

Cardiovascular Research 69 (2006) 128-139

Cardiovascular Research

www.elsevier.com/locate/cardiores

Carvedilol blocks β_2 - more than β_1 -adrenoceptors in human heart

Peter Molenaar^{a,1}, Torsten Christ^{b,1}, Ursula Ravens^b, Alberto Kaumann^{c,*}

^a Department of Medicine, The Prince Charles Hospital, University of Queensland, Australia

^b Department of Pharmacology and Toxicology, University of Technology, Dresden, Germany

^c Department of Physiology, University of Cambridge, Downing Street, Cambridge CB23EG, UK

Received 18 July 2005; received in revised form 28 August 2005; accepted 31 August 2005 Available online 12 October 2005 Time for primary review 17 days

Abstract

Objective: To understand the basis of the effectiveness of carvedilol in heart failure by determining its specific properties at human heart β_1 -and β_2 -adrenoceptors.

Methods: The positive inotropic effects of noradrenaline (in the presence of the β_2 -selective antagonist ICI118551) and adrenaline (in the presence of the β_1 -selective antagonist CGP20712), mediated through β_1 - and β_2 -adrenoceptors, respectively, were investigated in atrial and ventricular trabeculae. The patch-clamp technique was used to investigate effects of noradrenaline and adrenaline on L-type Ca²⁺ current in human atrial myocytes.

Results: Carvedilol was a 13-fold more potent competitive antagonist of the effects of adrenaline at β_2 -adrenoceptors ($-\log K_B = 10.13 \pm 0.08$) than of noradrenaline at β_1 -adrenoceptors ($-\log K_B = 9.02 \pm 0.07$) in human right atrium. Chronic carvedilol treatment of patients with non-terminal heart failure reduced the inotropic sensitivity of atrial trabeculae to noradrenaline and adrenaline 5.6-fold and 91.2-fold, respectively, compared to β_1 -blocker-treated patients, consistent with persistent preferential blockade of β_2 -adrenoceptors. In terminal heart failure carvedilol treatment reduced 1.8-fold and 25.1-fold the sensitivity of right ventricular trabeculae to noradrenaline and adrenaline, respectively, but metoprolol treatment did not reduce the sensitivity to the catecholamines. Increases of current ($I_{Ca,L}$) produced by noradrenaline and adrenaline were not different in atrial myocytes obtained from non-terminal heart failure patients treated with metoprolol or carvedilol, consistent with dissociation of both β -blockers from the receptors.

Conclusions: Carvedilol blocks human cardiac β_2 -adrenoceptors more than β_1 -adrenoceptors, thereby conceivably contributing to the beneficial effects in heart failure. The persistent blockade of β -adrenoceptors is attributed to accumulation of carvedilol in cardiac tissue. © 2005 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

Keywords: Human heart; β_1 - and β_2 -adrenoceptors; Heart failure; Noradrenaline; Adrenaline; Carvedilol

1. Introduction

Chronic β -adrenoceptor blockade is effective in the treatment of heart failure [1]. β_1 -adrenoceptor-selective blockers metoprolol and bisoprolol as well as carvedilol improve heart function and reduce morbidity and mortality [2–4]. Whether blockade of β_2 -adrenoceptors in addition to β_1 -adrenoceptors confers benefit to patients with heart failure is a debatable issue that has not been resolved [3–

5]. Therefore it is important to know the affinities of clinically used β -blockers at β_1 - and β_2 -adrenoceptors. However, there is uncertainty about the affinity of carvedilol for human β_1 - and β_2 -adrenoceptors, with reports claiming moderate β_1 -selectivity [6,7], no selectivity [8–10], or slight β_2 -selectivity [11–13].

In patients blockade of β -adrenoceptors by carvedilol is longer lasting after withdrawal than with other clinically used β -blockers [14–16]. The blockade of isoprenalineevoked increase in contractility in human atrial myocardium is irreversible with carvedilol but reversible with metoprolol [16]. Dobutamine-induced cardiostimulation is reduced by carvedilol in both heart failure patients [15] and healthy

^{*} Corresponding author. Tel.: +44 122 3333810; fax: +44 122 3333840. *E-mail address:* ajk41@hermes.cam.ac.uk (A. Kaumann).

¹ PM and TC contributed equally to this work.

volunteers [16], and not yet completely reversible 44 h after withdrawal of medication [16], despite a reduction of carvedilol plasma concentrations below detectable levels. To account for these findings, it was proposed that carvedilol interacts with β_1 -adrenoceptors by persistently binding to an allosteric site [16].

Highly lipophilic carvedilol accumulates in rat heart [17] and human heart [18] and may leak out chronically from cardiac tissues and maintain high occupancy of both β_1 and β_2 -adrenoceptors for long periods. It is uncertain through which β -adrenoceptor subtype carvedilol causes more blockade. We therefore determined the affinity of carvedilol for human atrial β_1 -and β_2 -adrenoceptors from the antagonism of the positive inotropic effects of noradrenaline and adrenaline in human atrial trabeculae. We also compared the persistent blockade by carvedilol of the positive inotropic effects of noradrenaline, mediated through β_1 -adrenoceptors, and adrenaline, mediated through β_2 -adrenoceptors, in isolated atrial and ventricular trabeculae obtained from non-B-blocker-treated patients and patients chronically treated with carvedilol or β_1 -selective blockers. Finally, we compared the influence of chronic treatment with carvedilol or metoprolol on the L-type Ca²⁺ current $(I_{Ca,L})$ -enhancing effects of noradrenaline through β_1 -adrenoceptors and adrenaline through β_2 -adrenoceptors. The results indicate that carvedilol is selective for human cardiac B2-adrenoceptors.

2. Methods

2.1. Patients

Human right atrial trabeculae and myocytes were prepared from right atrial appendages of patients undergoing coronary artery bypass surgery at The Prince Charles Hospital, Brisbane, ethics approval numbers EC9876, EC9978, and Gustav Carus Hospital, Dresden Technological University ethics committee (document EK 1140 82202). Right atrial and ventricular trabeculae were prepared from explanted hearts of patients undergoing heart transplantation at The Prince Charles Hospital (ethics approval number EC9876). The investigation conforms to the principles outlined in the Declaration of Helsinki. Patient details are shown in Table 1i–iv.

2.2. Isolated cardiac tissues

Trabeculae from right atrial appendages [19] and ventricle [20] were set up to contract at 1 Hz 37 °C as described. To block both neuronal uptake and α -adrenoceptors the tissues were pretreated for 90 min with 5 μ M phenoxybenzamine followed by washout [19,20]. We did not include β_3 -adrenoceptor antagonists because all effects of (–)-noradrenaline and (–)-adrenaline in human right atrial and ventricular trabeculae can be explained by an interaction with β_1 - and β_2 -adrenoceptors [19–21], β_3 adrenoceptor agonists have no effect on contractility of right atrial and ventricular trabeculae in our laboratory [22,23] and pindolol, which is a β_3 -agonist at recombinant β_3 -adrenoceptors expressed at high density in CHO cells [24] causes positive inotropic effects in human right atrium which are not affected by the β_3 -blocker L-748,337 [25].

2.3. Receptor studies in cardiac tissues

 β_1 -Adrenoceptor-mediated effects were always investigated with noradrenaline in the presence of the β_2 -selective blocker ICI118551 (50 nM) and β_2 -adrenoceptor-mediated effects were always studied with adrenaline in the presence of the β_1 -selective blocker CGP20712 (300 nM) as described [20,21,26]. Serotonin effects were investigated in the presence of (–)-propranolol (200 nM) as described [27,28]. Histamine effects were investigated in the presence of CGP20712 (300 nM).

To investigate the reversibility of receptor blockade by carvedilol, we used right atrial trabeculae from patients without heart failure undergoing coronary artery bypass surgery. Trabeculae were incubated with or without carvedilol 10 nM for 240 min and then a concentration-effect curve was established to noradrenaline or adrenaline. Tissues were washed 10 times at equal intervals over 90 min before another concentration-effect curve was re-established. Experiments carried out on right atrium from patients chronically treated with either metoprolol or atenolol were pooled because we have previously shown that the potency of (–)-noradrenaline for positive inotropic effects is identical in these two groups [29,30].

Equilibrium dissociation constants (K_B) for carvedilol at β_1 - and β_2 -adrenoceptors were determined in right atrium from patients not in heart failure. Carvedilol (0.3–100 nM) was incubated for a period of 240 min unless otherwise stated and then a concentration-effect curve to noradrenaline or adrenaline was established. Concentration-effect curves were also established to the catecholamines in trabeculae from the same patient not incubated with carvedilol ('control tissues').

The effects of chronic administration of carvedilol were determined in heart tissues from three separate groups, 1. right atrium from patients with non-terminal heart failure undergoing coronary artery bypass surgery, 2. right atrium and 3. right or left ventricle from patients with terminal heart failure (Table 1ii–iii). Comparisons were made with tissues from patients not treated with β -blockers and a combined group of patients chronically treated with metoprolol or atenolol (Table 1ii–iii). In some groups, the effects of serotonin (right atrium, non-terminal heart failure), histamine and dibutyryl cyclic AMP (right ventricular trabeculae) were investigated. The routine use of right ventricular trabeculae ensured greater yields of viable trabeculae.

Table 1

i Summary of details for patients undergoing coronary artery bypass surgery from which right atrial tissues were obtained and used in affinity and washout experiments corresponding to Figs. 1 and 2

п	Aetiology n	Age	Sex n	EF	Medication	
47	IHD 47	60±2	M 38	66±2	β -blocker (n, dose mg) Atenolol (26, 54±6) Metoprolol (16, 84±11)	Other (drug n) A29,B26,C4,D31,E11

ii Summary of details for patients with non-terminal heart failure from which right atrial tissue was obtained during coronary artery bypass surgery corresponding to Fig. 3

Combined patien	it data								
Patient Group	n	Actiology n		Age	Sex n	EF	Medication n		
Carvedilol	18	IHD 16 IHD/valve repair 2		65±2 M 15		37±2	A15,B6,C10,D10,E4,F4.		
Daily dose 22 ± 3 duration 121 ± 54			s, and repair 2						
Experimental gro	oup	п		Age		EF	Daily dose	Duration	
Noradrenaline		14		65 ± 3		37 ± 2	23 ± 3	133 ± 66	
Adrenaline		16		66 ± 3		37 ± 2	22 ± 3	$120\!\pm\!58$	
Serotonin		9		67 ± 3		39 ± 2	24 ± 4	77±31	
Combined patien	ıt data								
Patient Group		п	Aetiology n		Age	Sex n	EF	Medication n	
Metoprolol/Atend	olol	19	CABG 19		64 ± 2	M 15	37±2	A14,B11,C5,D11,E5,F3	
		п					Daily dose		
Metoprolol		12					85 ± 12		
Atenolol		7					68±9		
Experimental gro	oup		n	ı		А	ge	EF	
Noradrenaline			1	5		6	7±2	36±2	
Adrenaline			1	7		64	1±3	37±2	
Serotonin				7		7	36±4		

iii Summary of details for patients with terminal heart failure from which atrial and/or ventricular tissue was obtained corresponding to experiments in Figs. 4 and 5

Patient group	п	Aetiology n	Age	Sex	EF	CI	Medication n	
Non-β-blocked	11	IHD 3 IDC 8	47±5	M 11	24±3	$2.5\!\pm\!0.3$	A11,B9,C11,D2,F8,G8,H8,I5	
Experimental group	1		n		Age		EF	CI
Noradrenaline ventricle			9		47 ± 6		22±2	2.4 ± 0.4
Adrenaline ventricle			10		47 ± 5		22 ± 2	2.4 ± 0.4
Histamine ventricle			5		50 ± 4		19 ± 1	2.2 ± 0.3
Dibutyryl cyclicAMP ventricle			5		48 ± 3		19 ± 1	2.2 ± 0.3
Noradrenaline atrium			7 44±7		44 ± 7		26±4	2.8 ± 0.5
Adrenaline atrium			8		46 ± 7		23 ± 2	2.5 ± 0.4

Table 1	(continued)
---------	-------------

Noradrenaline ventricle1548±3 27 ± 4 2.1 ± 0.2 28 ± 8 22 Noradrenaline ventricle15 48 ± 3 27 ± 4 2.1 ± 0.2 28 ± 8 22 Histamine ventricle7 45 ± 5 34 ± 6 2.0 ± 0.2 31 ± 13 29 Dibutrylyl cAMP ventricle5 43 ± 3 35 ± 9 2.0 ± 0.2 21 ± 8 28 Noradrenaline atrium9 46 ± 5 30 ± 7 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 33 ± 11 26 Combined patient dataPatient Group n Actiology n AgeSex n EFCIMedicatioMetropolol4IHD 2 43 ± 9 M 3 27 ± 8 1.8 ± 0.2 $A2,B2,C2$ HD/HOCM 1110 45 ± 4 28 ± 6 2.1 ± 0.2 37 ± 24 $A2,B2,C2$ HD/HOCM 187\pm241 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Duration874\pm6852 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 ± 4 Ventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87	Combined patient day	ta								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Patient Group	п	Aetiology n	Age	S	lex n	EF	CI	Medication	n
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Carvedilol	15		48±3	Ν	И 14	27 ± 4	2.1 ± 0.2	A12,B9,C11	,D6,F8,G9,H6,I6,J2
Duration 220 ± 44 HOCM 1 CS 1Experimental groupnAgeEFCIDaily doseDailyNoradrenaline ventricle1548 ± 3 27 ± 4 2.1 ± 0.2 28 ± 8 22 Adrenaline ventricle1548 ± 3 27 ± 4 2.1 ± 0.2 28 ± 8 22 Adrenaline ventricle7 45 ± 5 34 ± 6 2.0 ± 0.2 31 ± 13 29 Dibutrylyl cAMP ventricle5 43 ± 3 35 ± 9 2.0 ± 0.2 31 ± 13 29 Dibutrylyl cAMP ventricle5 43 ± 3 35 ± 9 2.0 ± 0.2 31 ± 12 24 Adrenaline atrium9 46 ± 5 30 ± 7 2.1 ± 0.2 33 ± 11 26 Combined patient dataPatient Group n Aetiology n AgeSex n EFCIMedicatioMetoprolol4HD 2 43 ± 9 M 3 27 ± 8 1.8 ± 0.2 $A2,B2,C2$ Dialy dose 87 ± 24 HOCM 1 87 ± 24 Duration 87 ± 24 DurationNoradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenalineventricle/atrium4 <td< td=""><td>Daily dose</td><td></td><td>RC 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Daily dose		RC 1							
220 ± 44 CS 1Experimental group n AgeEFCIDaily doseDrNoradrenaline ventricle1548 \pm 3 27 ± 4 2.1 ± 0.2 28 ± 8 22 Adrenaline ventricle1548 \pm 3 27 ± 4 2.1 ± 0.2 28 ± 8 22 Histamine ventricle7 45 ± 5 34 ± 6 2.0 ± 0.2 31 ± 13 29 Dibutrylyl cAMP ventricle5 43 ± 3 35 ± 9 2.0 ± 0.2 21 ± 8 28 Noradrenaline atrium9 46 ± 5 30 ± 7 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 33 ± 11 26 Combined patient dataPatient Group n Aetiology n AgeSex n EFCIMedicationMetoprolol4IHD 2 HD/HOCM 1 43 ± 9 M 3 27 ± 8 1.8 ± 0.2 $A2,B2,C2$ Dily dose 874 ± 28 HOCM 1 87 ± 24 DurationStr24Burdion ventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenaline ventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 $87 \pm 37 \pm $	28±8		VD 2							
Experimental groupnAgeEFCIDaily doseDailyNoradrenaline ventricle15 48 ± 3 27 ± 4 2.1 ± 0.2 28 ± 8 22 Adrenaline ventricle15 48 ± 3 27 ± 4 2.1 ± 0.2 28 ± 8 22 Histamine ventricle7 45 ± 5 34 ± 6 2.0 ± 0.2 31 ± 13 29 Dibutrylyl cAMP ventricle5 43 ± 3 35 ± 9 2.0 ± 0.2 21 ± 8 28 Noradrenaline atrium9 46 ± 5 30 ± 7 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 33 ± 11 26 Combined patient dataPatient Group n Aetiology n AgeSex n EFCIMedicationMetoprolol4IHD 2 43 ± 9 M 3 27 ± 8 1.8 ± 0.2 $A2,B2,C2$ Daily doseHOCM 1HOCM 1HOCM 1 87 ± 24 87 ± 24 87 ± 24 Duration87\pm 24Ventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 Moradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 iv Summary of details for patients with non-terminal heart failure from which right atrial tissue was obtained during coronary artery bypass surgery	Duration		HOCM 1							
NoradrenalineVentricle1548 ± 3 27 ± 4 2.1 ± 0.2 28 ± 8 22 Noradrenaline ventricle1548 ± 3 27 ± 4 2.1 ± 0.2 28 ± 8 22 Histamine ventricle7 45 ± 5 34 ± 6 2.0 ± 0.2 31 ± 13 29 Dibutrylyl cAMP ventricle5 43 ± 3 35 ± 9 2.0 ± 0.2 21 ± 8 28 Noradrenaline atrium9 46 ± 5 30 ± 7 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 33 ± 11 26 Combined patient data $1HD 2$ 43 ± 9 $M 3$ 27 ± 8 1.8 ± 0.2 $A2,B2,C2$ IHD/HOCM 11 $1HD 2$ 43 ± 9 $N 3$ 27 ± 8 1.8 ± 0.2 $A2,B2,C2$ Introlocom874 \pm 28 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 ± 24 Duration874 \pm 685 87 ± 24 87 ± 24 87 ± 24 87 ± 24 87 ± 24 Noradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 ± 24 Voradrenalineventri	220±44		CS 1							
Adrenaline ventricle15 48 ± 3 27 ± 4 2.1 ± 0.2 28 ± 8 22 Histamine ventricle7 45 ± 5 34 ± 6 2.0 ± 0.2 31 ± 13 29 Dibutrylyl cAMP ventricle5 43 ± 3 35 ± 9 2.0 ± 0.2 21 ± 8 28 Noradrenaline atrium9 46 ± 5 30 ± 7 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 33 ± 11 26 Combined patient dataPatient Group n Aetiology n AgeSex n EFCIMedicationMetoprolol4IHD 2 IHD/HOCM 1 43 ± 9 M 3 27 ± 8 1.8 ± 0.2 $A2,B2,C2$ Daily dose 87 ± 24 HOCM 1 87 ± 24 Duration 87 ± 24 DurationNoradrenaline ventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenaline ventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenaline ventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenaline ventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 ± 24 Vi Summary of details for patients with non-terminal heart failure from which right atrial tissue was obtained during coronary artery bypass surgery	Experimental group		п	Age		EF		CI	Daily dose	Duration
Histamine ventricle7 45 ± 5 34 ± 6 2.0 ± 0.2 31 ± 13 29 Dibutrylyl cAMP ventricle5 43 ± 3 35 ± 9 2.0 ± 0.2 21 ± 8 28 Noradrenaline atrium9 46 ± 5 30 ± 7 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 33 ± 11 26 Combined patient dataPatient Group n Aetiology n AgeSex n EFCIMedicatioMetoprolol4IHD 2 43 ± 9 M 3 27 ± 8 1.8 ± 0.2 $A2,B2,C2$ HD/HOCM 1HOCM 1Patient of 87\pm 24Patient of 87\pm 24Patient of 87\pm 24Patient of 87\pm 24Duration874\pm 685Ventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Vi Summary of details for patients with non-terminal heart failure from which right atrial tissue was obtained during coronary artery bypass surgery	Noradrenaline ventric	cle	15	48±3		27 ± 4		2.1 ± 0.2	28 ± 8	220±44
Dibutrylyl cAMP ventricle5 43 ± 3 35 ± 9 2.0 ± 0.2 21 ± 8 28 Noradrenaline atrium9 46 ± 5 30 ± 7 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 33 ± 11 26 Combined patient dataPatient Group n Aetiology n AgeSex n EFCIMedicationMetoprolol4IHD 2 43 ± 9 M 3 27 ± 8 1.8 ± 0.2 $A2,B2,C2$ ImD/HOCM 1ImD/HOCM 1ImD/HOCM 1 87 ± 24 87 ± 24 87 ± 685 Experimental group n AgeEFCIDailyDuNoradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Wardenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Woradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 $87\pm 67\pm 67\pm 67\pm 67\pm 67\pm 67\pm 67\pm 67\pm 67\pm 6$	Adrenaline ventricle		15	48 ± 3		27 ± 4		2.1 ± 0.2	28 ± 8	$220\!\pm\!44$
Noradrenaline atrium9 46 ± 5 30 ± 7 2.1 ± 0.2 31 ± 12 24 Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 33 ± 11 26 Combined patient dataPatient GroupnActiology nAgeSex nEFCIMedicationMetoprolol4IHD 2 43 ± 9 M 3 27 ± 8 1.8 ± 0.2 $A2,B2,C2$ IHD/HOCM 1HOCM 1HOCM 1HOCM 1Patient groupnAgeEFCIDailyDuNoradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 ± 36 Voradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 ± 36 Voradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 ± 36 Voradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 ± 36 Voradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 ± 36 Voradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 ± 36 Voradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 ± 36 Voradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0	Histamine ventricle		7	45 ± 5		34 ± 6		2.0 ± 0.2	31 ± 13	295 ± 72
Adrenaline atrium10 45 ± 4 28 ± 6 2.1 ± 0.2 33 ± 11 26Combined patient dataPatient GroupnAetiology nAgeSex nEFCIMedicationMetoprolol4IHD 2 43 ± 9 M 3 27 ± 8 1.8 ± 0.2 $A2,B2,C2$ Daily doseHD/HOCM 1HOCM 1 $B2\pm42$ $B2\pm42$ $B2\pm42$ $B2\pm42$ Duration 87 ± 24 HOCM 1 $B2\pm42$ $B2\pm42$ $B2\pm42$ Noradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Vir Summary of details for patients with non-terminal heart failure from which right atrial tissue was obtained during coronary artery bypass surgery $B2\pm4$ $B2\pm4$	Dibutrylyl cAMP ver	ntricle	5	43 ± 3		35 ± 9		2.0 ± 0.2	21 ± 8	$286\!\pm\!86$
Combined patient dataPatient GroupnActiology nAgeSex nEFCIMedicationMetoprolol4IHD 2 HD/HOCM 1 43 ± 9 M 3 27 ± 8 1.8 ± 0.2 $A2,B2,C2$ Daily dose 87±24 Duration 874±685HOCM 1 Age EFCIDaily DuExperimental groupnAgeEFCIDaily DuNoradrenaline ventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 Noradrenaline ventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 874 ± 874 iv Summary of details for patients with non-terminal heart failure from which right atrial tissue was obtained during coronary artery bypass surgery 1.8 ± 0.2 87 ± 24 874 ± 874	Noradrenaline atrium	1	9	46 ± 5		30 ± 7		2.1 ± 0.2	31 ± 12	241 ± 64
Patient GroupnAetiology nAgeSex nEFCIMedicationMetoprolol4IHD 2 IHD/HOCM 1 43 ± 9 M 3 27 ± 8 1.8 ± 0.2 $A2,B2,C2$ Daily dose 87±24HOCM 1Duration 874±685NoradrenalineNentricle/atriumAgeEFCIDailyDuNoradrenaline ventricle/atriumventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 ± 24 Voradrenaline ventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 ± 24 Visupmary of details for patients with non-terminal heart failure from which right atrial tissue was obtained during coronary artery bypass surgery 120 120 120 120	Adrenaline atrium		10	45 ± 4		28 ± 6		2.1 ± 0.2	$33\!\pm\!11$	263 ± 61
Metoprolol4IHD 2 IHD/HOCM 1 HD/HOCM 143 \pm 9M 327 \pm 81.8 \pm 0.2A2,B2,C2Daily dose 87 \pm 24 Duration 874 \pm 685HOCM 1AgeEFCIDailyDuNoradrenaline ventricle/atriumnAgeEFCIDailyDuNoradrenaline ventricle/atrium443 \pm 927 \pm 81.8 \pm 0.287 \pm 24874Adrenalineventricle/atrium443 \pm 927 \pm 81.8 \pm 0.287 \pm 24874Adrenalineventricle/atrium443 \pm 927 \pm 81.8 \pm 0.287 \pm 24874iv Summary of details for patients with non-terminal heart failure from which right atrial tissue was obtained during coronary artery bypass surgery111	Combined patient da	ta								
Independence <th< td=""><td>Patient Group</td><td>п</td><td>Aetiology n</td><td></td><td>Age</td><td>Sex</td><td>n</td><td>EF</td><td>CI</td><td>Medication n</td></th<>	Patient Group	п	Aetiology n		Age	Sex	n	EF	CI	Medication n
87 ± 24 Duration 874 ± 685 nAgeEFCIDailyDuExperimental groupnAgeEFCIDailyDuNoradrenaline Adrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 874 ± 874 iv Summary of details for patients with non-terminal heart failure from which right atrial tissue was obtained during coronary artery bypass surgery	Metoprolol	4			43 ± 9	M 3		27±8	1.8 ± 0.2	A2,B2,C2,D3,I1
874 ± 685 Experimental groupnAgeEFCIDailyDuNoradrenaline Adrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 ± 24 iv Summary of details for patients with non-terminal heart failure from which right atrial tissue was obtained during coronary artery bypass surgery			HOCM 1							
Noradrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 874 Adrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 874 iv Summary of details for patients with non-terminal heart failure from which right atrial tissue was obtained during coronary artery bypass surgery										
Adrenalineventricle/atrium4 43 ± 9 27 ± 8 1.8 ± 0.2 87 ± 24 87 ± 24 iv Summary of details for patients with non-terminal heart failure from which right atrial tissue was obtained during coronary artery bypass surgery	Experimental group			n	Age		EF	CI	Daily	Duration
iv Summary of details for patients with non-terminal heart failure from which right atrial tissue was obtained during coronary artery bypass surgery	Noradrenaline	ventr	ricle/atrium	4	43 ± 9		27±8	1.8 ± 0.2	87 ± 24	874±685
	Adrenaline	ventr	icle/atrium	4	$43\!\pm\!9$		27±8	$1.8\!\pm\!0.2$	87 ± 24	874±685
corresponding to Fig. 6. All patients used for noradrenaline and adrenaline experiments	•	*				-		was obtained during	coronary artery by	pass surgery
Patient Group n Aetiology n Age Sex n EF Medication n	Patient Group	п	Aetiology n		Ag	e	Sex n	EF	Medicati	on n

Patient Group	п	Actiology n	Age	Sex n	EF	Medication n
Carvedilol	5	IHD 2 IHD/valve repair 2	63±6	M 2	40±3	A5,B3,C4,D4,F1
Daily dose 22±2		Valve repair 1				
Duration 98±34						
Metoprolol	4	IHD 2 IHD/valve repair 1	73 ± 5	M 4	39±4	A3,B1,C1,D2
Daily dose		Valve repair 1				
87 ± 44						
duration						
$77\pm$ 38.5						

n, Number of patients, age (years), duration (days), dose (mg), CI cardiac index (ml/min/m²), EF ejection fraction % determined from angiocardiography, IHD ischemic heart disease, IDC idiopathic dilated cardiomyopathy, DC dilated cardiomyopathy, RC restrictive cardiomyopathy, VD valvular disease, HOCM hypertrophic obstructive cardiomyopathy, CS cardiogenic shock.

A angiotensin converting enzyme inhibitor, B nitrate, C diuretic, D hypolipidemic, E L-type Ca^{2+} channel antagonist, F digoxin, G spironolactone, H warfarin, I amiodarone, J AT₁ receptor antagonist (irbesartan).

2.4. I_{Ca,L} measurement

Atrial myocytes were isolated from non-terminally failing hearts of patients treated with either carvedilol or metoprolol (Table 1iv) and $I_{Ca,L}$ measured as described [31]. Cells were continually superfused via a rapid

solution exchange system (inner diameter 310 μ m) positioned at a distance of 100–150 μ m from the cell under investigation with a flow rate of 100 μ l/min allowing intense wash out of remaining drugs. Superfusion was started five minutes before the first catecholamine concentration was applied.

2.5. Analysis and statistics

Agonist concentrations causing half maximal effects of agonists were estimated as $-\log EC_{50}M$. The antagonism by carvedilol of the catecholamine effects was analyzed with Schild-plots [32] and equilibrium dissociation constants K_B were estimated. Concentration-effect curves were analyzed using GraphPad Prism. One-way ANOVA with post-hoc Bonferroni correction was used to compare multiple sets of data simultaneously.

3. Results

3.1. Carvedilol antagonizes the inotropic effects of adrenaline, mediated through β_2 -adrenoceptors more than the effects of noradrenaline, mediated through β_1 -adrenoceptors

A single concentration-effect curve to a catecholamine was carried out on 2-6 trabeculae from the same atrium in

the absence and presence of carvedilol. Carvedilol antagonized the effects of adrenaline, mediated through β_2 adrenoceptors more than the effects of noradrenaline, mediated through β_1 -adrenoceptors (Figs. 1 and 2). Carvedilol (10 nM) shifted the concentration-effect curves by reducing the -logEC50 values for noradrenaline and adrenaline by 1.08 ± 0.12 (n=6) and 2.15 ± 0.10 (n=6) log units, respectively (P < 0.0001) (Fig. 1C and D). To inquire whether antagonism by carvedilol was reversible, a second concentration-effect curve to the catecholamines was carried out on carvedilol-treated and non-carvedilol-treated trabeculae. The sensitivity to the catecholamines of the second curve was reduced similarly in non-carvedilol-treated (Fig. 1A and B) and carvedilol-treated (Fig. 1C and D) trabeculae. Thus, the antagonism of the effects of both noradrenaline and adrenaline by 10 nM carvedilol persisted 90 min after carvedilol washout.

In additional experiments, the antagonism was investigated as a function of carvedilol concentrations and Schild-plots determined (Fig. 2). Carvedilol up to 100 nM caused surmountable antagonism of the effects of

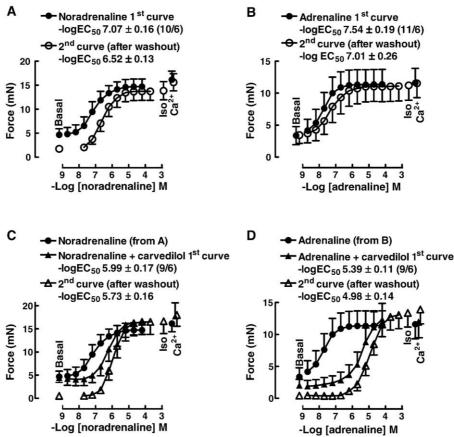


Fig. 1. Greater antagonism of the positive inotropic effects of adrenaline than noradrenaline by 10 nM carvedilol (240 min incubation) on atrial trabeculae from non-failing hearts (Table 1i). Blockade was persistant at both β_1 - and β_2 -adrenoceptors. Two successive concentration-effect curves for the catecholamines were determined (first curve closed symbols, second curve open symbols), in non-carvedilol-treated trabeculae (A,B) or carvedilol-treated trabeculae in which carvedilol was added exogenously (C,D). The second successive curve was established after a 90-min wash protocol involving 10 changes of incubation buffer which did not include exogenously added carvedilol and shows persistent carvedilol blockade (C,D open symbols) taking the time control (A,B open symbols) into consideration. The first curves in the absence of carvedilol of A and B are also shown for comparison in C and D, respectively. Numbers between parentheses represent trabeculae/patients. Iso, isoprenaline 200 μ M; Ca²⁺, Ca²⁺ 9.25 mM.

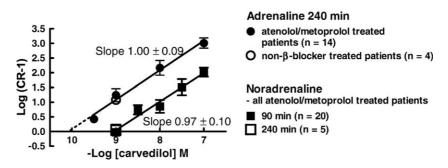
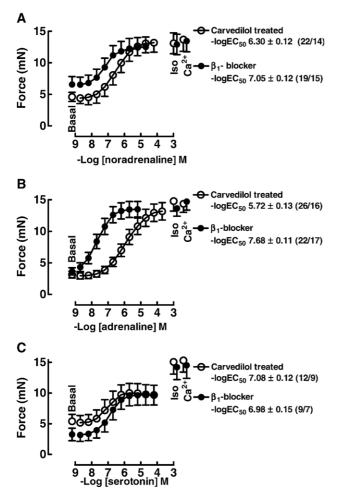



Fig. 2. Schild-plots for carvedilol. $-\log K_B$ values of 10.13 ± 0.08 (n=19 concentration-ratios) and 9.02 ± 0.07 (n=32 concentration-ratios) P < 0.0001, were estimated from the antagonism vs. adrenaline and noradrenaline, respectively. Carvedilol incubation time was 240 min unless otherwise stated.

noradrenaline and adrenaline. Slopes of Schild-plots were not different from slope one (Fig. 2). Carvedilol was 13fold more effective in antagonizing the effects of adrena-

line through β_2 -adrenoceptors than the effects of noradrenaline through β_1 -adrenoceptors in atrial trabeculae obtained from patients undergoing coronary artery bypass surgery without heart failure chronically treated with metoprolol or atenolol (Fig. 2). The antagonism of the effects of both noradrenaline and adrenaline by 1 nM carvedilol in atria from β_1 -blocker-treated patients was similar to the antagonism observed in atria from 4 patients not treated with β -blockers (Fig. 2). The antagonism of the effects of noradrenaline by 1 nM carvedilol was not different with 90 or 240 min incubation (Fig. 2, open squares). However, the antagonism of the effects of adrenaline by carvedilol (1–100 nM) was consistently

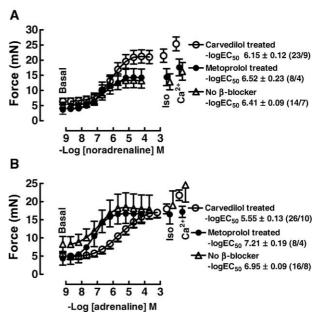


Fig. 3. Greater reduced responsiveness to adrenaline (B) than to noradrenaline (A) of atrial trabeculae obtained from patients with non-terminal heart failure chronically treated with carvedilol (Table 1ii). Comparison with catecholamine responsiveness of atria from patients with non-terminal heart failure chronically treated with β_1 -adrenoceptor-selective blockers (Table 1ii). (C) Unchanged effects of serotonin. Numbers between parentheses represent trabeculae/patients. ISO, isoprenaline 200 μ M; Ca²⁺, Ca²⁺ 9.25 mM.

Fig. 4. Greater reduced responsiveness to adrenaline (B) than to noradrenaline (A) in atrial trabeculae from patients with terminal heart failure treated with carvedilol (Table 1iii). Comparison with catecholamine responsiveness of atria from patients with terminal heart failure not treated with β -blockers (Table 1iii) or chronically treated with metoprolol (Table 1iii). Note that the maximum noradrenaline and Ca²⁺ responses in the 3 groups of A were not significantly different (P=0.14 and P=0.13, respectively, one way ANOVA). The numbers between parentheses represent trabeculae/patients. ISO, isoprenaline 200 μ M; Ca²⁺, Ca²⁺ 9.25 mM.

smaller with 90 min incubation (data not shown) than 240 min incubation.

3.2. Persistent and selective blockade of β_2 -adrenoceptors in atrial trabeculae from patients with non-terminal heart failure chronically treated with carvedilol

Atrial appendages were obtained from patients with non-terminal heart failure chronically treated with carvedilol or β_1 -selective blockers (atenolol or metoprolol) with matching ejection fractions (Table 1ii). The positive inotropic effects of noradrenaline, mediated through β_1 adrenoceptors, and adrenaline, mediated through β_2 adrenoceptors, were compared. Atrial trabeculae from carvedilol-treated patients responded 5.6-fold less to noradrenaline than trabeculae from β_1 -blocker-treated patients (Fig. 3A). Responsiveness to adrenaline in trabeculae from carvedilol-treated patients was 91.2-fold less than in trabeculae from β_1 -selective blocker-treated patients (Fig. 3B).

To investigate whether carvedilol also altered the function of other receptors coupled to G_s protein we compared the effects of serotonin, mediated through 5-HT₄ receptors [27,28] in the 2 groups (Table 1ii). The

inotropic potency and efficacy of serotonin was not significantly different in atrial trabeculae from patients treated with carvedilol or β_1 -selective blockers (Fig. 3C).

3.3. Chronic carvedilol treatment of patients with terminal heart failure causes persistent blockade of β_2 -adrenoceptors of atrial myocardium

Atrial trabeculae from explanted hearts in terminal failure of carvedilol-treated patients responded 1.8-fold and 2.3fold less to noradrenaline than atrial trabeculae from non- β blocker-treated and metoprolol-treated patients, respectively (Fig. 4A). Responsiveness to adrenaline in atrial trabeculae of explanted hearts from carvedilol-treated patients was 25.1-fold and 45.7-fold less than in trabeculae from non- β blocker-treated and metoprolol-treated patients, respectively (Fig. 4B).

3.4. Chronic carvedilol treatment of patients with terminal heart failure causes persistent selective blockade of β_2 -adrenoceptors of ventricular myocardium

Right ventricular trabeculae from explanted hearts in terminal failure of carvedilol-treated patients responded 3.9-

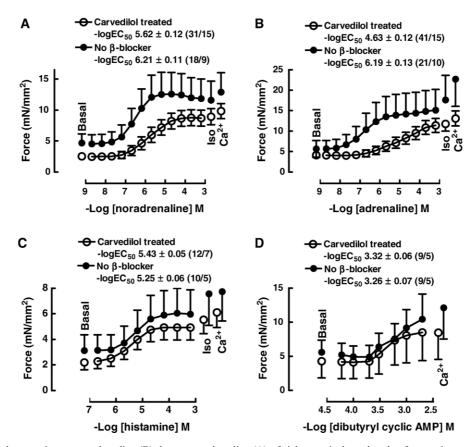


Fig. 5. Greater reduced responsiveness to adrenaline (B) than to noradrenaline (A) of right ventricular trabeculae from patients with terminal heart failure treated with carvedilol (Table 1iii). Unchanged responses to histamine (C) and dibutyryl cyclic AMP (D). Comparison with catecholamine responsiveness of ventricular trabeculae from patients with terminal heart failure not treated with β -blockers (Table 1iii). Numbers between parentheses represent trabeculae/ patient. ISO, isoprenaline 200 μ M; Ca²⁺, Ca²⁺ 9.25 mM.

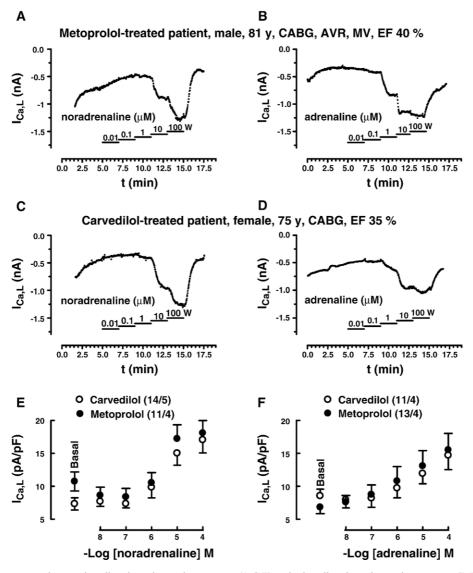


Fig. 6. Increases of $I_{Ca,L}$ current by noradrenaline through β_1 -adrenoceptors (A,C,E) and adrenaline through β_2 -adrenoceptors (B,D,F) in atrial myocytes obtained from patients with non-terminal heart failure chronically treated with carvedilol (Table 1iv) or metoprolol (Table 1iv). Representative experiments are shown in myocytes from a metoprolol-treated patient (A, B) and carvedilol-treated patient (C, D). The effects of 10 μ M and 100 μ M noradrenaline were significant in both myocytes from both carvedilol-treated (P < 0.001) and metoprolol-treated (P < 0.001) patients. The effects of 10 μ M adrenaline was significant (P < 0.05) in carvedilol-treated patients; the effects of 100 μ M adrenaline was significant (P < 0.05) in both carvedilol-treated and metoprolol-treated patients. Numbers between parentheses in Figures E and F are myocytes/patients.

fold less to noradrenaline than trabeculae from non- β -blocker-treated patients (Fig. 5A). Responsiveness to adrenaline in trabeculae from explanted hearts of carvedilol-treated patients was 36.3-fold less than in trabeculae from non- β -blocker-treated patients (Fig. 5B).

We also tested left ventricular trabeculae from 3 carvedilol-treated and 5–6 non- β -blocker-treated patients. Noradrenaline was 6.9-fold less potent in carvedilol-treated patients ($-\log EC_{50}$ carvedilol-treated 5.13±0.41; non- β -blocker group 5.97±0.11, P=0.045) and adrenaline was 190.5-fold less potent ($-\log EC_{50}$ carvedilol-treated 4.06±0.14; non- β -blocker group 6.34±0.09, P<0.001).

Chronic carvedilol treatment did not modify the positive inotropic responses to histamine (Fig. 5C),

mediated through H_2 receptors [33], or dibutyryl cyclicAMP (Fig. 5D) compared to non- β -blocker-treated patients.

3.5. Similar $I_{Ca,L}$ responses to noradrenaline, mediated through β_1 -adrenoceptors, and to adrenaline, mediated through β_2 -adrenoceptors, in atrial myocytes from nonterminal heart failure patients treated with carvedilol or metoprolol

Noradrenaline (10 nM-100 μ M) in the presence of ICI118551 (50 nM) caused similar increases of $I_{Ca,L}$ in myocytes from patients treated with metoprolol or carvedilol (Fig. 6). Adrenaline (10 nM-100 μ M) in the presence of

CGP20712 (300 nM) caused similar increases in $I_{Ca,L}$ in myocytes from carvedilol-treated and metoprolol-treated patients (Fig. 6).

4. Discussion

We demonstrated in human cardiac tissues that carvedilol was consistently β_2 -selective. Carvedilol, administered to isolated atrial trabeculae, antagonized 13-fold more the positive inotropic effects of adrenaline, mediated through β_2 -adrenoceptors, than the effects of noradrenaline mediated through β_1 -adrenoceptors on atrial trabeculae. Persistent greater blockade of the effects of adrenaline through β_2 adrenoceptors than of noradrenaline through β_1 -adrenoceptors was also detected in the myocardium obtained from heart failure patients chronically treated with carvedilol compared to metoprolol-treated or non- β -blocker-treated patients. In contrast, the $I_{Ca,L}$ -enhancing responses to noradrenaline through β_1 -adrenoceptors and to adrenaline through β_2 adrenoceptors were not different in atrial myocytes from carvedilol-treated and metoprolol-treated patients.

4.1. Carvedilol causes selective β_2 -adrenoceptor blockade

Persistent β-adrenoceptor blockade in atria from carvedilol-treated patients has been previously observed and attributed to an allosteric effect on β_1 -adrenoceptors, using isoprenaline as agonist [16]. We confirm the persistent β adrenoceptor blockade in both atria and ventricular trabeculae obtained from patients chronically treated with carvedilol, but demonstrate that the residual blockade is one order of magnitude greater for β_2 -adrenoceptors, activated by adrenaline, than β_1 -adrenoceptors, activated by noradrenaline. Chronic carvedilol-treatment reduced the inotropic potency of adrenaline through β_2 -adrenoceptors more than of noradrenaline through β_1 -adrenoceptors in atria from non-terminal heart failure compared to atenolol/ metoprolol-treated patients (16.3-fold, Fig. 3), atria from terminal heart failure compared to non β-blocker-treated-(13.8-fold, Fig. 4) or metoprolol-treated patients (19.9-fold, Fig. 4) and ventricle compared to non β -blocker-treatedpatients (9.3-fold, Fig. 5). This evidence of preferential residual β_2 -adrenoceptor blockade is consistent with the 13fold β_2 -adrenoceptor-selectivity, estimated from our experiments (Figs. 1 and 2) when atrial trabeculae from the same patients were incubated with or without carvedilol 10 nM in vitro. Data from Schild-plot analysis makes it unlikely that carvedilol modifies β_1 -adrenoceptors through an allosteric mechanism [16]. Alternatively, we propose that hyporesponsiveness to isoprenaline observed in isolated atria from carvedilol-treated patients [16] is mainly due to selective blockade of β_2 -adrenoceptors.

As observed previously in atria from non-failing hearts [21,29,34], atria from moderately failing hearts of patients chronically treated with the β_1 -adrenoceptor-selective ate-

nolol or metoprolol exhibited a 4.3-fold greater sensitivity to adrenaline, acting through β_2 -adrenoceptors, than to noradrenaline, acting through β_1 -adrenoceptors (Fig. 3A and B). The mechanism of this selective β_2 -hyperresponsiveness is still elusive, but not due to residual antagonism of β_1 adrenoceptors [29]. In contrast, atria from carvedilol-treated patients showed a 3.8-fold lower sensitivity to adrenaline than to noradrenaline (Fig. 3A and B). The mechanism of the β_2 -adrenoceptor hyporesponsiveness caused by carvedilol is due to the persistently greater blockade of β_2 - than β_1 -adrenoceptors.

4.2. Mechanisms of the persistent myocardial β -adrenoceptor hyporesponsiveness in isolated myocardium from carvedilol-treated patients

Carvedilol is concentrated in the rat heart but the free fraction of drug is only 1% [17]. Carvedilol also accumulates in failing human ventricle to 0.07 ng/mg wet weight [18], equivalent to 170 nM, if all the carvedilol is freely available. If this were the concentration in the extracellular fluid the potency of noradrenaline and adrenaline should be decreased 2 and 3 orders of magnitude, respectively, as expected from our pK_B estimates 9.0 and 10.1, respectively. However, the residual carvedilol-induced hyposensitivity was only between approximately 0.5 and less than 2 orders of magnitude for noradrenaline and adrenaline, respectively. Therefore, in line with a previous suggestion [14], lipophilic carvedilol [35] appears to accumulate at sites distinct from β adrenoceptors and may conceivably leak out from lipophilic stores and maintain a relatively high concentration in the biophase thereby causing β -adrenoceptor occupancy. This may in turn result in the persistent β-adrenoceptor hyporesponsiveness detected by us and others [16] and shown herein to be greater through β_2 - than β_1 -adrenoceptors.

Hyporesponsiveness of β_1 - and β_2 -adrenoceptor mediated responses in heart tissues from patients chronically treated with carvedilol is unlikely to be due to downregulation of β -adrenoceptors. Furthermore, the selective hyporesponsiveness of β_2 -adrenoceptor mediated responses is also unlikely to be due to selective down-regulation of β_2 adrenoceptors. No change in β -adrenoceptor density in right ventricular septal endomyocardial biopsies from heart failure patients treated with carvedilol for 4 months was observed [36]. Moreover, the lack of hyporesponsiveness observed in myocytes for both β_1 - and β_2 -adrenoceptor mediated effects observed in this study is also consistent with no change in receptor density.

As shown previously with isoprenaline [16], the antagonism by carvedilol (10 nM) of the effects of noradrenaline and adrenaline through both β_1 - and β_2 -adrenoceptors persisted after washout of the β -blocker. To account for persistent blockade, an allosteric mechanism at β_1 -adrenoceptors was proposed [16]. The persistent blockade by carvedilol could also be due to covalent binding. However, blockade by carvedilol was surmounted by higher catechol-

137

amine concentrations (Fig. 1), and slopes of one of Schildplots were consistent with competitive antagonism (Fig. 2), ruling out covalent binding and making an allosteric mechanism unlikely.

We discussed that the accumulation of carvedilol and continuous leakage from sites of storage in cardiac tissues [17,18] could account for the persistent blockade of catecholamine effects through both β_1 - and β_2 -adrenoceptors. It is, however, unlikely that binding of carvedilol to a myocyte, subsequently isolated and not surrounded by other cells, would continue to exhibit persistent blockade of the catecholamine effects because carvedilol would slowly dissociate (2-4 h) from the receptors and other binding sites. As expected, whole cell patch clamping experiments in isolated myocytes revealed that the ICa,L increases caused by noradrenaline through β_1 -adrenoceptors and by adrenaline through β_2 -adrenoceptors were not blunted in myocytes obtained from carvedilol-treated patients compared to myocytes from metoprolol-treated patients. We propose that intense washing during the cell isolation procedure and the subsequent application of rapid solution exchange during the experiment may lead to much more effective washout of carvedilol than in experiments with intact tissue.

4.3. Chronic treatment with carvedilol does not reduce the function of serotonin 5- HT_4 receptors and histamine H_2 receptors

Chronic carvedilol treatment did not affect the atrial responses to serotonin, compared to atria from β_1 -blockertreated patients. Chronic treatment with β_1 -selective blockers sensitizes 5-HT₄ receptors to the arrhythmic [37] and inotropic effects of serotonin [28]. The serotonin potency and efficacy in atria from carvedilol-treated patients was similar to that observed in atrial myocardium from patients treated with atenolol or metoprolol [28], suggesting that carvedilol also sensitizes the 5-HT₄ receptor system.

Carvedilol treatment failed to affect the ventricular responses to histamine, mediated through H₂ receptors [33], and to dibutyryl cyclic AMP. Thus, the persistent β_1 - and β_2 -adrenoceptor blockade caused by carvedilol does not result in cross talk with ventricular H₂ receptors or modify signals downstream of adenylyl cyclase.

4.4. Possible clinical implications

Noradrenaline and adrenaline are equieffective as inotropic stimulants through β_1 - and β_2 -adrenoceptors, respectively, of isolated ventricular myocardium from patients with terminal heart failure [20]. β_2 -adrenoceptors mediate arrhythmias in human atrial myocardium [38] and ventricular fibrillation in the myocardium of dogs with experimental myocardial infarction and ischemia [39]. It is therefore plausible that patients with ischemic heart disease and heart failure may suffer β_2 -adrenoceptor-mediated arrhythmias, including fatal ventricular fibrillation, during surges of adrenaline in situations of stress and cardiac surgery. Unlike β_1 -selective blockers, β_2 -selective carvedilol would prevent such arrhythmias, a property that may contribute to the beneficial effects in heart failure and to life prolongation. Recent evidence is consistent with this proposal. Carvedilol reduces the incidence of both atrial and ventricular arrhythmias in patients with myocardial infarction and already treated with ACE inhibitors, as found in a retrospective but blinded analysis of the CAPRICORN [40] trial [41]. Carvedilol markedly reduced the incidence of transient atrial fibrillation, compared to β_1 -selective metoprolol or atenolol, in patients that underwent coronary bypass grafting [42]. High adrenaline plasma levels have been measured during [43] and after cardiopulmonary bypass [44] which may trigger transient atrial fibrillation. The greater effectiveness of carvedilol than β_1 -selective blockers in preventing transient atrial fibrillation is probably due to blockade of β_2 -adrenoceptors.

4.5. Study limitations

Several aetiologies of terminal heart failure patients were combined together with male/female patients. Nevertheless, our observations that carvedilol antagonized the effects of adrenaline more than noradrenaline were consistent across all aetiologies and both sexes. We reported studies on right ventricular trabeculae however clinical data concerning right heart status could not be obtained. During the course of our studies, where possible, we also used left ventricular trabeculae from 3 patients chronically treated with carvedilol. Patients chronically treated with carvedilol also showed greater reductions in the potency of adrenaline compared to noradrenaline. Finally, the patient's timing for surgery was not determined by this study and therefore we did not have control over the duration of treatment of B-blockers. Nevertheless, the selective reduction in potency of adrenaline versus noradrenaline was a consistent finding in all chronic carvedilol treated hearts.

4.6. Conclusion

We conclude that carvedilol antagonizes more the effects of adrenaline through β_2 -adrenoceptors than the effects of noradrenaline through β_1 -adrenoceptors. In contrast to β_1 -selective blockers that only prevent deleterious effects of catecholamines mediated through β_1 -adrenoceptors, carvedilol may preferentially prevent harmful effects of adrenaline, including arrhythmias, mediated through β_2 -adrenoceptors, thereby contributing to its beneficial effects in heart failure.

Acknowledgements

We thank the cardiac surgeons of The Prince Charles Hospital (Brisbane) and Michael Knaut, MD (Heart Center, Dresden) for careful supply of cardiac tissues, Andrew Hill, Jennifer D.Tid-ang, Romy Kempe and Annegret Häntzschel for help with experiments.

References

- Waagstein F, Hjalmarson A, Varnauskas E, Wallentin I. Effect of chronic beta-adrenergic blockade in congestive cardiomyopathy. Br Heart J 1975;37:1022-36.
- [2] Bristow MR. β-adrenergic receptor blockade in chronic heart failure. Circulation 2000;101:558–69.
- [3] Poole-Wilson PA, Swedberg K, Cleland JG. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol or Metoprolol European Trial (COMET): randomized controlled trial. Lancet 2003;362:7–13.
- [4] Molenaar P, Parsonage WA. Fundamental considerations of βadrenoceptor subtypes in human heart failure. Trends Pharmacol Sci 2005;26:368–75.
- [5] Bristow MR, Feldman AM, Adams KF, Goldstein S. Selective versus nonselective β-blockade for heart failure therapy: are there lessons to be learned from the COMET trial? J Card Fail 2003; 9:444–53.
- [6] Bristow MR, Larrabee P, Minobe W, Roden R, Skerl L, Llein J, et al. Receptor pharmacology of carvedilol in the human heart. J Cardiovasc Pharmacol 1992;19(Suppl 1):S68–80.
- [7] Yoshikawa T, Port JD, Asano K, Chidak P, Bouvier M, Dutcher D, et al. Cardiac adrenergic receptor effects of carvedilol. Eur Heart J 1996;17(Suppl B):8–16.
- [8] Maack C, Cremers B, Flesch M, Hoper A, Sudkamp M, Bohm M. Different intrinsic activities of bucindolol, carvedilol and metoprolol in human failing myocardium. Br J Pharmacol 2000;130:1131–9.
- [9] Schnabel P, Maack C, Mies F, Tyroller S, Scheer A, Bohm M. Binding properties of beta-blockers at recombinant beta1-, beta2-, and beta3adrenoceptors. J Cardiovasc Pharmacol 2000;36:466–71.
- [10] Brixius K, Bundkirchen A, Bolck B, Mehlhorn U, Schwinger RHG. Nevibolol, bucindolol, metoprolol and carvedilol are devoid of intrinsic sympathomimetic activity in human myocardium. Br J Pharmacol 2001;133:1330-8.
- [11] Smith C, Teitler M. Beta-blocker selectivity at cloned human beta₁and beta₂-adrenergic receptors. Cardiovasc Drugs Ther 1999;13: 123-6.
- [12] Bundkirchen A, Brixius K, Bolck B, Nguyen Q, Schwinger RHG. β₁adrenoceptor selectivity of nevibolol and bisoprolol. A comparison of [³H]CGP 12.177 and [¹²⁵I]iodocyanopindolol binding studies. Eur J Pharmacol 2003;460:19–26.
- [13] Baker JG. The selectivity of β -adrenoceptor antagonists at the human $\beta 1$, $\beta 2$ and $\beta 3$ -adrenoceptors. Br J Pharmacol 2005;144:317–22.
- [14] Asano K, Zisman LS, Yoshikawa T, Headley V, Bristow MR, Port JD. Bucindolol, a non-selective β₁- and β₂-adrenergic receptor antagonist, decreases β-adrenergic receptor density in cultured embryonic chick cardiac myocyte membranes. J Cardiovasc Pharmacol 2001;37:678–91.
- [15] Metra M, Nodari S, D'Aloia A, Muneretto C, Robertson AD, Bristow MR, et al. Beta-blocker therapy influences the hemodynamic response to inotropic agents in patients with heart failure. J Am Coll Cardiol 2002;40:1248-58.
- [16] Kindermann M, Maack C, Schaller S, Finkler N, Schmidt KI, Läer S, et al. Carvedilol but not metropolol reduces β-adrenergic responsiveness after complete elimination from plasma in vivo. Circulation 2004;109:3182–90.
- [17] Fujimaki M. Stereoselective disposition and tissue disposition of carvedilol enantiomers in rats. Chirality 1992;41:148–54.
- [18] Behn F, Läer S, Scholz H. Determination of carvedilol in human cardiac tissue by high-performance liquid chromatography. J Chromatogr Sci 2001;39:121–4.

- [19] Gille E, Lemoine H, Ehle B, Kaumann AJ. The affinity of (–)propranolol for β_1 - and β_2 -adrenoceptors of human heart. Differential antagonism of the positive inotropic effects and adenylate cyclase stimulation by (–)-noradrenaline and (–)-adrenaline. Naunyn-Schmiedeberg's Arch Pharmacol 1985;331:60–70.
- [20] Kaumann AJ, Bartel S, Molenaar P, Sanders L, Burrell K, Vetter D, et al. Activation of β₂-adrenergic receptors hastens relaxation and mediates phosphorylation of phospholamban, troponin I and C protein in ventricular myocardium from patients with terminal heart failure. Circulation 1999;99:65–72.
- [21] Kaumann AJ, Hall JA, Murray KJ, Wells FC, Brown MJ. A comparison of the effects of adrenaline and noradrenaline on human heart: the role of β_1 -and β_2 -adrenoceptors in the stimulation of adenylate cyclase and contractile force. Eur Heart J 1989;10(Suppl B):29–37.
- [22] Kaumann AJ, Molenaar P. Modulation of human cardiac function through 4 β-adrenoceptor populations. Naunyn-Schmiedeberg's Arch Pharmacol 1997;355:667–81.
- [23] Molenaar P, Sarsero D, Kaumann AJ. Proposal for the interaction of non-conventional partial agonists and catecholamines with the 'putative β_4 -adrenoceptor' in mammalian heart. Clin Exp Pharmacol Physiol 1997;647–56.
- [24] Emorine LJ, Marullo S, Briend-Sutren M-M, Patey G, Tate K, Delavier-Klutchkoet C, et al. Molecular characterization of the human β₃-adrenergic receptor. Science 1989;245:1118–21.
- [25] Joseph SS, Lynham JA, Molenaar P, Grace AA, Colledge WH, Kaumann AJ. Intrinsic sympathomimetic activity of (–)-pindolol mediated through a (–)-propranolol-resistant site of the β₁-adrenoceptor in human atrium and recombinant receptors. Naunyn-Schmiedeberg's Arch Pharmacol 2003;368:496–503.
- [26] Molenaar P, Bartel S, Cochrane A, Vetter D, Jalali H, Pohlner P, et al. Both β₂- and β₁-adrenergic receptors mediate hastened relaxation and phosphorylation of phospholamban and troponin I in ventricular myocardium of Fallot infants, consistent with selective coupling of β₂adrenergic receptors to Gs-protein. Circulation 2000;102:1814–21.
- [27] Kaumann AJ, Sanders L, Brown AM, Murray KJ, Brown MJ. A 5hydroxytryptamine receptor in human atrium. Br J Pharmacol 1990; 100:879–85.
- [28] Sanders L, Lynham JA, Bond B, del Monte F, Harding SE, Kaumann AJ. Sensitization of human atrial 5-HT₄ receptors by chronic βblocker treatment. Circulation 1995;92:2526–39.
- [29] Hall JA, Kaumann AJ, Brown MJ. Selective β_2 -adrenoceptor blockade enhances positive inotropic effects of endogenous catecholamines through β_2 -adrenoceptors in human atrium. Circ Res 1990; 66:1610–23.
- [30] Molenaar P, Rabnott G, Yang I, Fong KM, Savarimuthu SM, Li L, et al. Conservation of the cardiostimulant effects of (-)-norepinephrine across ser49gly and gly389arg beta₁-adrenergic receptor polymorphisms in human right atrium in vitro. J Am Coll Cardiol 2002;40: 1275–82.
- [31] Christ T, Boknik P, Wöhrl S, Wettwer E, Graf EM, Bosch RF, et al. Ltype Ca²⁺ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation 2004;110:2651–7.
- [32] Arunlakshana O, Schild HO. Some quantitative uses of drug antagonism. Br J Pharmacol 1959;14:48–58.
- [33] Bristow MR, Cubiccciotti R, Ginsburg R, Stinson EB, Johnson C. Histamine-mediated adenylate cyclase stimulation in human myocardium. Mol Pharmacol 1982;21:671–9.
- [34] Motomura S, Deighton NM, Zerkowski HR, Doetsch N, Michel MC, Brodde OE. Chronic beta1-adrenoceptor antagonist treatment sensitizes beta2-adrenoceptors, but desensitizes M2-muscarinic receptors in the human right atrium. Br J Pharmacol 1990;101:363–9.
- [35] Morgan T. Clinical pharmacokinetics and pharmacodynamics of carvedilol. Clin Pharmacokinet 1994;26:335–46.
- [36] Gilbert EM, Abraham WT, Olsen S, Hattler B, White M, Mealy P, et al. Comparative hemodynamic, left ventricular functional, and anti-

adrenergic effects of chronic treatment with metoprolol versus carvedilol in the failing heart. Circulation 1996;94:2817-25.

- [37] Kaumann AJ, Sanders L. 5-Hydroxytryptamine causes rate-dependent arrhythmias through 5-HT₄ receptors in human atrium: facilitation by chronic β-adrenoceptor blockade. Naunyn-Schmiedeberg's Arch Pharmacol 1994;349:331–7.
- [38] Kaumann AJ, Sanders L. Both β_1 and β_2 -adrenoceptors mediate catecholamine-evoked arrhythmias in isolated human right atrium. Naunyn-Schmiedeberg's Arch Pharmacol 1993;311:219–36.
- [39] Billman GE, Castillo LC, Hensley J, Hohl CM, Altschuld RA. β₂adrenergic receptor antagonists protect against ventricular fibrillation. In vivo and in vitro evidence for enhanced sensitivity to β₂-adrenergic stimulation in animals susceptible to sudden death. Circulation 1997; 96:1914–22.
- [40] CAPRICORN investigators. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomized trial. Lancet 2001;357:1385–90.

- [41] McMurray J, Kober L, Robertson M, Dargie H, Colucci W, Lopez-Sendon J, et al. Antiarrhythmic effect of carvedilol after acute myocardial infarction. Results of the carvedilol post-infarct survival control in left ventricular dysfunction (CAPRICORN) trial. J Am Coll Cardiol 2005;45:525–30.
- [42] Merritt JC, Niebauer M, Tarakij K, Hammer D, Mills RM. Comparison of effectiveness of carvedilol versus metoprolol or atenolol for atrial fibrillation appearing after coronary bypass grafting or cardiac valve operation. Am J Cardiol 2003;92:735–6.
- [43] Reves JG, Karp RB, Buttner EE, Tosone S, Smith LR, Samuelson PN, et al. Neuronal and adrenomedullary catecholamine release in response to cardiopulmonary bypass in man. Circulation 1982;66: 49–55.
- [44] Sametz W, Metzler M, Gries M, Porta S, Sadjak A, Supanz S, et al. Perioperative catecholamine changes in cardiac risk patients. Eur J Clin Invest 1999;29:582–7.