
Int J Comput Vis (2009) 81: 53–67

DOI 10.1007/s11263-008-0134-8

Carved Visual Hulls for Image-Based Modeling

Yasutaka Furukawa · Jean Ponce

Received: 27 October 2006 / Accepted: 28 February 2008 / Published online: 29 March 2008

© Springer Science+Business Media, LLC 2008

Abstract This article presents a novel method for acquiring

high-quality solid models of complex 3D shapes from multi-

ple calibrated photographs. After the purely geometric con-

straints associated with the silhouettes found in each image

have been used to construct a coarse surface approximation

in the form of a visual hull, photoconsistency constraints are

enforced in three consecutive steps: (1) the rims where the

surface grazes the visual hull are first identified through dy-

namic programming; (2) with the rims now fixed, the visual

hull is carved using graph cuts to globally optimize the pho-

toconsistency of the surface and recover its main features;

(3) an iterative (local) refinement step is finally used to re-

cover fine surface details. The proposed approach has been

implemented, and experiments with seven real data sets are

presented, along with qualitative and quantitative compar-

isons with several state-of-the-art image-based-modeling al-

gorithms.

Keywords Visual hull · Graph cuts · Multi-view · Stereo ·

Rim · Silhouettes

Y. Furukawa (�) · J. Ponce

Department of Computer Science and Beckman Institute,

University Of Illinois, Urbana, IL 61801, USA

e-mail: yfurukaw@uiuc.edu

J. Ponce

e-mail: jean.ponce@ens.fr

J. Ponce

Département d’Informatique, Ecole Normale Supérieure, Paris,

France

1 Introduction

1.1 Background

This article addresses the problem of acquiring high-quality

solid models1 of complex three-dimensional (3D) shapes

from multiple calibrated photographs, a process dubbed

image-based modeling (Seitz and Dyer 1997; Roy and Cox

1998; Kutulakos and Seitz 2000; Kolmogorov and Zabih

2002; Matusik et al. 2002; Hernández Esteban and Schmitt

2004; Pons et al. 2005; Vogiatzis et al. 2005; Sinha and

Pollefeys 2005; Tran and Davis 2006; Furukawa and Ponce

2006, 2007; Goesele et al. 2006; Hornung and Kobbelt 2006;

Strecha et al. 2006; Habbecke and Kobbelt 2007). The qual-

ity of reconstructions has been rapidly improving in the last

decade due to the developments of digital photography and

the sophistication of proposed algorithms. According to a

recent study (Seitz et al. 2006), state-of-the-art image based

modeling algorithms achieve an accuracy of about 1/200

(1 mm for a 20 cm wide object) from a set of low resolution

(640 × 480 pixel2) images. The potential applications range

from the construction of realistic object models for the film,

television, and video game industries, to the quantitative re-

covery of metric information (metrology) for scientific and

engineering data analysis.

Several recent approaches to image-based modeling at-

tempt to recover photoconsistent models that minimize

some measure of the discrepancy between the different im-

age projections of their surface points. Space carving al-

gorithms represent the volume of space around the mod-

eled object by a grid of voxels, and erode this volume by

1In the form of watertight surface meshes, as opposed to the partial

surface models typically output by stereo and structure-from-motion

systems.
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carving away successive layers of voxels with high discrep-

ancy (Kutulakos and Seitz 2000; Seitz and Dyer 1997).

In contrast, variational methods explicitly seek the sur-

face that minimize image discrepancy. Variants of this ap-

proach based on snakes iteratively deform a surface mesh

until convergence (Hernández Esteban and Schmitt 2004;

Soatto et al. 2003). Level-set techniques, on the other hand,

implicitly represent surfaces as the zero set of a time-

varying volumetric density (Faugeras and Keriven 1998;

Keriven 2002). The graph cuts global optimization tech-

nique can also be used to avoid local extrema during

the search for the optimal surface (Roy and Cox 1998;

Paris et al. 2004; Vogiatzis et al. 2005; Sinha and Polle-

feys 2005; Furukawa and Ponce 2006; Tran and Davis 2006;

Hornung and Kobbelt 2006). The last broad class of im-

age modeling techniques is the oldest one: The visual hull,

introduced by Baumgart (1974) in the mid-seventies, is

an outer approximation of the observed solid, constructed

as the intersection of the visual cones associated with all

input cameras. Many variants of Baumgart’s original al-

gorithm have also been proposed (Matusik et al. 2002;

Sinha and Pollefeys 2004; Lazebnik et al. 2007).

1.2 Approach

Hernández Esteban and Schmitt (2004) propose to use the

visual hull to initialize the deformation of a surface mesh un-

der the influence of photoconsistency constraints expressed

by gradient flow forces (Xu and Prince 1997): See Keriven

(2002) for a related approach combining geometric and pho-

tometric approaches. Although this method yields excellent

results, its reliance on snakes for iterative refinement makes

it susceptible to local minima. In contrast, Vogiatzis, Torr

and Cipolla use the visual hull to initialize the global op-

timization of a photometric error function (Vogiatzis et al.

2005). The results are once again impressive, but silhou-

ette consistency constraints are ignored in the minimization

process, which may result in excessive carving. In fact, they

add an inflationary ballooning term to the energy function of

the graph cuts to prevent the over-carving, but this could still

be a problem, especially in high-curvature regions (more on

this in Sect. 6). Tran and Davis (2006) propose to first com-

pute a visual hull while identifying “Constraint Points” that

are likely to be on the surface of an object, then use the iden-

tified points as constraints in applying the graph cuts to pre-

vent the over-carving. Sinha and Pollefeys (2005) proposed

an algorithm to reconstruct a surface that exactly satisfies all

the silhouette constraints while maximizing the photomet-

ric consistencies. However, their method needs to construct

a complicated graph structure and has been tested on only

relatively simple objects.

The fundamental approach of our method is similar to

that of Tran and Davis’s work (2006), however is differ-

ent in that our method makes use of combinatorial struc-

tures of a visual hull to obtain constraints that are used with

the graph cuts. Our method also has a final refinement step,

which is nonetheless essential in achieving high-quality re-

constructions, after the graph cuts. In particular, we propose

in this paper a combination of global and local optimization

techniques to enforce both photometric and geometric con-

sistency constraints throughout the modeling process. The

algorithm proposed by Lazebnik et al. (2007) is first used

to construct a combinatorial mesh description of the visual

hull surface in terms of polyhedral cone strips and their ad-

jacency relations: see next section and Lazebnik et al. (2007)

for details. Photoconsistency constraints are then used to re-

fine this initial and rather coarse model while maintaining

the geometric consistency constraints imposed by the visual

hull. This is done in three steps: (1) the rims where the sur-

face grazes the visual hull are first identified through dy-

namic programming; (2) with the rims now fixed, the visual

hull is carved using graph cuts to globally minimize the im-

age discrepancy of the surface and recover its main features,

including its concavities (which, unlike convex and saddle-

shape parts of the surface, are not captured by the visual

hull); and (3) iterative (local) energy minimization is finally

used to enforce both photometric and geometric constraints

and recover fine surface details. While geometric constraints

have been ignored in Vogiatzis et al. (2005) in the global

optimization process, our approach affords in its first two

steps an effective method for enforcing hard geometric con-

straints during the global optimization process. As demon-

strated in Sect. 6, the third step, similar in spirit to the local

optimization techniques proposed in Hernández Esteban and

Schmitt (2004), Keriven (2002), remains nonetheless essen-

tial in achieving high-quality results. The overall process is

illustrated in Fig. 1, and the rest of this paper details each

step and presents our implementation and the results with

seven real data sets along with some qualitative and quan-

titative comparative experiments. Results in Figs. 1 and 12

demonstrate the recovery of very fine surface details in all

our experiments. A preliminary version of this article ap-

peared in Furukawa and Ponce (2006).

2 Identifying Rims on Visual Hull Surfaces

2.1 Visual Hulls, Cone Strips, and Rims

Let us consider an object observed by n calibrated cameras

with optical centers O1, . . . ,On, and denote by γi its appar-

ent contour in the image Ii (Fig. 2(a)). The corresponding

visual cone is the solid bounded by the surface �i swept by

the rays joining Oi to γi .
2 �i grazes the object along a sur-

face curve, the rim Ŵi . The visual hull is the solid formed by

2We assume here for simplicity that γi is connected. As shown in

Sect. 5, our algorithm actually handles apparent contours made of sev-

eral nested connected components.
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Fig. 1 Overall flow of the proposed approach. Top: one of the 24

input pictures of a toy dinosaur (left), the corresponding visual hull

(center), and the rims identified in each strip using dynamic program-

ming (right). Bottom: the carved visual hull after graph cuts (left) and

iterative refinement (center); and a texture-mapped rendering of the

final model (right). Note that the scales on the neck and below the

fin, as well as the undulations of the fin, are recovered correctly, even

though the variations in surface height there is well below 1 mm for

this object about 20 cm wide

Fig. 2 A visual hull, cone strips

and rims: (a) an egg-shaped

object is viewed by 2 cameras

with optical centers O1 and O2;

the point x is a frontier point;

(b) its visual hull is constructed

from two apparent contours γ1

and γ2, the surface � of the

visual hull consisting of two

cone strips φ1 and φ2; (c) the

cone strip φ1 associated with the

first image I1 is stretched out

(middle figure) along the

apparent contour γ1, so a point

q on γ1 corresponds to a

vertical line in the right part of

the diagram

the intersection of the visual cones, and its boundary can be

decomposed into a set of cone strips φi formed by patches

from the cone boundaries that connect to each other at fron-

tier points where two rims intersect (Fig. 2(b)). As illus-

trated by Fig. 2(c), each strip can be mapped onto a plane by

parameterizing its boundary by the arc length of the corre-

sponding image contour. In this figure, a viewing ray corre-

sponds to a vertical line inside the corresponding strip, and,

by construction, there must be at least one rim point along

any such line (rim points are identified in Cheung et al. 2003;

Tran and Davis 2006 by the same argument, but the algo-

rithms and their purposes are different from ours). In par-

ticular, we use the exact visual hull algorithm proposed in

Lazebnik et al. (2007) to obtain a triangulated mesh model

representing a visual hull. The algorithm also outputs a set

of triangles on the mesh that belongs to each cone strip. The

next step is to identify the rim that runs “horizontally” inside

each strip (Fig. 2(c)). Since rim segments are the only parts

of the visual hull that touch the surface of an object, they can

be found as the strip curves that minimize some measure of

image discrepancy. The next section introduces such a mea-

sure, similar to that used in Faugeras and Keriven (1998).
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2.2 Measuring Image Discrepancy

Let us consider a point p on the visual hull surface. To

assess the corresponding image discrepancy, we first use

z-buffering to determine the images where it is visible, then

select among these the τ pictures with minimal foreshort-

ening. Next, a μ × μ grid is overlaid on a small patch of

the surface’s tangent plane at p so that its image projection

becomes approximately μ × μ pixel2, and τ μ × μ tangent

plane “windows” h1, . . . , hτ are retrieved from the corre-

sponding input images. The image discrepancy score is fi-

nally computed as

f (p) =
2

τ(τ − 1)

τ
∑

i=1

τ
∑

j=i+1

1

− exp

(

−
(1 − NCC(hi, hj ))

2

2σ 2
1

)

,

where NCC(hi, hj ) is the normalized cross correlation be-

tween hi and hj . τ = 5, μ = 11, and σ1 = 0.8 are used

throughout our experiments. We also denote by f ∗(p) an

average NCC score:

f ∗(p) =
2

τ(τ − 1)

τ
∑

i=1

τ
∑

j=i+1

NCC(hi, hj ).

2.3 Identifying a Rim in a Cone Strip

As noted earlier, the image discrepancy function should have

small values along rims, thus these curves can be found as

shortest paths within the strips, where path length is deter-

mined by the image discrepancy function. In our visual hull

implementation, a cone strip φi is represented by the undi-

rected graph G with its polyhedral vertices V and edges E,

and it is straightforward to find the shortest path by dynamic

programming. However, the idealized situation in Fig. 2

rarely occurs in practice: First, a cone strip, which should

consist of multiple components connected through frontier

points, can result into multiple horizontally separated com-

ponents (horizontal neighbors) due to measurement errors

(Fig. 3(a)); Second, even in the absence of any measurement

errors nor noises, a cone strip can have multiple components

intersecting the same vertical line with the rim being in any

one of these (vertical neighbors); Third, the rim can be dis-

continuous at any point inside the strip due to T-junctions.

In this work, we assume for simplicity that rim discontinu-

ities occur only at right or left end points of each connected

strip component, in other words, at the following two types

of strip vertices (Fig. 3(b)):

– an opening vertex vo whose neighbors v′ all verify

vo ≺ v′, and

– a closing vertex whose neighbors v′ all verify v′ ≺ vc,

where “≺” denotes the circular order on adjacent vertices in

G induced by the closed curve formed by the apparent con-

tour. Under this assumption, dynamic programming can be

Fig. 3 (a) An undirected graph

representing a cone strip φi . The

two leftmost components are

vertical neighbors. (b) The

opening and closing vertices vo

and vc of φi . (c) Illustration of

the vertical edge creation

process for a different strip φj .

(d) After the horizontal and

vertical edges of the directed

graph G′ associated with φi

have been created, G′ is split

into two connected components,

shown here in different shades

of grey, with unique start and

goal vertices each. Note that

vertical edges are omitted for

the purpose of illustration
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still used to find the rim as a shortest path in the directed

graph G′ with vertices V and edges E′, defined as follows.

Firstly, for each edge (vi, vj ) in E, we add to E′ the Hori-

zontal edge (vi, vj ) if vi ≺ vj , and the edge (vj , vi) other-

wise. Secondly, to handle discontinuities, we add to E′ the

Vertical directed edges linking each opening (resp. closing)

vertex to all vertices immediately following (resp. preced-

ing) it in its vertical neighbors (Fig. 3(c)).

Next, we assign weights to edges in a directed graph G′.

For horizontal edges, a weight is the physical edge length

multiplied by the average image discrepancy of its two ver-

tices. Vertical edges have weight 0. Then, we decompose

the graph G′ into connected components (Fig. 3(d)), and use

dynamic programming to find the shortest path between the

leftmost (start) vertex of each component and its rightmost

(goal) vertex. At times, rim discontinuities may occur at

other points than those selected by our assumptions. Accord-

ingly, the simple approach outlined above may misidentify

parts of the rim. Since the rims are used as hard constraints

in the next global optimization step, we want to avoid false

positives as much as possible. Among all the vertices iden-

tified as the rim points, we filter out false-positives by using

the average NCC score f ∗(v) defined earlier and the verti-

cal strip size g(v) at a vertex v. More concretely, a vertex

v is detected as a false-positive if either 4R · ι < g(v) or

R · ι < g(v) and f ∗(v) < η hold, where R is an average dis-

tance from all the vertices V ′ in the mesh to their center of

mass
∑

v∈V ′ v/|V ′|. ι and η are thresholds for the vertical

strip size and the image discrepancy score, respectively, and

are selected for each data set in our experiments (see Table 1

for an actual choice of parameters). If there exists multiple

components along a viewing ray, the vertical strip size g(v)

is simply computed as a distance between the closest and

the farthest points on the cone strip. Intuitively, a rim point

is filtered out when its corresponding vertical strip size is too

large (the first condition) and when the vertical strip size is

not small enough and the average NCC score is worse than

η (the second condition). Note that when the vertical strip

size is very small, there is little ambiguity in the location of

the rim, and the corresponding vertex automatically passes

the test according to the above rule.

The next two sections show how to carve the visual hull

by combining photoconsistency constraints with the geo-

metric rim consistency constraints associated with the iden-

tified rim segments. We start with a global optimization step

by graph cuts to recover main surface features. A local re-

finement step is then used to reveal fine details.

3 Global Optimization

In this part of our algorithm, rim consistency is enforced as

a hard constraint by fixing the location of the identified rim

segments, which split the surface � of the visual hull into k

connected components Gi (i = 1, . . . , k) (note that the rim

segments associated with a single strip may not form a loop,

so each graph component may include vertices from multi-

ple strips). To enforce photoconsistency, we independently

and iteratively deform the surface of each component Gi

inwards (remember that the visual hull is an outer object

approximation) to generate multiple layers forming a 3D

graph Ji , associate photoconsistency weights to the edges

of this graph, and use graph cuts to carve the surface.3 The

overall process is summarized in Fig. 4 and detailed in the

next two sections.

3.1 Deforming the Surface to Set Vertices

In this section, after initializing the vertices of Ji by those

in Gi , which will be the first layer of the graph Ji , the sur-

face is iteratively deformed inwards to generate more ver-

tices, which, in turn, will form additional layers of Ji . More

precisely, at each iteration of the deformation process, we

move every vertex v in Gi (except for the boundaries) along

its surface normal N(v) and apply smoothing:

v ← v −
ε

λ
(ζ1 f (v) + ζ2)N(v) + s(v), (1)

where ε, ζ1, ζ2 are scalar constants, f (v) is the image dis-

crepancy function defined earlier, N(v) is the unit surface

normal, and s(v) is a smoothness term of the form −β1�v+

β2��v suggested in Delingette et al. (1992). For each ver-

tex v, we keep track of how much it has moved along its

surface normal direction, and every time the accumulated

distance exceeds ε, its coordinate is added to Ji as a vertex,

and the distance is reset to 0. Note that using f (v) in (1)

yields an adaptive deformation scheme: the surface shrinks

faster where the image discrepancy function is larger, which

is expected to provide better surface normal estimates. Dur-

ing deformations, surface normals and smoothness terms are

re-estimated by using the current surface at every iteration,

while photoconsistency functions f (v) are evaluated at all

the vertices (except for the boundaries) once in every λ iter-

ations for efficiency. We use ζ1 = 100, ζ2 = 0.1, β1 = 0.4,

β2 = 0.3, ρ = 40, and λ = 20 in all our experiments, which

have empirically given good results for our test objects. ε de-

termines an offset between vertically adjacent vertices, and

is set to be 0.5 times the average edge length in Gi . Note

that the choice of parameters ε and ρ is essentially difficult,

3The graph associated with a voxel grid serves as input in typical ap-

plications of graph cuts to image-based modeling (e.g., Roy and Cox

1998; Boykov and Kolmogorov 2003; Kolmogorov and Zabih 2002;

Paris et al. 2004; Vogiatzis et al. 2005; Tran and Davis 2006; Hornung

and Kobbelt 2006). The surface deformation scheme is proposed here

instead to take advantage of the fact that the visual hull is already a

good approximation.
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because a surface of an object must lie between the top and

the bottom layers of J in order for the graph cuts step to

work, but we do not know in advance which parameter set

can guarantee such a condition.

3.2 Building a Graph and Applying Graph Cuts

After setting the vertices of Ji , two types of edges are added

as shown in Fig. 5. Let us denote an array of vertices gener-

ated from vk as {v0
k , v

1
k , . . .} in an order of creation. Firstly,

a horizontal edge (v
j
k , v

j

k′) is added to Ji if vk and vk′ are

neighbors in Gi . Note that vertices connected by horizon-

tal edges form an offset layer of Gi , and the top-most layer

is identical with Gi . Secondly, a vertical edge (vi
k, v

i+1
k ) is

added to connect the offset instances of the same vertex

in adjacent layers. A simple variant of the technique pro-

posed in Boykov and Kolmogorov (2003) is used to compute

edge weights by using photoconsistency values that have al-

ready been computed in Ji during the deformation proce-

dure. Concretely, the weight of an edge (vi, vj ) is computed

as

wij =
α(f (vi) + f (vj ))(δi + δj )

d(vi, vj )
,

where f (vi) is the photoconsistency function value at a ver-

tex vi , d(vi, vj ) is the length of the edge, and δi is a measure

of the sparsity of vertices around vi , which is approximated

by ε times the squared of the average distance from vi to

the adjacent vertices in the same layer. Intuitively, weights

should be large where vertices are sparse. We use α = 1.0

and 6.0 for horizontal and vertical edges, respectively, in all

our experiments, which accounts for the fact that edges are

Fig. 4 Algorithm description

of the graph cuts step. This

procedure is applied to every

connected component on a

visual hull boundary, which is

surrounded by identified rim

segments

Input: A connected component Gi on a visual hull boundary

Output: A carved visual hull model inside Gi

J ← Gi ; //J will contain a 3D graph.

ForEach vertex v ∈ Gi except for the boundary

d(v) ← 0; //d(v) keeps track of how much v has moved along its surface normal.

EndFor

For j = 1 to ρ

Recompute f (v) for each vertex;

For k = 1 to λ

ForEach vertex v ∈ Gi except for the boundary

Recompute N(v) and s(v);

vmove ← − ε
λ
(ζ1 f (v) + ζ2)N(v) + s(v);

v ← v + vmove;

d(v) ← d(v) − vmove · N(v);

If ε < d(v)

d(v) ← 0; //Every time d(v) exceeds ǫ, a new vertex is added to V .

Add the current v to J ;

EndIf

EndFor

EndFor

EndFor

Add vertical and horizontal edges to J , and compute their weights;

Use graph cuts to find a minimum cut in J .

Fig. 5 Deforming the surface

for graph cuts: (a) the surface �

of the visual hull is decomposed

into multiple independent

components Gi ; (b) the layers

generated by the deformation

process is illustrated for the

cross section of G4 that contains

vertices v1, v2, and v3
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not uniformly distributed around a vertex. Lastly, we con-

nect all the vertices in the top (resp. bottom) layer to the

source (resp. sink) node with infinite edge weights. Note that

generated layers in Ji may not necessarily have the same

topology due to the adaptive deformation scheme and the

smoothness term in (1): Different vertices may be registered

to Ji for different times, and bottom layers in Ji may miss

some of the vertices as shown in Fig. 5.

3.3 Practical Matters

While graph cuts is a global optimization tool, we apply

the surface deformation and graph cuts procedure multiple

times in practice for the following reasons. First, as we have

already mentioned, an object must lie between the top and

the bottom layers of Ji in order for the graph cuts step to

work. However, we do not know, in advance, a choice of

parameters ε and ρ that satisfies this condition. Further-

more, in some cases, any choice of parameters may not

satisfy the condition due to the complicated shape of a vi-

sual hull (see Fig. 11 for an actual example). Second, for

the global optimum provided by graph cuts to be meaning-

ful, the edge weights must accurately measure the photo-

consistency, which in turn requires good estimates of the

normals in the vicinity of the actual surface. For parts of

the surface far from the visual hull boundary, normal esti-

mates computed at each vertex from neighbors in the same

layer may be inaccurate, and multiple graph cuts applica-

tion helps in estimating better surface normals and photo-

consistency functions. Note that after the pure inward defor-

mation of the first iteration, the mesh is allowed to deform

both inwards and outwards—while remaining within the vi-

sual hull—along the surface normals. Also note that after

each graph-cuts application, we remesh the surface to keep

regular triangulations (see Sect. 5 for more details). Empir-

ically, four iterations have proven sufficient to recover the

main surface features in all our experiments.

4 Local Refinement

In this final step, we iteratively refine the surface while en-

forcing all available photometric and geometric information.

At every iteration, we move each vertex v along its surface

normal by a linear combination of three terms: an image dis-

crepancy term, a smoothness term, and a rim consistency

term. The image discrepancy term is simply the first deriva-

tive of f (v) along the surface normal. The smoothness term

is the same as in the previous section. The rim consistency

term is similar to the one proposed in Hernández Esteban

and Schmitt (2004). Consider an apparent contour γ repre-

sented by a discrete set of points qj together with the cor-

responding viewing rays rj , we add rim consistency forces

to vertices as follows (Fig. 6). Let us define d(vk, rj ) as the

distance between the vertex vk and a viewing ray rj , we find

the closest viewing ray r∗
k = argminrj

d(vk, rj ) to every ver-

tex vk . Next, if Vj denotes the set of all the vertices vk whose

closest viewing ray is rj (i.e., r∗
k = rj ), we find the ver-

tex v∗
j in Vj closest to rj (i.e., v∗

j = argminvk∈Vj
d(vk, ri)).

Note that a surface satisfies the rim consistency conditions if

and only if d(v∗
j , rj ) = 0 for all viewing rays rj . Therefore,

we add an appropriately weighted force whose magnitude is

proportional to v∗
j rj to all vertices in Vj , where vkrj is the

signed distance between the vertex vk and a viewing ray rj ,

with a positive sign when the projection of vk lies inside the

contour γ and negative otherwise. Concretely, we add to the

vertex vk in Vj the force

r(vk) = v∗
j rj

exp(−(vkrj − v∗
j rj )

2/2σ 2
2 )

∑

vk′∈Vj
exp(−(vk′rj − v∗

j rj )2/2σ 2
2 )

N(vk),

where N(vk) is the unit surface normal in vk .

The basic structure of the algorithm is simple (see Fig. 7).

At every iteration, for each vertex v, we compute three terms

and move v along its surface normal by their linear com-

binations: v ← v + s(v) + r(v) − κ∇f (v) · N(v). κ is a

scalar coefficient and is set depending on the object and

the resolution of the mesh. After repeating this process until

convergence—typically from 20 to 40 times, we remesh and

increase the resolution, and repeat the same process until the

image projections of the edges in the mesh become approx-

imately 2 pixels in length. Typically, the remeshing opera-

tion is performed three times until the mesh reaches the final

resolution. See Sect. 5 for more details of the remeshing op-

erations.

Fig. 6 The rim consistency

force is computed for a viewing

ray rj , then distributed to all the

vertices Vj whose closest ray

is rj . Here vk+1 is the closest

vertex v∗
j to rj
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5 Implementation Details

We have assumed so far that a single apparent contour is

extracted from each input image. In fact, handling multiple

nested components only requires a moderate amount of ad-

ditional bookkeeping: Nested apparent contours can be sim-

ply treated as independent contours from different images

in our rim-identification, graph-cuts, and local refinement

steps. Note also that our algorithm does not require all sil-

houette holes to be found in each image: For example, sil-

houette holes are ignored for the Human data set shown in

Fig. 12, while the apparent contour components associated

with holes are explicitly used for the Twin model. In prac-

tice, the surface of an object may not be Lambertian. We

identify and reject for each patch the input images where

it may be highlighted by examining the mean intensity and

Input: A carved visual hull model after the graph cuts step

Output: A refined final surface

REPEAT

Remesh and increase the resolution of the mesh;

REPEAT

Compute three forces at all the vertices;

For each vertex v on the mesh

v ← v + s(v) + r(v) − κ∇f (v) · N(v);

EndFor

until convergence;

until mesh reaches the desired resolution.

Fig. 7 Algorithm description of the local refinement step

color variance. The chain rule is used to compute the deriv-

ative of f (v) along the surface normal as a function of im-

age derivatives, which in turn are estimated by convolving

the input images with the derivatives of a Gaussian func-

tion.

As we have described, remeshing operations are applied

to a mesh in two places of our algorithm: (1) after each graph

cuts application; and (2) during the local refinement step.

The remeshing procedure consists of a single parameter ξ

and a sequence of edge splits, collapses, and swaps (Hoppe

et al. 1993). More precisely, we contract an edge if its length

is less than ξ/2, split it if its length is more than 2ξ , and swap

edges if the degrees of vertices become closer to six with the

operation. Note that we control the resolution of a mesh by

changing the value of ξ during the local refinement step: we

keep on decreasing the value of ξ , until the image projec-

tions of edges become approximately 2 pixels in length.

Finally, the topology of an object’s surface is not nec-

essarily the same as that of its visual hull. Therefore, we

allow the topology of the deforming surface to change in

the remeshing procedure, using a method similar to that of

Lachaud and Montanvert (1999). While remeshing, it may

happen that three vertices in a shrinking area of the surface

are connected to each other without forming a face. In this

case, we cut the surface at the three vertices into two open

components, and add a copy of the triangle to both compo-

nents to fill the holes.

6 Experimental Results

We have conducted experiments with strongly calibrated

cameras and seven objects: a toy dinosaur, a human skull

Fig. 8 Sample input images for

the data sets used in our

experiments. The number of

images in a data set and their

approximate sizes are also

shown
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Fig. 9 (Color online) A cone

strip, the evaluated image

discrepancy scores, and its

corresponding identified rim

segments are shown for one of

the input image contours of the

Human data set. The cone strip

is mapped onto a plane by the

parameterization described in

Sect. 2. Black regions and green

curves represent the cone strip

and the identified rim segments,

respectively. Blue lines in (c)

illustrate cases where there

exists multiple strip components

(vertical neighbors) along a

single viewing ray

(courtesy of J. Blumenfeld and S. Leigh), a standing human

(courtesy of S. Sullivan), a toy mummy, another toy dinosaur

(courtesy of S. Seitz), a statue (courtesy of C. Hernández Es-

teban and F. Schmitt), and a plaster reproduction of “Tem-

ple of the Dioskouroi” (courtesy of S. Seitz, B. Curless,

J. Diebel, D. Scharstein, and R. Szeliski). Contours have

been extracted interactively. A sample input image, the num-

ber of input images, and their approximate sizes are shown

for each data set in Fig. 8.

6.1 Intermediate Results

Figure 9 illustrates a cone strip, the evaluated image dis-

crepancy scores, and corresponding identified rim segments

for an image contour of the Human data set. A cone strip

is mapped onto a plane by parameterizing the horizontal

axis by an arc length of the corresponding image contour,

and the vertical axis by a distance from the optical center

of the corresponding camera as in Fig. 3. Although Human

is a relatively simple data set with only 11 input images, as
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Table 1 Details on the rim-identification step. The second and the

third columns of the table lists thresholds (ι, η) used in the rim iden-

tification step for each data set. The fourth and the fifth columns show

rim filtering ratios: a ratio of rim segments that have been filtered out

as outliers. The right three columns of the table list sizes of the three

largest connected components on the visual hull boundary that are

surrounded by identified rim segments. See text for details

Data set Thresholds Filtering ratio Sizes of components

ι η Ave (%) Min (%) N1 (%) N2 (%) N3 (%)

Dinosaur-1 0.015 0.9 83.2 56.7 96.2 1.02 0.63

Skull 0.06 0.7 69.2 44.2 99.9 0.062 0.051

Mummy 0.02 0.8 66.7 44.8 99.8 0.085 0.041

Human 0.05 0.8 27.8 16.7 93.2 3.4 2.1

Dinosaur-2 0.03 0.7 60.7 52.8 99.9 0.029 0.027

Twin 0.03 0.8 75.0 25.0 55.4 18.4 7.9

Temple 0.06 0.7 32.9 16.4 97.1 1.70 0.79

Fig. 10 From left to right, a

visual hull, cone strips on the

visual hull boundary, identified

rim segments, and a surface

after graph cuts for the six

objects

the figure shows, the cone strip is pretty complicated and

has vertical neighbors at many vertical lines (e.g., blue lines

in Fig. 9(c)). Nonetheless, rim segments have been success-

fully identified, especially where cone strips are narrow.

Figures 1 and 10 illustrate the successive steps of our al-

gorithm for all the data sets used in our experiments. As

can be seen in the figures, rim points have been success-

fully identified, especially at high-curvature parts of the sur-

face. Our rim-discontinuity assumption (Sect. 2.3) breaks

at complicated surface structures, such as the cloth of the

standing human model. In fact, in a few cases, false rim seg-

ments have not been completely removed and have caused a

problem in the graph cuts step, for instance, near the nose

and the eyes of the Twin model (see Sect. 6.3 for more

discussions). Nonetheless, spurious segments have been de-

tected and filtered out rather well by our aggressive post-

processing in all the models. With the help of the identi-

fied rim segments, the graph cuts step recovers the main

surface structures pretty well, including large concavities,

while preserving high-curvature structural details, such as
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Fig. 11 (Color online) From

left to right, starting from a

visual hull, the graph cuts is

applied to the model multiple

times. Red circles illustrate a

typical situation where the

multiple graph cuts applications

are necessary to reconstruct

correct structures

the fingernails of the first dinosaur, the fingers of the per-

son, the cheekbones of the skull, and the metal bar sticking

out from the second dinosaur. Table 1 lists a pair of parame-

ters (ι, η) used in the rim-identification step, a filtering ra-

tio (how many percentages of the identified rim points have

been filtered out as outliers), and sizes of the largest con-

nected components surrounded by identified rim-segments,

for each data set. Note that since a filtering ratio is computed

for each image contour, the average and the minimum value

of all the image contours are reported for each data set. The

size of a connected component is calculated as a ratio of

the number of vertices inside the component except for the

boundary, against the number of vertices of the whole visual

hull model except for the identified rim points. As the table

shows, the filtering ratio varies depending on a data set and

an image contour, but in general is around 60–80% due to

our aggressive filtering. The table also illustrates a fact that

a visual hull boundary is mostly covered by a single large

connected component except for the Twin data set, which

has many input images, and hence, many rim curves.

Figure 11 shows successive surface evolutions during the

multiple graph cuts applications. Red circles in the figure il-

lustrate a typical situation where the multiple applications

are necessary to reconstruct correct structures: a part of

the visual hull model of Dinosaur-1 cannot be completely

carved away by a single graph cuts application due to its

complicated shape.

6.2 Final Results

Figures 1, 12 and 13 show shaded and texture-mapped ren-

derings of the final 3D models including several close-ups.

Note that some of the surface details are not recovered ac-

curately. In some cases, this is simply due to the fact that

the surface is not visible from any cameras: the bottom part

of the first dinosaur, for example. In other cases, this is due

to failures of our algorithm: For example, the eye sockets of

the skulls are simply too deep to be carved away by graph

cuts or local refinement (see Sect. 6.3 for another example

with failures). The human is a particularly challenging ex-

ample, because of the extremely complicated folds of the

cloth, and its high-frequency stripe patterns. Nonetheless,

our algorithm has performed rather well in general, correctly

recovering minute details such as fin undulations and scales

in the neck of the first toy dinosaur, which corresponding

height variations are a fraction of 1 mm, the sutures of the

skulls, the large concavity in the mummy’s chest, much of

the shirt fold structure in the human example, as well as the

high-curvature structural details mentioned earlier. The pro-

posed approach is implemented in C++, and Table 2 lists

running times of four different steps of our algorithm for

each data set. As the table shows, the bottleneck of the com-

putation is the global optimization and the local refinement

steps, each of which takes about two hours for most of the

data sets and approximately four hours for the largest Twin

model with a 3.4 GHz Pentium 4.

6.3 Comparisons

To evaluate the contributions of each step in our approach,

we have performed the following experiments. First, we

have implemented and added the ballooning term introduced

in Vogiatzis et al. (2005) to the energy function in the graph

cuts step, while removing the hard constraints enforced by

the identified rim segments to see its effects on the over-

carving problem mentioned earlier (Fig. 14, first row). Note

that the layer-based graph representation is still used in this

experiment, instead of the voxel representation used in Vo-

giatzis et al. (2005). The leftmost part of the figure shows

the result of our graph cuts step (with fixed rim segments),

and the remaining three columns illustrate the effects of the

ballooning term with three different weights associated with

it, the weight being zero at the left and increasing to the

right. As shown by the figure, high-curvature surface details

have not been preserved with the ballooning term. Even in

the rightmost column of the figure, where the ballooning

term is too high to preserve surface details in other parts

of the surface, the fingers almost disappear. It is because the
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Fig. 12 Shaded and

texture-mapped renderings of

the final 3D models

Fig. 13 Close-ups of

reconstructions

Table 2 Running times of our algorithm, and the numbers of vertices and faces of final 3D models

Dinosaur-1 Skull Human Mummy Dinosaur-2 Twin Temple

Visual hull 8.5 (min) 5.5 (min) 1 (min) 3 (min) 1.5 (min) 49 (min) 1 (min)

Rim-identification 3 (min) 4 (min) 5 (min) 9 (min) 3 (min) 7 (min) 2 (min)

Graph cuts 81 (min) 159 (min) 82 (min) 85 (min) 87 (min) 264 (min) 61 (min)

Local refinement 133 (min) 154 (min) 113 (min) 101 (min) 49 (min) 225 (min) 75 (min)

Number of vertices 272912 374057 481629 399688 440753 606669 328139

Number of faces 545820 748118 963254 799372 881502 1213338 656286
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Fig. 14 A comparative

evaluation of our algorithm.

First row: comparison with our

implementation of a variant of

the method proposed by

Vogiatzis et al. (2005).

Second row: comparison with a

purely local method initialized

with the visual hull surface.

Third row: comparison with a

method by Hernández Esteban

and Schmitt (2004). Fourth row:

comparison with the voxel

coloring method of Seitz and

Dyer (1997). See text for details

Table 3 Quantitative

evaluations on the Temple data

set. The accuracy measure

shows the distance d (in mm)

that brings 90% of the result

within the ground-truth surface,

while the completeness measure

shows the percentage of the

ground-truth surface that lies

within 1.25 mm of the result

Accuracy (90%) Completeness (1.25 mm)

Furukawa et al. (2007) 0.62 [mm] 99.2 [%]

Proposed Approach 0.75 [mm] 97.1 [%]

Hernández et al. (2004) 0.75 [mm] 95.3 [%]

Pons et al. (2005) 0.90 [mm] 95.4 [%]

Strecha et al. (2006) 1.05 [mm] 94.1 [%]

Tran et al. (2006) 1.53 [mm] 85.4 [%]

Vogiatzis et al. (2005) 2.77 [mm] 79.4 [%]

graph cuts framework is basically not suitable for recovering

high-curvature structures. Note that in the Euclidean space,

a minimal surface, which is an output of the graph cuts al-

gorithm,4 has zero mean curvature all over the surface by

4See Boykov and Kolmogorov (2003) for the relationship between the

minimal surface and the minimum cut.

definition. This may be due in part to the fact that photomet-

ric consistency measurements become unreliable at high-

curvature parts of a surface which, on the other hand, tend to

generate highly reliable rim consistency constraints. Second,

we have tested our algorithm without its graph cuts phase,

yielding a purely local method. Figure 14 (second row)

shows two examples: the graph cuts step being included in
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the left part of the diagram, and omitted in the right part. As

expected, local minimum problems are apparent in the latter

case. Third, we have also compared our algorithm with the

method proposed in Hernández Esteban and Schmitt (2004)

on the Twin and Temple data sets. The two models of the

Twin data set look pretty close to each other, which is partly

because our local refinement step is basically the same as

their refinement procedure (except that gradient flow forces

instead of the direct derivatives are used to compute the im-

age discrepancy term in their method), but there exists some

differences. First, our method does not recover correct struc-

tures near the nose of the statue (illustrated by green circles),

which is due to mistakes made in the rim-identification step.

Note that our graph cuts step is vulnerable to a single mis-

take in the rim-identification step, and this is the reason why

we have a conservative post-processing. However, it is still

very difficult to avoid all the false-positives in some occa-

sions as in Fig. 14 (see our future work in Sect. 7 to re-

solve this issue). On the other hand, our method outperforms

Hernández Esteban’s method in reconstructing a concave

structure near the right hand of the statue as shown by the

red circles (although the difference is not significant), which

is also illustrated by the results on the Temple data set. Since

their method is essentially a local iterative deformation,

they have a problem in avoiding local minima, especially in

challenging situations (e.g., sharp concave structures with

weak textures), while our method has the global optimiza-

tion step to handle them. Lastly, we have tried an imple-

mentation of voxel coloring (Kutulakos and Seitz 2000;

Seitz and Dyer 1997), kindly provided by S. Seitz, on two

of our examples (Fig. 14, bottom). The results appear rather

noisy compared to ours (see Fig. 12), probably due to the

lack of regularization, and several concavities are missed in

the two objects (e.g., the chest of the mummy). Lastly, Ta-

ble 3 presents some quantitative evaluations on the Temple

data set with top performing multi-view stereo algorithms

presented at the Multi-View Stereo Evaluation website (Seitz

et al. 2007). As the table shows, the proposed method has

achieved the second best result both in terms of accuracy

and completeness. Note that our algorithm uses manually

extracted silhouettes unlike the other methods, which gives

us an undeniable advantage and prevents us from officially

participating to the competition. Also note that the Multi-

View Stereo Evaluation website provides data sets for one

more object (dino), but we could not test our algorithm be-

cause the model is not fully visible in some views and exact

silhouettes cannot be extracted there.

7 Conclusions and Future Work

We have proposed a method for acquiring high-quality geo-

metric models of complex 3D shapes by enforcing the pho-

tometric and geometric consistencies associated with mul-

tiple calibrated images of the same solid, and demonstrated

the promise of the approach with seven real data sets and

some comparative experiments with state-of-the-art image-

based modeling algorithms. One of the limitations of our

current approach is that it cannot handle concavities too

deep to be carved away by the graph cuts. The method is also

vulnerable to mistakes made in the rim-identification step.

To overcome these problems, we plan to combine our ap-

proach with recent work on sparse wide-baseline stereo from

interest points (e.g., Schaffalitzky and Zisserman 2001) in

order to incorporate stronger geometric constraints in the

carving and local refinement stages (Furukawa and Ponce

2007). Attempting, as in Soatto et al. (2003), to explicitly

handle non-Lambertian surfaces is of course of interest. Fi-

nally, we plan to follow the lead of photogrammetrists and

add a final simultaneous camera calibration stage, where

both the camera parameters and the surface shape are re-

fined simultaneously using bundle adjustment (Uffenkamp

1993).
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