chromosome. Two loci (or genetic markers) are thus said to
be linked if the parental allele combinations are preserved
more often than would be expected by random choice.
When a parental allele combination between two loci is not
preserved, a recombination event is said to have occurred
(this corresponds to an odd number of crossovers between
the two loci).

The degree of linkage, or genetic distance, between two
loci is a function of the frequency of recombinations. The
measurement of genetic distance is expressed in Morgan
(or more usually cM for centiMorgan) and is defined as the
expected number of crossovers between the two loci on the
chromosome.

In the simplest case, the process of building a genetic
map goes as follows: starting from usually incomplete ob-
servations on the alleles of the loci of interest on several re-
lated members of families, one first builds linkage groups,
composed of loci which are significantly linked together.
For a given linkage group, a map is defined by locating each
loci on a linear chromosome i.e., by a linear order of the loci
and a genetic distance between each adjacent pair of loci.

Given N genetic markers in a linkage group, the marker
ordering problem is therefore to find an order of the markers
that best respects the available evidence. The task is diffi-
cult in two aspects: it is not always obvious to say when
an order best respects the available evidence and the num-
ber of possible orders becomes rapidly tremendous since
% different orders exist.

Existing approaches to the markers ordering problem
varies along two aspects: the criteria used to qualify what
the best map is and the algorithmic machinery used to ac-
tually find the order that maximizes the criteria. Several
packages, such as GMendel (Echt, Knapp, & Liu 1992)
or Rapid chain delineation (Doerge 1996), Seriation (Bue-
tow & Chakravarti 1987), etc. exploit two point measures



(measures taking only into account two markers simulta-
neously). The criteria defined can be computed very effi-
ciently under a given order which enables the use of sophis-
ticated local search techniques (such as simulated annealing
in GMendel). But these criteria may be meaningless for
data sets which contain a large part of missing (some two-
point estimations may be indefinite). Other packages con-
sider that multipoint maximum likelihood (that exploits the
data on all markers simultaneously) is the criteria that de-
fines the best order. Examples of such packages are MAP-
MAKER (Lander et al. 1987), LINKAGE (Lathrop et al.
1985)... The criteria is theoretically firmly grounded, ex-
ploits all the available evidence and can therefore perform
better than the previous criteria when several missing ex-
ist. However, its computation may be much more expensive
and order optimization techniques have been limited to the
use of simpie heuristics or enumerative search.

CARFAGENE combines the multipoint maximum like-
lihood criteria with local search techniques. The choice
of maximum likelihood as the criteria limits the approach
to reasonably simple pedigree (only backcross data and re-
combinant inbred lines are allowed actually, an extension to
intercross is currently being worked out) but makes it possi-
ble to tackle data sets with several missing in the best possi-
ble way. The use of adequate local search techniques makes
it possible to enlarge the maximum number of markers that
could be previously handled using exhaustive search while
still offering most of the usual services, for example a col-
lection of the maps whose likelihood lies in the vicinity of
the best map’s likelihood.

The paper goes as follows: the first section introduces the
notion of maximum likelihood orders. This section does
not contain anything essentially original ; its aim is sim-
ply to bring to light the strong theoretical connection that
exists between the traveling salesman problem and the mu!l-
tipoint maximum likelihood marker ordering problem in the
simple case of backcross with no missing data. Then, we
rapidly introduce the local search techniques and the struc-
ture of the neighborhood used in CARFAGENE, which was
inspired by the previous connection and show how these
techniques can be extended to tackle data sets with missing
data and to build joined maps. We finally present some re-
sults that confirm pragmatically the interest of the approach.

- Maximum Likelihood Orders

Given a probabilistic model of recombination for a given
family structure (or pedigree), a genetic map of a linkage
group and the set of available observations on the alleles of
the loci of the linkage group, one can define the probabil-
ity that the observations may have occurred given the map.
This is termed the likelihood of the map. The likelihood
in itself is not interesting, it is only meaningful when com-
pared to the likelihood of other maps. In the sequel, we con-

sider, as usual, that the interesting maps are the maps with
a maximum likelihood i.e., which best explain the observa-
tions. To later justify our approach for the combinatorial
aspect of the genetic mapping problem, we first introduce
some basic definitions.

The simplest pedigree, which is routinely used for plants
and animals is the backcross structure defined by the cross-
ing of one homozygous parent with an heterozygous one.
Since one parent is homozygous, the alleles of one member
of each chromosome pair of any descendant is known. The
alleles of the other member of each pair will be used to track
down recombination events in the heterozygous parent.

In this section, we assume that so-called phases are
known (i.e., it is known which allele appears on which
member of the chromosome pairs) and that no data is miss-
ing. The alleles carried on one member of the pairs of the
heterozygous individual are denoted 0, the others are de-
noted 1. In this case, the observation on a descendant are
simply defined by the alleles carried on the member of each
chromosome pair which is contributed by the heterozygous
parent.

Assume we have N loci and K descendants. For a given
loci £ and a given descendant 4, the allele contributed by
the heterozygous parent, which can be either 0 or 1 will be
denoted X. This defines the observations.

A genetic map is defined by a linear order on the loci
i.e., a one-to-one mapping ¢ from the set {1,...,N} to
{1,...,N} and a probability of recombination between
two adjacent loci ¢(£) and (£ + 1), denoted f,¢41. A re-
combination (resp. non-recombination) event occurs when
the allele contribuied by the heterozygous parent on a given
individual changes for two adjacent markers i.e., when
1X50) — Xhesn)l 15 equal to 1 (resp. 0). If we assume
that there is no interference i.e., that recombination events
occur independently in each interval, the probability of the
observations given the map is simply obtained by multiply-
ing the probabilities of all the events observed which yields
the following formula:

{=N-1i=K . . )
II I [0 = 1X ) — Xiean D+
=1 i=1
Be1.1X5 ) ~ Xois(t+1)|]

Obviously, a maximum likelihood map is also a maxi-
mum log-likelihood map and the previous formula can be
simply transformed by taking the logarithm.

{=N-1li=K
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We are looking for maximum log-likelihood maps. For a
given order of the loci, we can easily compute the probabil-
ities 6* that maximize the log-likelihood. Looking at first
and second-order derivatives of the previous formula, the 6
that maximize the log-likelihood can be easily obtained!:

T Xy =X

i=1

f* _ :b(t+1)|
L,6+1 — K

So, in this case, when all alleles are known, and as far
as recombination fractions are considered, multipoint like-
lihood computation comes down to simple two-points like-
lihood computation. The log-likelihood for optimal recom-
bination fractions can therefore be rewritten:

£ -1

=1 ™~

=N
S K[67 411086 000) + (1= 8} 1) Log(1 - 8 1)

elementary contribqun to log-likelihood

The maximum log-likelihood of an order is equal to a
sum of elementary contributions which depend only on
two loci. One can therefore precompute all these numbers
for all pairs of loci and the problem of finding an order
that maximizes this multipoint maximum likelihood is in
essence identical to problems defined using criteria such as
the sum of two-points estimations (eg. SAR for sum of ad-
jacent recombinations or SAL for sum of adjacent LODs).
All these problems are actually obvious instances of the
symmetric wandering salesman problem (a variant of the
famous symmetric traveling salesman problem): given n
cities and the distances between each pair of cities, find a
path that goes once through each city and that minimizes
the overall distance. The choice of the first and last cities
in the path is free. One can simply associate one imagi-
nary city to each marker, and define as the distance between
two cities the opposite of the elementary contribution to the
log-likelihood defined by the corresponding pair of mark-
ers. We would like to acknowledge the fact that the simi-
larity between marker ordering and the TSP for two-points
approaches is mentioned in (Liu 1995).

This connection is interesting in several aspects: the
WSP is known to be an NP-hard problem and this shows
that the marker ordering problem may be difficult in some
cases (algorithm theory tells us that the tremendous number
of existing orders is not sufficient to conclude this). More
interestingly, all the techniques which have been developed
for the TSP, and which can easily be adapted to the WSP,
can also be applied here.

"This is obtained by solving the simple equations stating that
first-order derivatives are equal to 0. At this point, one can further
notice that the matrix of second order derivatives is diagonal neg-
ative on the domain of optimization, which shows that this point
is a maximum,
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Tackling the ordering problem

Now that the maximum likelihood ordering problem is
known to be equivalent to the WSP, the considerable ex-
perience that has been accumulated on this problem can be
exploited to provide markers ordering efficient algorithms.

Branch and Cut is probably the best known optimal pro-
cedure for the TSP. It has been used to solve instances
with several thousand cities to optimality (Applegate et al.
1995). But Branch and Cut finely exploits the mathematical
properties of the salesman problem and could probably not
be extended to the more complex case of maximum likeli-
hood with missing data. However, it could be used to tackle
the problems defined by two-points measures such as SAR
and SAL.

‘When Branch and Cut (or Branch and Bound) cannot be
used, an alternative can be found in heuristics. By heuris-
tics, we mean procedures that experimentally work in ac-
ceptable time and usually find good quality solutions. In no
case heuristics allow to compute solutions with a guaran-
tee of optimality. A number of heuristics algorithms have
been experimented on the TSP and could be directly used
for the markers ordering problem when the criteria reduces
to a sum of elementary contributions.

Among TSP dedicated heuristics, some are known to
work rapidly. For instance, the nearest neighbor algorithm
begins with a partial tour consisting of a single city, adds
the other cities one after the other by selecting the nearest
next city not already in the tour. The algorithm terminates
when all cities are in the tour. Several existing programs as-
sociate the nearest neighbor algorithm with reshuffling pro-
cedures to tackle the markers ordering problem (Stam 1993;
Doerge 1996). The double minimum spanning tree, Greedy,
Christofides efc. are other examples of such heuristics
which could be used as well (Johnson 1990).

Local search is a more general heuristic which is largely
used in difficult optimization problems. Given one initial
feasible solution, the algorithm generates a sequence of so-
lutions by repeatedly searching the so-called neighborhood
of the current solution for a configuration that will become
the new current solution. The configuration chosen is usu-
ally the configuration which maximizes the criteria in the
neighborhood. A local optimum is a point which neighbor-
hood contains only configurations which are worse than the
current solution. Most local search procedures include a
special mechanism that enables them to break out of local
optima.

For markers ordering, a solution is an order of the
markers, and the criteria is its maximum likelihood.
CARJAGENE strongly relies on the power of the 2-
change neighborhood, a successful well-known neighbor-
hood structure introduced in (Lin & Kernighan 1973) to
tackle the TSP. Adapted to the WSP, the 2-change neigh-
borhood of a map is the set of all maps obtained by an in-
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Figure 1: The five maps in the neighborhood of an initial map with four markers labelled 1, 2, 3 and 4. Each map is obtained

by flipping a subsection of the initial map.

version of a subsection of the map. Thus, for N markers,
the neighborhood has a size of ﬂl—:'—ll — 1. This is illus-
trated in figure 1 in the case of 4 markers.

In CARFAGENE, this neighborhood is exploited by two
different local search procedures:

e Tabu search (TS (Glover 1989; 1990)) repeatedly scans
the current neighborhood, selecting the best neighbor to
be the new solution. To avoid being stucked in local
optima, the content of the neighborhood of the current
solution is influenced by a memory mechanism which
may forbid some moves (which are said to be tabu) in
the neighborhood. In CARFAGENE, the tabu moves are
the recent moves (i.e., subsections of the map which have
been recently inverted). The precise definition of “being
recent or not” varies stochastically during search as ad-
vocated by (Taillard 1991). A tabu move may eventually
be chosen if it leads to a map which improves the best
likelihood known (this is called “aspiration” in tabu ter-
minology).

¢ Genetic algorithms (GA, (Goldberg 1989)) are based on
an analogy with the genetic structure and behavior of
chromosomes within a population of individuals. Indi-
viduals represent potential solutions to a given problem.
A fitness score is associated to each individual and rep-
resents its adaptation ability. The algorithm makes the
population of individuals evolve maintaining both diver-
sity and favoring the existence of best individuals. Start-
ing from an initial population, a new generation is cre-
ated by randomly applying mutation and by crossing
pairs of individuals (favoring crosses of good individu-
als). The hope is that the population will evolve towards
one which contains optimal individuals w.r.t. the fitness.
In CARFAGENE, each individual represents one genetic
map (an ordering of markers). The crossover operator
computes two offspring individuals, I; and I> from two
parents P, and P;. The parents are cut into three sec-
tions by selecting randomly two markers. The middle

section of P, is copied into the corresponding position
of I, the rest of I; being filled in with values taken in
order from the third, first and second section of P2, skip-
ping values that have aiready been copied from the first
parent. I2is computed in the same way by reversing the
parents. The mutation operator selects two markers and
exchanges them. The evaluation of the fitness score of an
individual is more original and complex because it will
usually modify the individual under evaluation. Indeed,
the 2-change neighborhood of the individual is searched
for the order that maximizes the maximum likelihood.
If an order is found which is better than the preceeding
one, search for a better order is carried on in the 2-change
neighborhood of this order. This process is repeated until
no better order is found in the current neiborhood: a local
optimum has been reached. When the evaluation stops,
the individual is replaced by this local optimum and its
likelihood is used as the fitness. With this approach, one
skips from a local optimum to another throughout the
crossover and mutation operators.

Finally, CARFAGENE maintains a set of fixed size con-
taining the S best different maps encountered during the
search. A hash table (Cormen, Leiserson, & Rivest 1990)
is used to efficiently test if the map is already present in
the set, a heap structure is used to efficiently manage inser-
tions/deletions (Cormen, Leiserson, & Rivest 1990). At the
end of the search, the user can browse this set and check for
the existence of other maps whose likelihood is close to the
best map’s likelihood in order to get an idea of how strongly
the best map is supported.

Missing Data and Joined Maps

We have seen that two-points and multipoint approaches
coincide in the specific case of backcross with no missing
data. The underlying assumption of our approach to the
more realistic case of missing data is that the problem is
still closely related in structure to the WSP and that the pre-
vious techniques will probably work fairly well in presence
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of missing data i.e., when two-points and multipoint esti-
mations may differ and the previous connection with WSP
is theoretically lost.

When all the alleles X; are not known, there is no short
analytical form that can be exploited to compute the 6 that
will maximize the likelihood and one usually relies on nu-
merical algorithms. The statistical iterative optimization al-
gorithm EM (Expectation’/Maximization (Dempster, Laird,
& Rubin 1977)) is well adapted to simple pedigree. It
is currently used in MAPMAKER (Lander & Green 1987,
Lander ez al. 1987). The input of EM is an initial map and
the output will be a map using the same ordering of loci,
but with maximum likelihood recombination fractions (the
likelihood of the map is also produced as a side effect). The
algorithm works by iteratively going through two steps un-
til the log-likelihood does not increase more than a given
tolerance.

1. an expectation step where the expected number of re-
combination events between each pair of adjacent mark-
ers is computed, using the current values of the 8. This
is done using a dynamic programming algorithm that ex-
ploits the linear structure of the problem. This also pro-
vides the log-likelihood of the current map.

2. a maximization step simply updates the 6 in each inter-
val by dividing the expected number of recombination
events in this interval (computed in the previous step) by
the total number of individuals.

When EM is converged, the loglikelihood obtained indi-
cates the quality of the order used and the extension of
the previous discrete optimization algorithms is straightfor-
ward. Instead of computing the likelihood of an order by
adding elementary contributions, we directly use EM. For
backcross data, each iteration of EM is simply in O(N.K).
Rather than using the existing EM implementation of MAP-
MAKER, we decided to use our own implementation be-
cause several calls to this routine will be needed. It appears
that this implementation, which is finely tuned to handle
backcross data, is much faster than MAPMAKER imple-
mentation (we have observed ratio of more than 100 in
speed on several data sets for a same quality of conver-
gence, using the same machine, language and compiler.
This ratio increases as the size of the data set increases).
This efficiency is probably one of the nice properties of
CAREAGENE but it is not obvious that such improvements
will still be possible on pedigree such as F2 intercross data.

The power of local search combined with the generality
of multipoint likelihood makes it possible to tackle data sets
with a large part of missing data and more specifically to
build joined maps using data from several backcross pop-
ulations. The problem of building joined maps is specifi-
cally addressed by JOINMAP (Stam 1993) and also, to some
extent, by GMendel. CARFAGENE is more limited in its
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scope than JOINMAP which can work on several data sets
of different nature, but it uses a more powerful algorithmic
machinery to provide maximum likelihood joined maps.

Merging two data sets is simply done by building a new
data set that involves all the markers and individuals that
appeared in the two original data sets. When an allelic in-
formation for a given marker is not available in one of the
original data set, it is simply considered as missing in the
new one. This yields data sets where missing are not ran-
domly distributed on all individuals and markers but where
large blocks of missing are introduced. When all crosses
do not involve exactly the same set of markers (which is the
usual case), some two-point estimations are simply impos-
sible and it becomes essential to rely on multipoint likeli-
hoods.

Because of the large amount of missing in such joined
data sets, simple heuristic procedures usually fail to find an
optimal map on such data, and this, whatever criteria they
rely on. The local search techniques used in CARFAGENE
usually allow to find maximum likelihood maps even in
these difficult conditions. Here, the ability to also produce
a set of maps in the vicinity of the optimum is highly valu-
able since it allows one to qualitatively assess how strongly
the best order is supported by the available data.

Experiments

CAREAGENE and JOINMAP (rel. 1.4) have been applied
both on simulated and real backcross-like data involving
multiple populations. CARFAGENE has been used to build
individual (intra-population) and joined maps and is com-
pared with JOINMAP on this last problem.

Simulated data description

Several individual data sets to be joined must be generated
for one common map. In our experiments, we considered
the problem of joining two data sets. Let N* the number
of markers in each individual (also called intra-population)
data set. Let N¢ the number of markers common to the
two individual data sets. For given values of N* and N°¢,
we first build a map with N = 2 x N* — N°¢ markers.
The map is build by evenly distributing the /N markers on
a 200 cM chromosome. This map is called the “original
map” and the order of the N markers in this map is called
the “original order”. For each pair of adjacent markers in
this original map, the recombination probability between
the two markers is computed using the inverse of Haldane’s
mapping function (Ott 1991).

The markers that are informative in each individual map
are chosen as follows: first a set of N¢ markers is selected
randomly from the /N markers. The set of V — N° remain-
ing markers is randomly split in two sets with the same car-
dinality. These two sets, each merged with the set of the
N°¢ common markers define the set of the markers which



are informative in each individual data set.

Using the map built, a random individual data set for K
individuals and for the subset of the N informative markers
in the data set can be generated as follows:

1. for each individual, we first randomly choose the allele
for the first marker in the set {0, 1} with a uniform prob-
ability 0.5. Then for each successive marker, the al-
lele is flipped with a probability equal to the recombi-
nation probability. This process is repeated K times to
obtain a data set that represents allelic information for
Kindividuals;

2. to incorporate “missing data”, each of the allele gener-
ated in this way is, with probability p, deleied and re-
placed by a missing measure;

3. then, all the information on allele of markers which are
not in the subset of informative markers for the individual
map is deleted.

4. Finally, the order of the markers in each of these data
sets is scrambled using a random permutation to avoid
any bias.

Each individual data set is built using this process. The
number of markers in each individual map was either 10 or
15. The number of common markers N¢ was either 1, 2,
5 or 10. Globally, the global number of markers N in the
initial original map varies from 10 (N* = 10, N¢ = 10)
to 29 (N* = 15, N¢ = 1). The number of individuals in
each individual data set is either 25, 50, 100 or 250. The
probability p for an allele to be missing varies from O to
20% by 5% step. One hundred joining problems are solved
for each combination of these parameters. Remember that
these data sets represent an ideal case with no error.

TS runs with the following stopping criteria: it will stop
when the number of iterations which have not improved the
likelihood of the best solution is equal to twice the number
of markers in the data set. This number of iterations cor-
responds to a choice of efficiency, needed because of the
number of tests. On a Pentium Pro 200, the TS based al-
gorithm run in less than 0.08" for intra-population data sets
with 10 markers and 25 individuals, to roughly 3’ for joined
data sets with 29 markers and 250 individuals.

GA runs with the following stopping criteria : it will stop
as soon as two generations of individuals produce the same
best individual (the same order) or the maximum likelihood
has not been improved (two different individuals may have
the same maximum likelihood). At each generation, the
number of individuals is % On the same machine, the AG
based algorithm run in less than 0.02" for intra-population
data sets with 10 markers and 25 individuals, to roughly
15' for joined data sets with 29 markers and 250 individu-
als. Both approaches gave results of similar quality and the
measures are given only in the case of TS.

mean oumber of maps above -3.0

Results on intra-population data sets

Figure 2 is dedicated to intra-populations data-sets with 10
markers. The curves give the percentage of original orders
found by CAREAGENE (by original orders we mean same
order as the order used to generate the data-sets). Four num-
ber of individuals are reported: 25, 50, 100 and 250. It ap-
pears that 250 or even 100 individuals seems to be largely
sufficient to find the good order with a reasonnable proba-
bility, even when missing data is present.
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Figure 2: Percentage of original orders found (intra-pop).

Since CARJAGENE maintains a set of the S = 31 best
maps found, we measured the number of maps found in
this set such that their loglikelihood lies within —3.0 of the
likelihood of the best map found (Figure 3). The results
show that a high percentage of success is “correlated” with
a small number of maps found within —3.0 and therefore
the number of maps found in the vicinity of the optimum
gives an idea of how strongly the order found is supported
by the data.
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Figure 3: Mean cardinality of the set of maps with a loglike
ratio above —3.0 w.r.t. to best map (intra-pop).
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We do not report a last set of curves: the percentage of
maps found with a loglikelihood equal to or better than the
loglikelihood of the original map. This gives an idea of the
effectiveness of the optimization algorithm. It was always
equal to 100%.

Results on joined data sets

Figures 4 and 5 are dedicated to joined data-sets using two
sets of 10 markers with 5 markers in common. The curves
have the same meaning as in the previous case. These
curves show that, even in the relatively nice case of 5 mark-
ers in common, building a merged map is more difficult.
This is quite natural given the large number of missing in
merged data sets and the increased number of markers.
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Figure 4. Percentage of original orders found (joined
maps).

This is again reflected in the mean number of maps
within —3.0 which appears pragmatically as an excellent
indicator of how strongly the map found is supported by
the data.
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Figure 5: Mean cardinality of the set of maps with a loglike
ratio above —3.0 w.r.t. to best map (joined maps).
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We do not report the percentage of map found with a
loglikelihood better than the loglikelihood of the original
map which was again systematically equal to 100%.

Comparison with JOINMAP on joined data sets

We now compare the results obtained with JOINMAP (dot-
ted curves) with the results obtained with CARFAGENE
(filled curves). The joined data sets were obtained using 2
sets of 10 markers and a number of individuals of 250. The
number of common markers considered are 1, 2, 5 and 10.
The figure 6 represents the percentage of original orders
found. CARJAGENE gives better results than JOINMAP,
which could be explained both by the criteria used and by
the power of the local search algorithm of CARFAGENE. In
the case of 10 markers in common, the joined data set has
also 10 markers and no extra missing introduced because
of the joining process: both systems work perfectly in this
case (we have 500 individuals and only 10 markers).
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Figure 6: Percentage of original orders found.
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Figure 7: Percentage of map with a loglike better than the
original map loglike.



In figure 7 the curves report the percentage of orders
found whose loglikelihood was larger or equal to the log-
likelihood of the original order used for generating the data
(the maps produced by JOINM AP were optimized using EM
for the comparison). The comparison is naturally advanta-
geous for CARFAGENE which precisely optimizes the log-
likelihood. Note that here, a map with a likelihood better
than the original map is not systematically found when few
markers are common markers (down to 97% in the worst
case).

Real data

The real data consists of backcross-like data obtained from
segregation of RAPD markers in three F2 populations of
haploid male progenies of several F1 female of the 7ri-
chogramma brassicae genome. Full results are described
in (Laurent et al. 1997). Each intra-population involved
around 90 individuals. Five groups were defined. Joined
maps obtained for the group I7 using CARJAGENE and
JOINMAP are given at the end of the paper in Figure 8. One
should note that the distances obtained using JOINMAP in
(1) are not maximum likelihood distances and were there-
fore optimized using EM (2). Finally, the order obtained
using JOINMAP is more than 14 time less likely than the
map obtained using CARFAGENE. For other groups, the
difference in term of loglikelihood between orders obtained
using CARFAGENE and JOINMAP varied from O to 16, al-
ways in favor of CARFAGENE. GA and TS gave the same
map.

Discussion

CARJAGENE efficiently builds multipoint maximum likeli-
hood maps in the simple case of backcross data (this essen-
tially dedicates CARFAGENE to plant and animal studies).
Its ability to tackle data sets with a large number of missing
allows the construction of multipoint maximum likelihood
joined maps with an apparently better probability of suc-
cess than the package JOINMAP (which can tackle more
complex pedigree).

The efficiency of local search also offers services which
were previously offered by the exhaustive search compare
command of MAPMAKER. However, these features can
be used for a number of markers which currently exceeds
the capacity of compare. Again, one should remember
that MAPMAKER can handle CEPH and intercross pedigree
which is yet impossible in CARFAGENE.

An interesting feature of CARJFAGENE lies in its ability
to produce a set of maps in the vicinity of the best map
found. Our experiments show that the number of maps
found with a loglikelihood within a constant of the best map
likelihood is an indicator of how strongly the order is sup-
ported by the data. This is an essential feature for building
joined maps.

CARJEAGENE shows the interest of exploiting the con-
nection between the salesman problem and the markers or-
dering problem. There is still a large number of results
on the salesman problem which could be exploited to fur-
ther enhance the efficiency of CARFAGENE and we intend
to continue our work in this direction. CARJAGENE also
highlights the interest of using a theoretically grounded cri-
teria such as multipoint maximum likelihood.

Another direction that we shall consider is the extension
of CAREFAGENE to more complex pedigree. This is al-
ready well advanced for intercross data. We intend to make
the program available to the public as soon as this is fin-
ished. People who have backcross-like data and who need
CARJAGENE rapidly can contact the authors by e-mail.
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