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1 Introduction

1.1 Large-scale bootstrap problems

Numerical bootstrap methods [1, 2] (see [3, 4] for recent reviews) can help achieve two

important goals: (1) make general statements about the space of all CFTs, and (2) isolate

specific theories and compute their observables to high precision. In this work, we introduce

new tools for isolating theories, and apply them to the 3d critical O(2) model.

To isolate a theory with the numerical bootstrap, one must choose a set of crossing

symmetry equations and make reasonable assumptions about the spectrum of the theory.

By analyzing the crossing equations using convex optimization, one obtains exclusion plots

in the space of CFT data. In favorable circumstances, such exclusion plots contain small is-

lands around the theory of interest — we then say that we have “isolated” the theory [5–9].

It is unknown in general which crossing equations and assumptions are needed to isolate a

given theory. However, it is clearly important to incorporate as much information about the

target theory as possible. In practice, this means we would like to study large systems of

correlation functions involving multiple scalars [10–15], fermions [16–18], currents [19, 20],

stress tensors [21], various global symmetry representations [22–42], etc. . There are many

indications that such large-scale bootstrap problems could help isolate myriad interesting

theories.1

Until recently, our ability to study large systems of correlation functions has been

limited. One tool that will facilitate going beyond previous studies is a new version of

the semidefinite program solver SDPB [82], which can now run on hundreds of cores across

multiple machines [83].

Besides solving big semidefinite programs, another issue that arises in large-scale boot-

strap studies is the difficulty of searching high-dimensional spaces. More crossing equations

are parametrized by more input data, including scaling dimensions and OPE coefficients.

If some input data is unknown, then we must scan over it to make an exclusion plot. For

example, to study correlation functions of the scalars σ and ǫ in the 3d Ising model, we

must scan over their scaling dimensions ∆σ and ∆ǫ. It was shown in [7] that it is also

beneficial to scan over the OPE coefficient ratio λσσǫ/λǫǫǫ. Specifically, the island in the

space of scaling dimensions and OPE coefficient ratios is smaller than the island in the

space of scaling dimensions alone. To study an even larger system of correlation functions,

one must scan over an even larger set of scaling dimensions and OPE coefficients.

One of the main contributions in this work is an efficient “cutting surface” algorithm

for scanning over OPE coefficients. Because OPE coefficients enter quadratically in the

crossing equations, our algorithm can scan a region of volume V in OPE coefficient space in

time log V . We also explain how to use our algorithm in conjunction with hot-starting [84],

and introduce efficient methods for scanning over scaling dimensions.

We apply our methods to study correlation functions of the lowest-dimension charge-0,

charge-1, and charge-2 scalars in the three-dimensional critical O(2) model. The 3d O(2)

1See for instance [43–51] or [52–74] for supersymmetric studies. Other analysis can also be found

in [75–81].
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CFT data method value ref.

∆s EXP 1.50946(22) [85]

MC 1.51122(15) [86]

CB 1.51136(22)

∆φ MC 0.519050(40) [86]

CB 0.519088(22)

∆t MC 1.2361(11) [87]

CB 1.23629(11)

λφφs CB 0.687126(27∗)

λsss CB 0.830914(32∗)

λtts CB 1.25213(14∗)

λφφt CB 1.213408(65∗)

CJ/C
free
J CB 0.904395(28∗)

CT /C
free
T CB 0.944056(15∗)

Table 1. Comparison of conformal bootstrap (CB) results with previous determinations from

Monte Carlo (MC) or experiment (EXP). We denote the leading charge 0, 1, and 2 scalars by

s, φ, t, respectively. Bold uncertainties correspond to rigorous intervals from bootstrap bounds.

Uncertainties marked with a ∗ indicate that the value is estimated non-rigorously by sampling

points, see sections 4.2 and 4.3.

model is one of the most studied renormalization group (RG) fixed points, both theo-

retically and experimentally. It describes phase transitions in numerous physical systems,

including ferromagnets and antiferromagnets with easy-plane anisotropy, from which it also

inherits the name of the XY universality class. Unfortunately, experimental results and

Monte Carlo results for the critical exponents of the O(2) model have been in 8σ tension

for two decades. We have computed the critical exponents to high precision (with rigorous

error bars). We find excellent agreement with Monte Carlo results, and a clear discrepancy

with experiment. In addition, we compute numerous other scaling dimensions and OPE

coefficients in the O(2) model. Our results, together with comparisons to other methods,

are summarized in table 1.

1.2 Experimental and theoretical approaches to the 3d O(2) model

In the remainder of this introduction, we provide an account of past approaches to the 3d

O(2) model, including a history of the discrepancy between experiment and Monte Carlo.

We also describe past bootstrap studies of the O(2) model and motivate the calculation in

this work.

The simplest continuum field theory in the O(2) universality class is the theory of a

scalar field ~φ transforming in the fundamental representation of O(2), with Lagrangian

L =
1

2
|∂~φ|2 + 1

2
m2|~φ|2 + g

4!
|~φ|4. (1.1)

– 2 –
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Figure 1. Schematic representation of the 4He phase diagram. Figure taken from [88].

A large negative mass-squared for the scalar induces spontaneous symmetry breaking,

leading to the ordered phase, while a large positive mass-squared leads to the disordered

phase. The critical point is achieved by tuning the UV mass so that the IR correlation

length diverges. Critical exponents are linked to operator dimensions at the fixed point by

the simple relations

∆φ =
1 + η

2
, ∆s = 3− 1

ν
. (1.2)

Here, s ∼ |~φ|2 denotes the lowest-dimension charge-0 scalar.

1.2.1 The λ-point experiment

Perhaps the most intriguing experimental representative of the O(2) universality class is

the superfluid transition in 4He along the so-called λ-line, see figure 1. Several features

make this system ideal for experimental tests of critical phenomena. Firstly, the transition

is second-order along the entire λ-line. This should be compared, for instance, with the

liquid-vapor transition in water2 where the critical point occurs at a single point on the

temperature-pressure plane.3 Secondly, the steep slope of the λ-line makes the critical

temperature weakly dependent on the pressure. Thirdly, that compressibility is weakly

divergent at the critical point and one side of the phase transition is a superfluid state

(thus free of temperature gradients) renders the system less subject to gravitational effects,

which still represent the major limitation for Earth-bound experiments.

The Earth’s gravitational field creates a challenge for precise measurements of critical

points in fluids. Gravity has two main effects [89]: (1) it induces a density gradient in the

2Which however belongs to the Ising universality class.
3The reason that the critical regime of liquid 4He has codimension-1 on the temperature-pressure plane is

that O(2) symmetry is present microscopically. It arises from phase rotations of the collective wavefunction

of the superfluid condensate, which is an exact symmetry. This symmetry protects against deformations

by the φ operator, and allows only a single relevant deformation: the lowest-dimension charge-0 scalar s.
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fluid, making the system inhomogeneous; (2) more dramatically, it prevents fluctuations

from growing indefinitely, making the correlation length effectively finite (gravitational

rounding). Because of gravitational effects, most Earth-bound critical systems can only

be tuned to |t| & 10−4, where t is the reduced temperature t = 1 − T/Tc. Due to its

favorable properties, the superfluid transition of 4He can instead reach |t| ≃ 10−7. To

get even closer to the critical regime, the λ-point experiment was conducted on the Space

Shuttle Columbia in 1992 [90]. The micro-gravity environment allowed the experiment to

reach |t| ≃ 5× 10−9. In [85, 91], by fitting measurements from the λ-point experiment, the

following value of the critical exponent ν was obtained:

νEXP = 0.6709(1) . (1.3)

1.2.2 Monte Carlo results

Over the past few decades, Monte Carlo (MC) simulations of lattice models in the O(2) uni-

versality class have provided the most precise theoretical predictions for critical exponents

in the O(2) model. The most recent determination using purely MC techniques [86] gives

νMC = 0.67169(7) . (1.4)

We refer to [92] and references therein for older results.4 The above value is fully in

agreement with the second most precise theoretical determination of ν: in [96] MC simula-

tions were combined with (uncontrolled) high temperature (HT) expansion5 computations

to obtain

νMC+HT = 0.6717(1) . (1.5)

Unfortunately, comparison of the MC results (1.4) and (1.5) with the experimental deter-

mination (1.3) reveals a large discrepancy of approximatively 8σ. The obvious questions

is: which one is correct?

1.2.3 The conformal bootstrap

The numerical conformal bootstrap offers a rigorous and independent method to resolve this

controversy. Three dimensional O(N)-models were first studied with bootstrap methods

4A determination that post-dates the review [92] is νMC = 0.6717(3) in [93]. A more recent computa-

tion using pseudo-ǫ expansion methods was performed in [94] giving νpǫ = 0.6706(12), which is closer to

the experimental result. Another determination was recently obtained in [95] using only MC techniques,

νMC = 0.67183(18). The latter determination and the value in (1.4) do not entirely overlap.
5In the HT expansion the generating functional

Z(J) =
∑

〈ij〉

e
−βH+~Ji·~Si

is expanded in powers of the inverse temperature β. Each term in the expansion can then be interpreted as a

graphical sum. Each graph consists of vertices (lattice sites) connected by bonds, each of which is associated

with a factor β. The graphs enumeration becomes a combinatoric problem and can be automatized (see [92]

for a list of available HT series). Once the series is known to a sufficiently large order, it can be Borel

resummed and extended down to the critical temperature. In [96] they used a 22nd order expansion.
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in [25] by considering the correlation function 〈φiφjφkφl〉, where φi is the lowest-dimension

scalar transforming in the vector representation of O(N). That work showed that the

O(N)-models occupy special places in the space of three dimensional CFTs: they saturate

bounds on scalar operator dimensions, and their presence is signaled by a “kink” in those

bounds: a change of slope along an otherwise smooth boundary.

A rigorous determination of the critical exponents ν and η was later obtained in [6]

by studying all nontrivial four-point functions containing φi and the lowest-dimension sin-

glet scalar s, furthermore imposing that φi and s are the only relevant scalars with their

respective O(N) representations. The resulting bounds on (∆φ,∆s) carve out an isolated

island where the O(N) model lives, together with a detached region where all other O(N)-

symmetric CFTs satisfying these relevancy assumptions must live.

The computation of [6] was further improved for the cases N = 1, 2, 3 in [7]. The

latter work used essentially the same setup of [6], but additionally explored the power of

scanning over OPE coefficients. Specifically, the authors asked the following question: in

the space (∆φ,∆s, θ), where θ parametrizes the ratio between two three point functions

coefficients tan(θ) ≃ λsss/λφφs, what is the region consistent with crossing symmetry? It

turned out that this apparently simple upgrade has a huge effect, but still not enough to

make a conclusive statement about the MC/experiments discrepancy.

A complementary approach for the case N = 2 was initiated in [20], which studied

the system of correlators involving the field φi and the conserved current associated to

the global O(2) symmetry. Although the determination of critical exponents was not

competitive with previous bootstrap analysis, this framework gives access to new CFT-data,

in particular quantities related to transport properties near the quantum critical point.6

In this work, we study a larger system of correlation functions using numerical boot-

strap techniques: in addition to φi and s, we incorporate the lowest-dimension charge-2

scalar tij ∼ φ(iφj). A motivation for this choice is the idea that there exist strong con-

straints among the low-twist data of a CFT. For example, in [97, 98], it was shown using

the lightcone bootstrap that crossing symmetry for the operators σ, ǫ in the 3d Ising model

can be approximately recast as a set of constraints for a small amount of low-twist data,

namely ∆σ,∆ǫ, λσσǫ, λǫǫǫ, and cT . This immediately points to a deficiency in previous

bootstrap studies of the O(2) model. The operator tij is expected to have lower dimension

than s (∆t ≈ 1.2, while ∆s ≈ 1.5). Thus, it makes sense to include it in the set of crossing

equations we study.

As mentioned in section 1.1, studying the larger set of crossing equations involving

{φ, s, t} requires searching over more input data: the operator dimensions {∆φ,∆s,∆t},
and the OPE coefficients {λsss, λφφs, λtts, λφφt} (more precisely their ratios). Our new

search algorithms are crucial for scanning this space efficiently. In figure 2, we show the

resulting island in the space of scaling dimensions ∆φ,∆s,∆t, and compare to Monte

Carlo and experimental determinations. Our determination is consistent with Monte Carlo

simulations and inconsistent with the results of the λ-point experiment.

6As a future direction it would be very interesting to combine this analysis with the techniques developed

in this work to study the mixed system of a conserved current and multiple scalars.
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Figure 2. 3d region corresponding to our new O(2) island using the {φi, s, tij} system and OPE

scans at Λ = 43 (blue). The result is compared with the best fit values of ∆s to
4He data [85] (brown

planes) and the region for {∆φ,∆s,∆t} reported by the Monte Carlo studies [86, 87] (green box).

1.3 Structure of this work

This work is structured as follows. In section 2, we describe the system of correlation func-

tions in the O(2) model that we study, together with previously known information about its

spectrum. In section 3, we introduce new search methods: a “cutting surface” algorithm for

scanning over OPE coefficients, tricks for hot-starting, and Delaunay-triangulation meth-

ods for searching in dimension space. In section 4, we present results for scaling dimensions

and OPE coefficients in the O(2) model. Appendix A provides links to the code used in this

work and appendix B contains technical details of our software and hardware setup. Other

appendices provide details about the crossing equations of the O(2) model and specific

points that we have tested.

– 6 –
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2 The O(2) model

2.1 Crossing equations

We begin by describing the representation theory of O(2) ∼= U(1) ⋉ Z2. The irreducible

representations of O(2) are:

• The trivial representation 0+.

• The sign representation 0−, in which U(1) acts trivially and the nontrivial element

of Z2 acts by −1.

• For each q ∈ Z>0, a unique two-dimensional irreducible representation q. The states

of q have U(1) charges ±q and are exchanged by Z2.

Tensor products of these irreps are given by

q1 ⊗ q2 = (q1 + q2)⊕ |q1 − q2| ,
q⊗ q = (2q)s ⊕ 0+s ⊕ 0−a ,

0± ⊗ q = q ,

0± ⊗ 0± = 0+s ,

0± ⊗ 0∓ = 0− ,

(2.1)

where s/a denotes the symmetric/antisymmetric part of the tensor product, in the case

of identical irreps. For any irrep R of O(2), we define q as the highest U(1) charge in the

representation.

Operators Oq(x) in irrep q can be written in terms of O(2) fundamental indices i = 1, 2

as rank-q symmetric traceless tensors Oi1...iq(x). It is convenient to contract these with

auxiliary polarization vectors yi that are defined to be null, y · y = 0, so that

O(x, y) ≡ Oi1...iq(x)yi1 · · · yiq . (2.2)

The singlet operator O0+(x) has no indices or y’s. The Z2-odd operator O0−(x) could be

written with antisymmetric indices O[i1i2](x). Alternatively, we can take into account the

O(2) dependence of correlation functions that include O0−(x) in an index-free manner by

requiring that all pairs of distinct y1, y2 must be contracted as

y1 · y2 ≡ yi1y
j
2δij , y1 ∧ y2 ≡ ǫijy

i
1y

j
2 , (2.3)

where the number of ∧’s must be zero/one if an even/odd number of O0−(x)’s appear.

Tensor structures for correlation functions of charged operators can be factorized into

“flavor” tensor structures for the O(2) polarization vectors yi and “kinematic” tensor struc-

tures that encode spacetime dependence. For two-point functions, we have

〈Oµ1···µJ (x1, y1)Oν1···νJ (x2, y2)〉 = cO(y1 · y2)q
I
(µ1

(ν1
(x12) · · · IµJ )

νJ )
(x12)

x2∆12
, (2.4)

Iµν (x) = δµν − 2xµxν
x2

,

– 7 –
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where ∆ and J are the dimension and spin of O, and q is the maximal U(1) charge of the

O(2) representation of O. Here, cO is a constant that we usually set to 1.

The most general three-point function we need in this work is between two scalars and

a spin-J operator. It takes the form

〈ϕ1(x1, y1)ϕ2(x2, y2)Oµ1···µJ

3 (x3, y3)〉

= λϕ1ϕ2O3
TR1R2R3

(y1, y2, y3)
Z(µ1 · · ·ZµJ ) − traces

x∆1+∆2−∆3

12 x∆2+∆3−∆1

23 x∆3+∆1−∆2

31

, (2.5)

where

Zµ =
|x13||x23|
|x12|

(

xµ13
x213

− xµ23
x223

)

. (2.6)

Here, Ri is the O(2) representation of the operator at position xi. Our conventions for

flavor three-point structures are

Tq1q2q3
(y1, y2, y3) = (y1 · y2)

q1+q2−q3
2 (y2 · y3)

q2+q3−q1
2 (y3 · y1)

q3+q1−q2
2 , (q1, q2, q3 > 0)

Tqq0+(y1, y2, y3) = (y1 · y2)q,
Tqq0−(y1, y2, y3) = (y1 ∧ y2)(y1 · y2)q−1, (q > 0)

T0+0+0+(y1, y2, y3) = 1, (2.7)

where we only list structures that will be needed below. In the first line, we have either

q3 = q1 + q2 or q3 = |q1 − q2|, in accordance with the rules for tensor products.

In general, four-point functions of scalars operators ϕi(xi, yi), where i here labels each

operator that transforms in O(2) irrep Ri, can be expanded in the s-channel in terms of

conformal blocks as7

〈

ϕ1
R1

(x1, y1)ϕ
2
R2

(x2, y2)ϕ
3
R3

(x3, y3)ϕ
4
R4

(x4, y4)
〉

=

(

x24

x14

)∆12
(

x14

x13

)∆34

x∆1+∆2

12 x∆3+∆4

34

∑

O

(−1)ℓλϕ1ϕ2Oλϕ3ϕ4OT
R
R1R2R3R4

(yi)g
∆12,∆34

∆,ℓ (u, v) , (2.8)

where ∆ij ≡ ∆i −∆j , the conformal cross ratios u, v are

u ≡ x212x
2
34

x213x
2
24

, v ≡ x214x
2
23

x213x
2
24

, (2.9)

and the operators O that appear both OPEs ϕ1 × ϕ2 and ϕ3 × ϕ4 have scaling dimension

∆, spin ℓ, and transform in an irrep R that appears in both tensor products R1 ⊗ R2

and R3 ⊗ R4. For each R, the O(2) structure TR
R1R2R3R4

(yi) is a polynomial in yi for

i = 1, 2, 3, 4, that can be derived from contracting appropriate 3-point functions as de-

scribed in appendix C. If ϕ1 = ϕ2 (or ϕ3 = ϕ4), then Bose symmetry requires that O have

only even/odd ℓ for R in the symmetric/antisymmetric product of R1 ⊗R2 (or R3 ⊗R4).

7Our conformal blocks are normalized as in the second line of table 1 in [3].
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We are interested in four-point functions of the lowest dimension scalar operators

transforming in the 0+, 1, and 2 representations, which we will denote following [6, 7, 25]

as s, φ, and t, respectively.8 These operators are normalized via their two point functions as

〈s(x1)s(x2)〉 =
1

x2∆s
12

, 〈φ(x1, y1)φ(x2, y2)〉 =
y1 · y2
x
2∆φ

12

, 〈t(x1, y1)t(x2, y2)〉 =
(y1 · y2)2
x2∆t
12

,

(2.10)

where x12 ≡ |x1 − x2|. In table 2 we list the 4-point functions of s, φ, and t that are al-

lowed by O(2) symmetry9 whose s and t-channel configuration lead to independent crossing

equations, along with the irreps and spins of the operators that appear in the OPE, and

the number of crossing equations that they yield. These 4-point functions can be writ-

ten explicitly as in (2.8), where the explicit O(2) structures TR
R1R2R3R4

(yi) are computed

in appendix C. Equating each of these s-channel 4-point functions with their respective

t-channels yields the crossing equations

∑

O
0+

,ℓ+

(

λssO
0+

λφφO
0+

λttO
0+

)

~V0+,∆,ℓ+







λssO
0+

λφφO
0+

λttO
0+






+
∑

O
0− ,ℓ−

(

λφφO
0−

λttO
0−

)

~V0−,∆,ℓ−

(

λφφO
0−

λttO
0−

)

+
∑

O1,ℓ±

(

λφsO1
λtφO1

)

~V1,∆,ℓ±

(

λφsO1

λtφO1

)

+
∑

O2,ℓ+

(

λφφO2
λtsO2

)

~V2,∆,ℓ+

(

λφφO2

λtsO2

)

+
∑

O2,ℓ−

λ2
tsO2

~V2,∆,ℓ−+
∑

O3,ℓ±

λ2
tφO3

~V3,∆,ℓ±+
∑

O4,ℓ+

λ2
ttO4

~V4,∆,ℓ+ =0 , (2.11)

where ℓ± denotes which spins appear, and the V ’s are 22-dimensional vectors of matrix or

scalar crossing equations that are ordered as table 2 and written in terms of

F ij,kl
∓,∆,ℓ(u, v) = v

∆k+∆j
2 g

∆ij ,∆kl

∆,ℓ (u, v)∓ u
∆k+∆j

2 g
∆ij ,∆kl

∆,ℓ (v, u) . (2.12)

The explicit form of the V ’s are given in appendix D. The same crossing equations were

derived and studied independently in [84].10

2.2 Assumptions about the spectrum

To obtain precise results for the O(2) model, we must input some restrictions on its spec-

trum and OPE coefficients in order to isolate the theory. Firstly, we impose that s, φ, t

are the only relevant scalars in their respective charge sectors. In other words, we im-

8The singlet S, traceless symmetric T , vector V and antisymmetric A irreps considered in previous O(N)

bootstrap papers [6, 7, 25] correspond for O(2) to the 0
+, 2, 1, and 0

− irreps, respectively.
9These 4-point functions, and the resulting crossing equations, are identical for a theory with just SO(2)

symmetry. The only difference between O(2) and SO(2) is that for the latter 0
+ ∼= 0

− and ǫij is now an

invariant tensor, so one would need to consider correlators of operators with 0
−, such as 〈O0+O0+O0−O0−〉,

to distinguish between O(2) and SO(2).
10Furthermore, [84] includes a software package autoboot that can automatically derive equation (2.11).
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4-pnt s-channel t-channel Eqs

〈φφφφ〉 (ℓ+,0+), (ℓ−,0−), (ℓ+,2) same 3

〈tttt〉 (ℓ+,0+), (ℓ−,0−), (ℓ+,4) same 3

〈tφtφ〉 (ℓ±,1), (ℓ±,3) same 2

〈ttφφ〉 (ℓ+,0+), (ℓ−,0−) (ℓ±,1),(ℓ±,3) 4

〈ssss〉 (ℓ+,0+) same 1

〈φsφs〉 (ℓ±,1) same 1

〈tsts〉 (ℓ±,2) same 1

〈ttss〉 (ℓ+,0+) (ℓ±,2) 2

〈φφss〉 (ℓ+,0+) (ℓ±,1) 2

〈φsφt〉 (ℓ±,1) same 1

〈sφφt〉 (ℓ±,1) (ℓ+,2) 2

Table 2. Four-point function configurations that give independent crossing equations under equat-

ing their s- and t-channel, along with the even/odd spins that appear for each irrep in each channel,

and the number of crossing equations that each configuration yields.

pose that ∆ ≥ 3 for all charge 0, 1, 2 scalars after these operators.11 These assumptions are

well-supported by other techniques including Monte Carlo simulations and the ǫ-expansion.

The dimension of the second charge-0 operator s′ is related to the critical exponent

ω = ∆s′ − 3, which has been determined to be irrelevant using field theory and numerical

techniques [86, 99, 100] (see also [92] for a list of less precise estimates). E.g. [86] gives

∆s′ = 3.789(4). Indeed, irrelevance of this operator is necessary in order to have a critical

point rather than a multicritical point in which multiple tunings would be required.

For the second charge-1 scalar φ′, we are not aware of any direct determination of its

scaling dimension. However, in the ǫ-expansion one can show that the näıve second charge-

1 operator, schematically (φk)
2φa, becomes a descendant of φa [101]. The next charge-1

operators after this are strongly irrelevant close to 4 dimensions, and we are not aware of

any evidence that continuation to ǫ = 1 could change this property. Also, Monte Carlo

simulations do not show any evidence of a second charge-1 relevant perturbation, which

would introduce a new order parameter.

To our knowledge, the dimension of the second charge-2 operator t′ has only been

determined in the ǫ-expansion [102] to be ∆t′ ≃ 3.624(10), making it squarely irrelevant.

Additionally, if this operator corresponded to a relevant perturbation it would have been

readily detected in Monte Carlo studies of anisotropic perturbations of the O(2) model [87].

The lowest-dimension charge-3 scalar in the O(2) model is expected to have dimension

≈ 2.1 [87, 103].12 This value is actually very close to the upper bound imposed by a

11We also forbid any possibility of degenerate scalar contributions at the scaling dimensions ∆s,φ,t, which

would require additional symmetries and by definition place the model outside of the O(2) universality

class. While they wouldn’t be expected, degenerate contributions at other dimensions are not forbidden by

our algorithm.
12We find that this is consistent with estimates based on the extremal functional method [78].
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bootstrap analysis [11].13 To reflect this, we impose a much weaker bound of ∆ ≥ 1 for

charge-3 scalars.

For charge-4 scalars, there is strong evidence from the ǫ-expansion [104, 105] and

MC [87, 106] that there are no relevant charge-4 scalars in the O(2) model. E.g., the recent

MC study [106] gives the precise determination ∆charge 4 = 3.114(2). To reflect this, in

most of this work we will impose ∆ ≥ 3 for charge-4 scalars (following an initial study

which imposes the weaker condition ∆ ≥ 1).

For reasons discussed in section 3.6, it is useful to impose a small gap δτ in twist

τ = ∆ − ℓ above the unitarity bound for the non-scalar operators in the theory. (The

unitarity bound for non-scalars is τ ≥ 1.) Of course the spectrum must include the O(2)

current Jµ and the stress tensor Tµν , so we impose the twist gap only for operators with

dimensions above the current and stress tensor in their respective sectors. (We impose

slightly different gaps in these sectors when computing upper bounds on CT and CJ , as

discussed in section 4.3.)

The presence of a small twist gap is expected to be valid in the O(2) model. In the

charge-0 sector, Nachtmann’s theorem [107–109], together with the existence of double-

twist operators [108, 110], implies that leading twists τℓ for each even ℓ ≥ 4 satisfy

1 ≤ τ4 ≤ τℓ ≤ 2∆φ ≈ 1.04 (2.13)

Numerous methods, including the ǫ-expansion, the lightcone bootstrap, and the extremal

functional method suggest that τ4 ≈ 1.02. A result from [111] shows that minimal twists

in the charge-2 and charge-4 sectors are equal to or larger than the minimal twist in the

charge-0 sector, for each spin. For charges 1 and 3 and odd spins in the 0− representation,

we can appeal to the ǫ-expansion which shows there are no higher-spin operators with twist

near the unitarity bound. Thus, the assumption of a twist gap δτ < 0.02 is well-justified.

In most of this work, we choose δτ = 10−6. Overall, our assumptions about the spectrum

of the O(2) model are listed in table 3.

The OPE coefficients of Jµ and Tµν are constrained by Ward identities in terms of the

two-point coefficients CJ and CT . In our conventions, we have

λ2
OOT =

∆2
O

2CT /C free
T

, λ2
OOJ =

q2O
2CJ/C free

J

, (2.14)

where C free
J,T are the two-point coefficients of J and T in the free O(2) model. Thus, the

contribution of these operators to the crossing equation can be parametrized purely in

terms of CT and CJ , together with the dimensions and charges of the external scalars

φ, s, t.

13More precisely the bound requires that given a charge-1 and charge-2 operator of dimension (∆φ,∆t) =

(0.51905, 1.234), the OPE φ×t must contain a charge-3 operator with dimension smaller than 2.118. Strictly

speaking this bound does not apply to the O(2) model since this choice of dimensions turns out to be

excluded. Nevertheless, by continuity, we expect the correct bound to be very close.
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charge spin dimensions

0 0 ∆s or ∆ ≥ 3

1 0 ∆φ or ∆ ≥ 3

2 0 ∆t or ∆ ≥ 3

3 0 ∆ ≥ 1

4 0 ∆ ≥ 3

0 1 ∆ = 2 or ∆ ≥ 2 + δτ

0 2 ∆ = 3 or ∆ ≥ 3 + δτ

R ℓ ∆ ≥ ℓ+ 1 + δτ

Table 3. Typical assumptions about the spectrum of the O(2) model. In the last line, R, ℓ represent

any choices of representation R and spin ℓ not already represented in the table. A typical choice of

twist gap is δτ = 10−6.

3 Methods

3.1 Numerical bootstrap bounds

Given the crossing equations (2.11), we compute bounds on CFT quantities in the standard

way described in [1, 5]. Suppose we would like to demonstrate that a hypothetical spectrum

is inconsistent. We search for a linear functional α such that

α(~V0+,∆,ℓ+) � 0, α(~V0−,∆,ℓ−) � 0, α(~V1,∆,ℓ±) � 0, α(~V2,∆,ℓ+) � 0,

α(~V2,∆,ℓ−) ≥ 0, α(~V3,∆,ℓ±) ≥ 0, α(~V4,∆,ℓ+) ≥ 0, (3.1)

for all combinations of representations, dimensions ∆, and even or odd spins ℓ± in some hy-

pothetical spectrum. Here, “M � 0” means “M is positive-semidefinite”. It is conventional

to normalize the contribution of the unit operator in the crossing equation to 1:

(

1 1 1
)

α(~V0+,0,0)







1

1

1






= 1. (3.2)

If a functional exists satisfying these conditions, then the hypothetical spectrum is ruled

out. We search for a functional using SDPB [83].

3.2 Positivity conditions involving the external scalars s, φ, t

The external operators s, φ, t appearing in the crossing equations require special treat-

ment when computing bootstrap bounds.14 There are four nonvanishing OPE coefficients

14We use the term “external” to refer to operators that appear explicitly in the four-point functions being

studied, as opposed to “internal” operators that appear in the conformal block expansion.
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involving just s, φ, t. They can be grouped into a vector15

λext ≡











λsss

λφφs

λtts

λφφt











. (3.3)

We define the 4 × 4 symmetric matrices ~Vext as the bilinear forms paired with λext in the

crossing equations. ~Vext is given implicitly by

λT
ext

~Vextλext

=
(

λsss λφφs λtts

)

~V0+,∆s,0







λsss

λφφs

λtts






+
(

λφφs λφφt

)

~V1,∆φ,0

(

λφφs

λφφt

)

+
(

λφφt λtts

)

~V2,∆t,0

(

λφφt

λtts

)

.

(3.4)

When computing bounds, we can treat the term λT
ext

~Vextλext in different ways, depend-

ing on our knowledge of λext. If we know nothing about λext, then we can search for a

functional α such that

α(~Vext) � 0, (3.5)

where “� 0” means “is positive semidefinite”. In this way, we ensure that the contribution

of external scalar OPE coefficients to the crossing equation has a definite sign after applying

α, independent of the values of those coefficients. Imposing the condition (3.5), we can

compute an allowed region D for other quantities like operator dimensions.

However, the condition (3.5) is stronger than necessary because it allows the matrix

Mext ≡ λextλ
T
ext to have rank larger than 1. Specifically, it ensures that Tr(Mextα(~Vext)) ≥ 0

for Mext of any rank. We would like a procedure that only imposes positivity when Mext

is a rank-1 matrix.

Such a procedure was described in [7, 112], and it results in stronger bounds. Suppose

first that we know the direction of λext. More precisely, suppose we know the equivalence

class [λext] ∈ RP
3 of λext under rescaling by a real number. In this case, the condition (3.5)

is too strong, and it suffices to impose the weaker condition16

λT
extα(

~Vext)λext ≥ 0. (3.6)

(Note that α(~Vext) is a 4×4 matrix, so that λT
extα(

~Vext)λext is a number.) This ensures that

the contribution of external scalars to the crossing equation will be positive, independent

of the magnitude or sign of λext. If we use the weaker condition (3.6) to compute bounds

on other quantities, we obtain an allowed region D[λext] that is smaller than D, but depends

on the equivalence class [λext] ∈ RP
3.

15Note that OPE coefficients of scalar operators are symmetric with respect to permutation λφ1φ2φ3
=

λφ1φ3φ2
= four other permutations.

16Here, λext can be any representative of the equivalence class [λext].

– 13 –



J
H
E
P
0
6
(
2
0
2
0
)
1
4
2

If we don’t know [λext] a-priori, we can scan over its value and compute the regions

D[λext] as a function of [λext] ∈ RP
3. The union of the resulting allowed regions must be

contained inside the original allowed region D:

D′ ≡
⋃

[λext]∈RP
3

D[λext] ⊆ D. (3.7)

A key observation of [7, 112] is that this inclusion can be strict — i.e. by scanning over

different directions [λext] in OPE space, and taking the union of the resulting allowed

regions, we can obtain a smaller allowed region than if we impose the näıve condition (3.5).

Scanning over OPE coefficient directions [λext] allows us to use that λextλ
T
ext is rank-1, and

get better results. A disadvantage is that we must solve multiple semidefinite programs to

compute the new allowed region D′.

3.3 An algorithm for scanning over OPE coefficients

Suppose we would like to determine whether some putative scaling dimensions (∆s,∆φ,∆t)

are allowed or not. According to the previous section, we should scan over directions in

OPE coefficient space [λext] ∈ RP
3. For each direction, we should compute whether a

functional α exists satisfying (3.6) and (3.1). If α does not exist for some [λext], then

the point (∆s,∆φ,∆t) is allowed. If α exists for all [λext], then the point (∆s,∆φ,∆t) is

disallowed. In this section, we describe an algorithm that makes the scan over [λext] ∈ RP
3

very efficient.

Let us choose some initial direction [λ1] ∈ RP
3. Suppose that a functional α1 exists

obeying the condition17

λT
1 α1(~Vext)λ1 ≥ 0, (3.8)

and additionally obeying all other necessary positivity conditions (3.1) for computing fea-

sibility of the given point (∆s,∆φ,∆t) in dimension space. The key observation is that

Q1 = α1(~Vext) defines a bilinear form that is positive not only for λ1, but also for some

neighborhood U1 ⊂ RP
3 containing λ1 ∈ U1. That is, α1 rules out an entire neighborhood

U1 ⊂ RP
3. We can now focus on scanning over the complement RP

3 \ U1.

This suggests algorithm 1 for ruling out a point (∆s,∆φ,∆t) in dimension space.

Algorithm 1 is similar to so-called “cutting plane” methods. We have a region An of

allowed OPE directions. We choose a point [λn+1] ∈ An and consult an “oracle” (the

semidefinite program solver) to get a quadratic form Qn+1 that rules out that point. This

quadratic form cuts away a neighborhood Un+1 from An, giving a smaller allowed region

An+1 = An \ Un+1.

In traditional cutting plane methods, an oracle provides linear forms instead of

quadratic forms. If the Ui were half-spaces defined by linear forms, then the above al-

gorithm would exhibit some nice properties. Firstly, the allowed regions An would be

convex. Secondly, if we choose [λn+1] ∈ An to be the center of volume of An (in some

17If no such functional exists, then we know (∆s,∆φ,∆t) is an allowed point in dimension space, and we

can stop.
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begin
Given a list of functionals {α1, . . . , αn}, together with quadratic forms

Qi = αi(~Vext) and regions ruled out by those quadratic forms

Ui ≡ {[λ] ∈ RP
3 such that λTQiλ ≥ 0}. (3.9)

The allowed region of OPE space is

An ≡ RP
3 \ (∪n

i=1Ui). (3.10)

if An is empty then
All directions in OPE space are ruled out.

return Disallowed
else

Choose some [λn+1] ∈ An.

Impose the positivity condition λT
n+1α(

~Vext)λn+1 ≥ 0, and solve the

resulting semidefinite program to find a functional αn+1.

if αn+1 exists then
Append αn+1 to the list {α1, . . . , αn} and go to begin.

else
We have failed to rule out all directions in OPE space.

return Allowed
end

end

end

Algorithm 1. Cutting surface algorithm for scanning over OPE coefficients.

affine coordinates), then the neighborhood Un+1 would be guaranteed to cut away half of

An. Thus, the volume of An would decrease exponentially in the number of cuts, and the

algorithm would take logarithmic time in the volume of An.
18

Fortunately, in many examples, we have found that once the allowed region An becomes

sufficiently small, the sets Un+1 become very close to half-spaces near the allowed region,

see figure 3. Recall that Un+1 is defined by a quadratic inequality (3.9), and thus generically

has curved edges. However, as the algorithm proceeds, the radius of curvature of these edges

becomes large relative to the size of the region An (in some generic affine coordinates on

RP
3). Thus, our algorithm approximately inherits many of the nice properties of traditional

cutting plane methods. We call our method a “cutting surface” algorithm.

3.4 Finding a point [λn+1]

The most difficult step in the cutting surface algorithm is determining whether An is non-

empty and, if it is non-empty, choosing a point [λn+1] ∈ An. For this step, we are given

a list of quadratic forms Q1, . . . , Qn ∈ R
m×m, and we wish to find x = λn+1 ∈ R

m that is

18For example, to search a unit cube in D dimensions, it takes time proportional to D. The precise

running time depends on how the algorithm terminates. We comment more on this below.
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Figure 3. Example allowed regions A1, . . . ,A12 of OPE space during the cutting surface algorithm

for scanning over OPE coefficients. This example is drawn from our calculation of the O(2) model

island with derivative order Λ = 43. We plot OPE space after applying the affine transformation

described in figure 4, which turns the initial bounding ellipsoid into the unit sphere. For each

allowed region An, we show the point [λn] most recently ruled out by SDPB in red. This point is

typically very close to the boundary of the allowed region. We also show the next point to be tested

[λn+1] in blue. We choose the blue point close to the center of An. In the final frame, SDPB gives

primal feasible for the blue point.

negative with respect to those quadratic forms. (For the computations in this work, m = 4.)

This type of problem is called a quadratically constrained quadratic program (QCQP), see

e.g. [113].

Unfortunately, QCQPs are NP-hard in general.19 However, we have found several

heuristic approaches that work well for the case at hand. Furthermore, these heuristics

can be stacked: if one method fails to find a solution, we can try another method. For

this work, we applied multiple heuristics, using one to verify the results of another when

possible. In the next few subsections, we describe these heuristics.

19A notable exception is m = 2. In this case, the quadratic forms become quadratic functions of a single

variable in an affine patch of RP
1, and the positive and negative regions can be solved for analytically.

This case is relevant, for example, in the 3d Ising model problem studied in [7], which involves two OPE

coefficients λσσǫ and λǫǫǫ.
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Because we solve the QCQP using heuristics, our implementation of the cutting surface

algorithm is non-rigorous (except when m = 2). It would be interesting to investigate

whether there exists a deterministic algorithm for QCQPs in low dimensions that could be

useful in bootstrap calculations.

3.4.1 Implementation in Mathematica

For low-dimensional cases, where Qi ∈ R
m×m with m = 3, 4, we have implemented the

cutting surface algorithm in Mathematica using standard functions. For example, in order

to plot the region An we pass the inequalities λTQ1λ < 0, . . . , λTQnλ < 0 to the functions

RegionPlot or RegionPlot3D.20 We then use the DiscretizeGraphics function to convert

the resulting plot into a MeshRegion corresponding to the allowed region.

If the resulting MeshRegion returns as EmptyRegion[m-1] then the algorithm termi-

nates. If it is instead nonempty, then there are various approaches one can use to select a

point in its interior. One simple and fast option is to take the RegionCentroid. This ap-

proach works most of the time, but occasionally fails when the allowed region is nonconvex.

Another simple approach is to select the point which NMaximizes the RegionDistance

to the RegionBoundary, subject to the constraint of being inside the allowed region. We

found that this approach leads to a working algorithm a majority of the time, but is often

slow and sometimes picks suboptimal points. In the next subsection we describe a more

robust procedure that we have developed for selecting an optimal point in the interior.

Another important point is that as the allowed region gets smaller, it is helpful to

apply an AffineTransform at each iteration of the algorithm to make the allowed region

roughly spherical. This for example helps to avoid the problem of missing a very small

allowed region. We do this by computing a BoundingRegion of the allowed MeshRegion

(we had good success with the form “FastOrientedCuboid”), and then constructing an

AffineTransform which maps it to the unit cube. This transformation then gets applied

to all coordinates before iterating.

3.4.2 Minimizing Qn

We now describe some heuristics that do not depend on specialized Mathematica features

and can in principle be used in general dimensions m. One important heuristic takes

advantage of allowed regions Ai typically becoming close to convex as the cutting sur-

face algorithm proceeds. Recall that An−1 is the region on which all quadratic forms

Q1, . . . , Qn−1 are negative. Suppose this region is nonempty. Now let us add an additional

quadratic form Qn. We would like to know whether Qn is positive on An−1 (in which case

An is empty). If it is not positive, we would like to find a point λn+1 ∈ An−1 such that Qn

is negative on λn+1.

20In cases where higher resolution is needed, we could specify a larger set of sample points using the

PlotPoints option, or we could define a more powerful function contourRegionPlot3D which implements

an automatic (but sometimes slow) refinement of the boundary, see https://mathematica.stackexchange.

com/questions/48486/high-quality-regionplot3d-for-logical-combinations-of-predicates/.
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To do so, consider the function f(x) = xTQnx/x
Tx, where x ∈ R

m. Because f is

homogeneous of degree zero, f defines a function on RP
m−1. We would like to minimize f

over An−1. If the minimum is negative, then the solution [x] gives a point in An.

One possible minimization procedure is gradient descent starting from a point in An−1.

To ensure that we stay inside An−1, we introduce a “barrier” function

BAn−1
(x) = −

n−1
∑

i=1

log
xTQix

xTx
, (3.11)

and minimize the combination

f(x) + γBAn−1
(x), (3.12)

where γ > 0 is a parameter that we choose. The barrier function is defined so that it is

finite inside An−1 and diverges to +∞ as one approaches the boundaries of An−1 from the

interior. In the limit γ → 0, the minimum of (3.12) converges to the minimum of f(x)

over An−1.

Following standard practice in interior point optimization, we combine gradient descent

with decreasing the parameter γ. In each iteration, we compute a search direction using

Newton’s method for the combined function (3.12). We then move along this direction and

simultaneously decrease γ by a constant factor.

If the region An−1 were convex and the function f were convex, then the above al-

gorithm would be guaranteed to find the minimum of f . We have found that in practice,

convexity holds approximately for both the region An−1 and the function f(x). Thus, typ-

ically this algorithm finds a suitable minimum after a single run. To increase its likelihood

of success, we attempt the descent algorithm from many different randomly chosen start-

ing points inside An−1. We sample random starting points using the hessian line search

method detailed in section 3.4.4.

We can make some shortcuts to the standard interior point method. First we observe

that Qn is usually very small for λn. This means λn is in fact already quite close to the

Qn = 0 surface. One shortcut is that we can draw a line starting from λn along the

gradient of the function defined by Qn, then test whether there is a feasible point on this

line. Another shortcut is that we can simply sample some random points around λn. Both

shortcuts have a very good chance to succeed, and are very cheap compared to the interior

point method described above. Therefore we perform the shortcuts before the standard

interior point method.

For the computations in this work, the simple method of minimizing Qn over An−1

works most of the time. It will be interesting to explore its applicability to higher-

dimensional spaces of OPE coefficients and other bootstrap problems.

3.4.3 Semidefinite relaxation and rank minimization

Another heuristic uses the method of semidefinite relaxation, which is standard in the

literature on QCQPs [113]. Recall that we would like to solve the QCQP: find x such that
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xTQix ≤ 0 for all i = 1, . . . , n (which is equivalent to [x] ∈ An). This can also be written as:

Find X � 0 such that Tr(XQi) ≤ 0 for all i = 1, . . . , n, and rank(X) = 1. (3.13)

Here, X is an m×m matrix and “�” means “is positive semidefinite”. If such an X exists,

then it can be written X = xxT , and x provides the required solution to the QCQP.

Equation (3.13) almost defines a semidefinite program. The only difference is the con-

dition rank(X) = 1. Removing the rank-1 condition, we obtain the semidefinite relaxation

of the original QCQP. Solving the semidefinite relaxation gives two possible outcomes:

• The semidefinite relaxation is infeasible (i.e. X does not exist satisfying the conditions

Tr(XQi) ≤ 0 and X � 0). In this case, the original QCQP is necessarily infeasible.

Thus, we can rigorously conclude that An is empty.

• The semidefinite relaxation is feasible. Typically, the resulting matrix X is not

particularly close to rank 1, so we must perform some additional work to find whether

a solution of the QCQP exists.

In the case where the semidefinite relaxation is feasible, we use the method described

in [114] for finding low-rank solutions of semidefinite programs. This method involves solv-

ing a sequence of semidefinite programs with objective functions designed to successively

decrease the m− 1 smallest eigenvalues of X. We solve the semidefinite relaxation and the

subsequent rank-minimization SDPs using SDPB.

If rank minimization succeeds, we are left with a positive semidefinite matrix X with

one large eigenvalue and several small eigenvalues. To find a rank-1 solution xxT , we apply

the random sampling method described in [113]. We take random samples x ∈ R
m with

covariance matrix X = 〈xxT 〉. By construction, each inequality in the QCQP is true in

expectation:

〈xTQix〉 = Tr(Qi〈xxT 〉) = Tr(QiX) ≤ 0. (3.14)

Thus, there is a reasonable probability of finding a sample x for which all inequalities in

the QCQP are true. If such a sample exists, we have solved the QCQP. If we do not find

such a sample, then we cannot conclude anything about the QCQP.

An implementation of the algorithm described in this section is available online.21 In

our testing, it worked consistently in cases where OPE space is relatively low-dimensional

m ≤ 4. Indeed, this algorithm is capable of finding solutions to the QCQP in cases where

the Qn-minimization of section 3.4.2 fails (for example because An−1 has a complicated or

elongated shape). Although it takes only a few minutes to run, SDP relaxation methods

are more computationally intensive than the Qn-minimization. Thus, we use them as a

final heuristic, which we run only when other heuristics have failed to solve the QCQP.

21https://gitlab.com/davidsd/quadratic-net/.

– 19 –

https://gitlab.com/davidsd/quadratic-net/


J
H
E
P
0
6
(
2
0
2
0
)
1
4
2

3.4.4 Choosing [λn+1]

When An is non-empty, the heuristics in sections 3.4.1, 3.4.2, and 3.4.3 will usually find a

point [x] ∈ An. However, to make the cutting surface algorithm as efficient as possible, we

would like to choose [λn+1] roughly in the “center” of An. In the approach using standard

Mathematica functions, one possibility is to choose [λn+1] to be the RegionCentroid of the

allowed OPE region. However, for the other approaches it is important to have methods

that don’t require detailed knowledge of the shape of An (which can be expensive to

compute).

One simple approach is to minimize the barrier function BAn(x) over An (using [x]

as an initial point). However, for very elongated regions An, the minimum of the barrier

function is sometimes not particularly close to the center of volume.

Note that in the case m = 2, where OPE space RP
m−1 is 1-dimensional, it is trivial to

find a suitable [λn+1]. The allowed region is a union of line segments that we can solve for

analytically. We can then choose the midpoint of the longest line segment (in some affine

coordinates).

We can use this observation in higher dimensions. Let us start with a point [x0] ∈
RP

m−1 and choose a random line ℓ0 ⊂ RP
m−1 containing [x0]. The intersection of the

line ℓ0 with the region An is a union of line segments (typically a single segment), and

we can choose [x1] to be the midpoint of one of these segments. Repeating in this way,

we obtain a sequence of points [xk] that are at the midpoints of random lines intersecting

An. This sequence does not typically converge to a single point. However, later points

in the sequence are good candidates for [λn+1].
22 To randomly sample the line ℓi, we

choose coordinates around [xi] in which the Hessian of the barrier function BAn(x) at [xi]

becomes a diagonal matrix with entries ±1. In these coordinates, the region An typically

looks roughly spherical around [xi]. We then use a uniform distribution on an infinitesimal

sphere around xi in these coordinates. We call this method a “hessian line search”.

The hessian line search can be modified to randomly sample points inside An, with

applications to the Qn-minimization method of section 3.4.2. Instead of choosing xi+1 to

be the midpoint of a line segment in ℓi ∩ An, we can choose it randomly along a segment.

3.4.5 Bounding ellipsoids

The cutting surface method becomes most efficient when the radius of curvature of the

surface defined by the quadratic form Qn is small compared to the size of the region An−1.

If we start with the allowed region A0 = RP
m−1, then it might take several iterations of

the algorithm before this happens. Indeed, in our testing, the cutting surface algorithm

often spent significant time cutting away parts of RP
m−1 that are known to be far from

the correct values of OPE coefficients. To avoid this problem, it is useful to impose a

“bounding box” in OPE space. An efficient way to do this is to pick a bounding ellipsoid,

and choose Q1 to be the quadratic form that rules out the exterior of the ellipsoid.

Imposing a bounding ellipsoid is a non-rigorous optimization and should be done with

care. As we worked our way up in the number of derivatives of the crossing equations, we

22In practice, we take the last 10 points in a long sequence and average them in some affine coordinates.
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used the following strategy. At an initial derivative order Λ, we keep track of all values

of OPE coefficients of allowed points. We choose an ellipsoid E that contains these values

and is also enlarged by an O(1) factor. We then increase Λ → Λ′ and use E as a bounding

ellipsoid for the cutting surface algorithm. As a check on this method, we can inspect the

set of allowed OPE coefficients found at derivative order Λ′ and see if any of them are close

to the boundary of E . In practice, they never are, see figure 4. (In fact, they are almost

never outside the cloud of points computed at derivative order Λ, so the enlargement by

an O(1) factor is unnecessary.) We can now find a new ellipsoid E ′ and continue.

3.5 Hot-starting

The cutting surface algorithm requires solving multiple SDPs to rule out a single point

(∆φ,∆s,∆t) in dimension space. For example, for the computation described in section 4.2,

each point in dimension space required solving an average of ∼ 35 SDPs (not including the

tiny SDPs encountered in the semidefinite relaxation method of section 3.4.3). Fortunately,

many of these SDPs can be solved extremely quickly using hot-starting [84]: we reuse the

final state of the semidefinite program solver from a previous calculation as the initial state

in a new calculation. In practice, hot-starting means passing an old checkpoint file as an

argument to SDPB.

Hot-starting is particularly advantageous in the cutting surface algorithm because

SDPs only change by a small amount with each new run. Specifically, the only difference

between subsequent SDPs is the replacement of the positivity condition λT
nα(Vext)λn ≥ 0

by the new condition λT
n+1α(Vext)λn+1 ≥ 0. Thus, the previous checkpoint contains a

functional that already satisfies all other positivity conditions in the semidefinite program.

In practice, the new condition λT
n+1α(Vext)λn+1 ≥ 0 is satisfied after a small number of

iterations of SDPB. Furthermore, the number of iterations typically decreases over the course

of the cutting surface algorithm, see figure 5.

Hot-starting is useful also for different points in dimension space. In practice, we keep

a list of checkpoint files from all runs of SDPB over the course of a computation. For each

new point in dimension space, we find the newest checkpoint file corresponding to the

closest point in dimension space, and use it to initiate the cutting surface algorithm.

To demonstrate the effectiveness of hot-starting in dimension space, we study the 3d

Ising model σ, ǫ mixed correlator bootstrap described in [5]. We choose a fixed point P0

in dimension space and hot-start P0 with several checkpoints from nearby points Pi, see

figure 6(a). We observed that in general when Pi is close to P0, the number of iterations

is smaller. In figure 6(b), we show the effectiveness of hot-starting in a transformed space,

where the Ising island is roughly a spherical shape. We see that the concept of “nearest”

is better behaved in this transformed space.

Let us mention one additional practical optimization. In each step of the cutting

surface algorithm for scanning OPE coefficients, we must solve semidefinite programs that

are nearly identical: they differ only in the positivity conditions associated to the external

scalars φ, s, t. Consequently, we can avoid re-generating the entire SDP and only re-generate

the conditions for the external scalars.
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Figure 4. Allowed points in external scalar OPE coefficient space, found while computing the

allowed island in dimension space, for Λ = 27 (yellow), Λ = 35 (blue), and Λ = 43 (red), together

with a choice of bounding ellipsoid (gray). For each set of points, we also show their convex hull

in the same color. To plot the points, we applied an affine transformation to make the Λ = 27

region roughly spherical. The relationship between the displayed coordinates x, y, z and the

OPE coefficients is λext = (751.0591846177696 − 362.65959721052656x − 131.334377405401y −
41.46952958591952z, 1, 3383.753238900843 + 695.8131625006117x − 1729.4094085965235y −
607.9744222068027z,−12562.290081255807 + 123.88628689820867x − 3799.4579787849975y +

10949.506824631871z). After finding the Λ = 27 points, we chose the gray sphere as a bounding

ellipsoid for the computation with Λ = 35. No Λ = 35 (blue) points are near the edge of the bound-

ing ellipsoid, which justifies this choice. We used the same bounding ellipsoid for the computation

with Λ = 43. Again, no Λ = 43 (red) points are near the edge of the bounding ellipsoid.

3.6 Primal/dual jumps

When testing feasibility of an SDP (as opposed to optimizing an objective function), SDPB

includes some features that allow the solver to terminate more quickly. Internally, SDPB
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Figure 5. Number of iterations of SDPB in each step of the cutting surface algorithm, for our

computation of the O(2) model island with Λ = 43. Hot-starting drastically reduces the number

of iterations throughout the computation. The blue paths represent OPE scans that eventually

terminate by ruling out a point in dimension space. The red paths represent scans that eventually

terminate by finding an allowed (primal) point. We mark the end of each path with a dot. At

the beginning of the computation, a small number of points require ∼ 200 SDPB iterations during

the first step of the cutting surface algorithm. Once the checkpoints from those SDPB runs have

been generated, hot-starting ensures that most subsequent runs take . 20 SDPB iterations. The first

10–20 steps of the cutting surface algorithm typically require 1–15 SDPB iterations each. If the point

is allowed, the algorithm typically finds it within 20 steps. If the point is disallowed, subsequent

steps of the cutting surface algorithm take fewer iterations, with the last several steps requiring 1

iteration each.

uses a modified Newton’s method to simultaneously solve three types of equations: primal

feasibility equations, dual feasibility equations, and an equation relating the two. For our

purposes, the dual feasibility equations are the most important. A functional α exists if

and only if the dual feasibility equations are satisfied. If SDPB detects that it is possible

to solve either the primal or dual feasibility equations during an iteration, then it does so

immediately. We call such events primal/dual jumps.

When testing feasibility, a dual jump means that a functional α has been found (and

the solver can terminate). In practice, a primal jump means a functional will not be

found (so the solver can terminate in this case as well). The observation that we can stop

after a primal jump was made in [82]. As far as we are aware, it has not been rigorously

established. However, this does not affect the validity of the resulting bootstrap bounds,

which depends only on the existence of functionals.
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Figure 6. Hot-starting effectiveness for different nearby checkpoints. The blue line is the boundary

of the 3d Ising from σ, ǫ mixed correlator bootstrap. The setup is the same as that of the dark blue

region of figure 3 in [5] except nmax = 10 (i.e. Λ = 19). We fix P0 (indicated by a cross) to be various

points and hot-start the P0 computation with checkpoints taken from nearby points Pi around P0.

The color of Pi indicates how many SDPB iterations is needed for the hot-started computation.

Red corresponds to 8 iterations, while green corresponds to 1 iteration. Without hot-starting,

the typical number of iterations is about 80. On the left: we fix P0 to be (0.518123, 1.412409),

(0.518237, 1.413352), (0.518218, 1.412800). On the right: the (∆σ,∆ǫ) space is transformed such

that the island is roughly spherical. We fix P0 to be (0.518217, 1.413221).

To make SDPB terminate in the event of primal/dual jumps, we supply the options

--detectPrimalFeasibleJump and --detectDualFeasibleJump. We have found that it

is important to disallow SDPB from terminating for other reasons. For example, over the

course of the cutting surface algorithm, the primal error can get quite small, and often

goes below reasonable values of primalErrorThreshold. However, in practice only pri-

mal/dual jumps are good reasons to terminate. Thus, we recommend turning off the options

--findPrimalFeasible and --findDualFeasible, and setting primalErrorThreshold

and dualErrorThreshold extremely small (e.g. 10−200). Our precise parameters are listed

in appendix B.

The existence of dual feasible jumps is sensitive to the precise bootstrap problem being

solved. In our initial bootstrap implementation for correlators of φ, s, t, we did not observe

any dual feasible jumps. In these cases, SDPB would run for many iterations, with the

dualError (which indicates failure of the dual feasibility equations to be satisfied) steadily

decreasing but never jumping to zero. We observed that during these iterations, SDPB was

working hard to find functionals that were positive when acting on operators close to the

unitarity bound. We alleviate this problem by imposing a small gap in twist τ = ∆ − J .

Specifically, we impose

τ ≥ τunitarity + δτ, (3.15)
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(where τunitarity is the unitarity bound) in all spin/symmetry sectors not containing con-

served currents. (This condition is in addition to other gaps.) The extremely conservative

choice δτ = 10−6 is sufficient to restore dual feasible jumps. Imposing this small twist gap

dramatically increases the efficiency of our methods.

3.7 Delaunay triangulation in dimension space

Given the above methods for determining whether a point (∆φ,∆s,∆t) in dimension space

is allowed, we would like to search for the full allowed region. For simplicity, first consider

the one-dimensional case, where we have a single parameter ∆. We can map ∆-space

efficiently using binary search between known points. Suppose we have a list of values

∆1 < ∆2 < · · · < ∆n, that are known to be either allowed or disallowed. We define

pi =

{

0 if ∆i is disallowed,

1 if ∆i is allowed.
(3.16)

For each case where pi 6= pi+1, we perform a binary search between ∆i and ∆i+1 to find

the precise threshold between allowed and disallowed.

We can reinterpret this method as follows. We can define a “probability” p(∆) that a

given point is allowed. Our eventual goal will be to make p(∆) as close to 0 or 1 as possible

for all ∆. A reasonable approximation for p(∆) is via linear interpolation between the

values p(∆i) = pi. To improve our knowledge of the allowed region as quickly as possible,

the next test point ∆test should have probability p(∆test) = 1/2. If there are multiple such

points, we should choose the one with the smallest slope |p′(∆test)|.23 We then test whether

∆test is allowed, add it to the list of known values, and repeat the algorithm.

The above method generalizes to higher dimensions. Consider a vector of dimensions
~∆ ∈ R

k. Suppose that we have a list of points ~∆1, ~∆2, . . . , ~∆n ∈ R
k and values pi defined

as in (3.16). To define a probability function p(~∆), we perform a Delaunay triangulation

of the set of known points.24 Within each simplex of the triangulation, we define p(~∆)

via linear interpolation between its values pi at the vertices. Within each simplex, the

points satisfying p(~∆) = 1/2 are either empty or form a codimension-1 polyhedron. For

every nonempty polyhedron, we define a candidate point as the mean of the vertices of the

polyhedron. We choose ~∆test as the candidate point inside the simplex with the largest

“crossing distance”, which is defined as the minimum distance between two vertices of the

simplex with different values of pi. After testing ~∆test, we add it to the list of known points

and repeat the algorithm.

We illustrate this algorithm in 2 dimensions in figure 7.

To work properly, Delaunay triangulation search requires sufficiently good initial con-

ditions. For example, in the 1-dimensional case (binary search), we only obtain a correct

picture of the allowed region if each connected allowed component and each connected

23If we are testing points in parallel, then we can order the points in order of increasing slope and test

the first few.
24Delaunay triangulations in 2 or 3 dimensions can be computed in Mathematica. In general, they can

be computed efficiently using the software package qhull [115].
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Figure 7. A series of images show intermediate states of the Delaunay triangulation algorithm for

3d Ising σ,ǫ mixed correlator bootstrap. The setup is same as the dark blue region of figure 3 in [5]

except nmax = 10 (Λ = 19). We transformed the (∆σ,∆ǫ) space such that the 3d Ising island is

roughly spherical. The red points are disallowed, while black points are allowed. The blue region

is the convex hull of the black points. The N in each plot is the total number of sampled points.

disallowed component contains at least one initial point. Similarly, in higher dimensions,

we only find an allowed region if we start with at least one point inside that region.

For this work, we found suitable initial conditions by first studying low derivative

order Λ, and then working our way up in Λ. Our typical workflow is as follows: based on

computations at Λ = 15, 19, 23, we found that the allowed region is a nearly convex island,

and it can be made approximately spherical by a particular affine transformation. For each

subsequent computation, we applied an affine transformation determined by the previous

computation before performing the Delaunay search. This increases the efficiency of the

search and makes it easier to correctly resolve corners sharp corners and other features in

the boundary of the island.
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Because the shape of the island is so simple, Delaunay triangulation works properly

given a single allowed point, together with enough disallowed points that the island does not

extend outside the convex hull of the disallowed points. When increasing Λ, we can reuse

all disallowed points from lower values of Λ. What remains is to determine an allowed point

at the new value of Λ. We guess the allowed point in dimension space by extrapolating the

way that the island shrinks with Λ, and choosing a point in the center of the extrapolated

island. We test this point, and if the result is primal feasible, we can initiate a Delaunay

search for the island. If the point is ruled out, we must make a different guess.

4 Results

4.1 Dimension bounds without OPE scans

In this section, we show bounds on the dimensions ∆φ,∆s computed without the algorithm

described in section 3.3 for scanning over OPE coefficients. We also explore effects of

imposing a more or less conservative gap in the charge-4 scalar sector.

Figure 8 shows bounds with different gap assumptions and different values of Λ, all

computed without scanning over OPE coefficients. The light orange region shows a bound

with Λ = 19 and the conservative assumption that the lowest dimension charge-4 scalar

operator has dimension ∆4 ≥ 1. Evidence from other techniques supports the hypothesis

that in fact ∆4 ≥ 3. The light blue region shows the resulting bound after imposing this

stronger gap assumption. Finally, the dark blue region shows the result of imposing the

stronger gap assumption and increasing the derivative order to Λ = 27.

We see that the stronger gap assumption reduces the size of the island by approximately

30% in both dimensions. Furthermore, imposing the gap assumption causes the island to

shrink relatively quickly with Λ. Here, we see that increasing Λ from 19 to 27 causes the

island to shrink by an additional factor of 2. Because the stronger gap is well-motivated

and significantly improves the results, we include it in our computations. For comparison

in figure 8, we show the Monte Carlo and high temperature expansion result from [96] and

more recent Monte Carlo result from [95]. Without scanning over OPE coefficients, the

bootstrap results are less precise.

4.2 Dimension bounds with OPE scans

Now we show our results obtained from scanning over OPE coefficients using the cutting

surface algorithm described above. The plots in this section compute the allowed values

of {∆φ,∆s,∆t} assuming irrelevance of the second charge 0,1,2 operators and first charge

4 operator. The stress tensor and conserved current are assumed in the spectrum with

coefficients constrained by Ward identities. All other operators are allowed to exist at any

scaling dimension above ℓ+ 1 + δτ with δτ = 10−6.

Figures 9 and 10 shows our determinations of the allowed regions at derivative order

Λ = 19, 27, 35, 43, projected to the {∆φ,∆s} plane. Figure 11 also shows the projection

to the {∆φ,∆t} plane and figure 2 in the introduction shows a view of the 3d region

at Λ = 43. The improvement relative to figure 8 is readily apparent. In particular the
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Figure 8. Bounds on the scaling dimensions ∆φ,∆s computed without the cutting surface algo-

rithm described in section 3.3. The light orange region shows the bound computed with Λ = 19 and

a conservative gap assumption in the charge-4 scalar sector ∆4 ≥ 1. The light blue region shows the

bound at Λ = 19 with a stronger gap assumption ∆4 ≥ 3. The dark blue region shows the bound at

Λ = 27 with the stronger gap assumption. The results are compared with the recent Monte Carlo

studies [86, 95] and an earlier study combining Monte Carlo simulations with high temperature

expansion calculations in [96]. These bounds were computed at relatively low resolution, so the

edges of the island show some artifacts.

conformal bootstrap results exclude the values of ∆s extracted from 4He measurements [85]

and improve upon but appear compatible with both earlier [96] and recent results from

Monte Carlo simulations [86, 95].

The plotted regions are obtained by constructing the Delaunay triangulation of our

tested points, selecting the triangles that contain both allowed and disallowed points, and

plotting the convex hull of the points in the interior of these triangles that are midway

between the allowed and disallowed vertices. This represents our best determination of the

allowed region at a given Λ, but has a small error associated with the distance between the

boundary and the nearest disallowed point. This “best-fit” region gives the determinations

∆φ = 0.519088(17∗), (4.1)

∆s = 1.51136(18∗), (4.2)

∆t = 1.23629(9∗). (4.3)

More conservatively we can consider the convex hull of the disallowed points in the Delau-

nay triangles straddling the boundary of the allowed region. We believe that every point

outside of this more conservative region is excluded by the conformal bootstrap, giving the
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Figure 9. Superposition of the new O(2) islands using the {φi, s, tij} system and OPE scans over

the earlier bootstrap results from [7] which used the {φi, s} system.

rigorous error bars

∆φ = 0.519088(22), (4.4)

∆s = 1.51136(22), (4.5)

∆t = 1.23629(11). (4.6)

Each allowed point in dimension space comes paired with an allowed point in the space

of OPE coefficient ratios. At Λ = 43 these allowed OPE coefficient ratios live in the ranges

λsss

λφφs

= 1.20926(46∗), (4.7)

λtts

λφφs

= 1.82227(19∗), (4.8)

λφφt

λφφs

= 1.765918(64∗). (4.9)

The full allowed region in OPE coefficient space may be slightly larger.25 The full set of

computed points at Λ = 43 are shown in figure 12 and listed in appendix E.

25Using the scaling dimension region as a guide we would estimate that the range of allowed values

may increase in size by ∼ 20% when going from the computed allowed points at Λ = 43 to the “best-fit”

allowed region.
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Figure 10. New O(2) islands using the {φi, s, tij} system and OPE scans at Λ = 19, 27, 35, 43.

This plot shows the projection to the {∆φ,∆s} plane. The results are compared with the recent

Monte Carlo studies [86, 95] and an earlier study combining Monte Carlo simulations with high

temperature expansion calculations [96].

4.3 Central charges and λφφs

As stated in section 2.2, the two-point coefficient CT for stress tensors and the two-point

coefficient CJ for the O(2) current appear in the crossing equations. These coefficients are

interesting for several reasons. For example they are related to transport in quantum critical

systems, giving the leading term in the high frequency expansion at finite temperature [117,

118]. In particular, the zero temperature conductivity of the O(2) model is given by [117]

2πσ∞ =
2πCJ

16C free
J

. (4.10)

It should be possible to produce an island in the combined space of scaling dimensions

∆φ,∆s,∆t, OPE coefficient λφφs, and coefficients CT , CJ . In particular, this would give

a determination of CT and CJ with rigorous error bars. Due to limits on computational

resources, we have not yet attempted this computation. Instead, we will content ourselves

with non-rigorous estimates of CT , CJ and λφφs. We chose 7 allowed points (shown in

table 9 of appendix E) in our island computed with Λ = 43 derivatives. For each point, we

computed upper and lower bounds on CJ , CT , and the OPE coefficient λφφs with Λ = 35

derivatives. The largest upper bound and smallest lower bound give an estimate for these

quantities.

In order to compute upper bounds on CJ (CT ), we must assume a gap between the

conserved current (stress tensor) and other operators in the same spin and global symmetry
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Figure 11. New O(2) islands using the {φi, s, tij} system and OPE scans at Λ = 19, 27, 35, 43.

This plot shows the projection to the {∆φ,∆t} plane. The results for ∆φ are compared with

the recent Monte Carlo studies [86, 95] and an earlier study combining Monte Carlo simulations

with high temperature expansion calculations [96], while the results for ∆t are compared with the

Monte Carlo study [87]. The latter is also compatible with the earlier pseudo-ǫ expansion estimate

∆t = 1.237(8) [116].

sector. When computing upper bounds on CJ , we assume all other spin-1 charge-0 opera-

tors have dimension ∆ ≥ 3. When computing upper bounds on CT , we assume all other

spin-2 charge-0 operators have dimension ∆ ≥ 4. These assumptions are well-supported

by estimates from the ǫ-expansion and from the extremal functional method.

We find

CJ/C
free
J = 0.904395(28∗), (4.11)

CT /C
free
T = 0.944056(15∗), (4.12)

where in both cases the error bars are non-rigorous. Our result for CJ gives a new deter-

mination of the zero-temperature conductivity

2πσ∞ = 0.355155(11∗). (4.13)

We also find

λφφs = 0.687126(27∗). (4.14)

Combining this result with the OPE ratios (4.7) and adding errors in quadrature leads to

the values quoted in table 1.

– 31 –



J
H
E
P
0
6
(
2
0
2
0
)
1
4
2

Figure 12. Allowed points in the space of OPE coefficient ratios computed using the {φi, s, tij}
system at Λ = 43. The convex hull of these points (red) gives an estimate for the allowed values of

these coefficients. The projection of the full 6d allowed region will be slightly larger so the shown

region is non-rigorous.

4.4 Estimates from the extremal functional method

The extremal functional method [52, 78] is a non-rigorous method for estimating a large

amount of CFT data from a small number of computations. We hope to present a more

detailed analysis of our extremal functionals for the O(2) model in future work. For now,

we give estimates of the dimensions of a few important low-lying scalars in table 4. To

obtain extremal functionals, we chose 20 allowed points in the Λ = 43 island and computed

lower and upper bounds on the norm of the external OPE vector |λext| with derivative order

Λ = 27 (shown in table 10 of appendix E). Comparing the zeros of the resulting functionals,

we identified stable zeros whose positions did not vary significantly as we changed the point

in the island [97]. Thus, for 20 points, we have 40 different values of ∆s′ , ∆t′ , ∆charge 3,

and ∆charge 4 (half of them are from the lower bound computations, while another half are
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Dim Method value ref.

∆s′ MC 3.789(4) [86]

CB 3.794(8∗)

∆t′ FT 3.624(10) [102]

CB 3.650(2∗)

∆charge 3 MC 2.1085(20) [87]

CB 2.1086(3∗)

∆charge 4 MC 3.114(2) [106]

CB 3.14(2∗)

Table 4. Comparison of conformal bootstrap (CB) estimates using the extremal functional method

with previous Monte Carlo (MC) and ǫ-expansion (FT) determinations of operator dimensions. The

values for the extremal functional determinations are means across the 40 different extremal spectra,

and the errors are the standard deviations. We mark the errors with a ∗ to emphasize that they

are non-rigorous. Here, “charge-3” and “charge-4” refer to the lowest-dimension scalars with the

given charges, which in field theory language are φ(iφjφk) and φ(iφjφkφl).

from the upper bound computations). The gaps we impose are the same as in the OPE

scan discussed before, except that we set the twist gap δτ to 10−4.
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A Code availability

All code used in this work is available online. This includes

• The semidefinite program solver SDPB:

https://github.com/davidsd/sdpb

• Code for generating tables of scalar conformal blocks:

https://gitlab.com/bootstrapcollaboration/scalar blocks

• A Mathematica framework for bootstrap calculations, including implementations of

the cutting surface and Delaunay triangulation algorithms described in section 3:

https://gitlab.com/bootstrapcollaboration/simpleboot.

• A Haskell framework for concurrent computations on an HPC cluster:

https://github.com/davidsd/hyperion

• Haskell libraries for bootstrap computations, including implementations of the cutting

surface and Delaunay triangulation algorithms described in section 3:

https://gitlab.com/davidsd/sdpb-haskell

https://gitlab.com/davidsd/hyperion-bootstrap

https://gitlab.com/davidsd/hyperion-projects

• A Haskell library and standalone executable for solving quadratically constrained

problems by a combination of semidefinite relaxation and other heuristics

https://gitlab.com/davidsd/quadratic-net/

B Software setup and parameters

The computations of the O(2) model islands described in section 4.2 with Λ = 19, 27 were

performed on the Caltech HPC Cluster and the Yale Grace Cluster. For the computa-

tions with Λ = 35 and Λ = 43, we tested possible primal points using the Caltech and

Yale clusters. In each case, after finding a few initial primal points, the main Delaunay

triangulation search was performed on the XSEDE [119] Comet Cluster at the San Diego

Supercomputing Center through allocation PHY190023. The computation of the Λ = 35

island took 192K core-hours and was completed in 4 days. The computation of the Λ = 43

island took 1.03M core-hours and was completed in 2 weeks.

In table 5, we list the SDPB and scalar blocks parameters for the Λ = 35, 43 island

computations. (Parameters for other values of Λ are available upon request.) In table 6, we

list the parameters for the extremal functional computations with Λ = 27 section 4.4. Note

that for the island computation, the parameters findPrimalFeasible, findDualFeasible,

detectPrimalFeasibleJump, and detectDualFeasibleJump are set in accordance with

the discussion in section 3.6.
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Λ 35 43

keptPoleOrder 32 40

order 80 90

spins S35 S43

precision 960 1024

dualityGapThreshold 10−30 10−75

primalErrorThreshold 10−200 10−200

dualErrorThreshold 10−200 10−200

findPrimalFeasible false false

findDualFeasible false false

detectPrimalFeasibleJump true true

detectDualFeasibleJump true true

initialMatrixScalePrimal 1050 1060

initialMatrixScaleDual 1050 1060

feasibleCenteringParameter 0.1 0.1

infeasibleCenteringParameter 0.3 0.3

stepLengthReduction 0.7 0.7

maxComplementarity 10160 10200

Table 5. Parameters for the computations in section 4.2. The sets S35,43 are defined in (B.1).

Λ 27

keptPoleOrder 12

order 60

spins S27

precision 900

dualityGapThreshold 10−80

primalErrorThreshold 10−200

dualErrorThreshold 10−100

initialMatrixScalePrimal 1020

initialMatrixScaleDual 1020

feasibleCenteringParameter 0.1

infeasibleCenteringParameter 0.3

stepLengthReduction 0.7

maxComplementarity 10200

Table 6. Parameters for the computations in section 4.4. The set S27 is defined in (B.1).
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The sets of spins used for each value of Λ were

S27 = {0, . . . , 31} ∪ {49, 50},
S35 = {0, . . . , 44} ∪ {47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 67, 68},
S43 = {0, . . . , 64} ∪ {67, 68, 71, 72, 75, 76, 79, 80, 83, 84, 87, 88}. (B.1)

C Tensor structures

In this appendix we compute all the O(2) structures TR
R1R2R3R4

(yi) that appear in the

block expansion (2.8) for the 4-point functions we consider as listed in table 2. The block

expansion in the s-channel is derived by inserting a complete set of states

∑

α=O,PO,PPO

〈

ϕ1
R1

(x1, y1)ϕ
2
R2

(x2, y2)|α〉〈α|ϕ3
R3

(x3, y3)ϕ
4
R4

(x4, y4)
〉

〈α|α〉 , (C.1)

where α runs over an orthogonal basis of operators O (and descendents) in irrep R that

appear in the OPEs ϕ1 × ϕ2 and ϕ3 × ϕ4. The 4-point structure TR
R1R2R3R4

(yi) can then

be written in terms of the O(2) structures TR
RiRj

(yi, yj , y) of each of the pair of 3-point

functions as

TR
R1R2R3R4

(yi) = (TR1R2R(y1, y2, y), TR3R4R(y3, y4, y)) , (C.2)

where (f(y), g(y)) denotes the contraction over y in index free notation. When R is 0±,

the contraction is just multiplication of the three-point structures. When R has nonzero

charge n, this contraction can be derived by expanding each rank n O(2) tensor in the basis

e =
1√
2

(

1

i

)

, e =
1√
2

(

1

−i

)

, (C.3)

as

f(y) = f(e)(y · ē)n + f(ē)(y · e)n , (C.4)

and similarly for g(y). This basis has the convenient properties e ·e = ē · ē = 0 and e · ē = 1,

so that the contraction of the tensors in index free notation is

(f(y), g(y)) = f(e)g(ē) + f(ē)g(e) . (C.5)
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The result of these contractions can then be written in terms of the quantities

wi ≡ yi · e , w̄i ≡ yi · ē , (C.6)

which have the properties

yi · yi = wiw̄i = 0 , yi · yj = wiw̄j + w̄iwj , yi ∧ yj = i(wiw̄j − w̄iwj) , (C.7)

which imply that wi = 0 or w̄i = 0 since y2i = 0 by definition.

The utility of this derivation is that each 3-point structure establishes a convention for

the OPE coefficient λϕiϕjO of the associated 3-point function, so computing the 4-point

structures in terms of these 3-point structures ensures that the coefficients λϕ1ϕ2Oλϕ3ϕ4O

that appear in (2.8) can be consistently identified with these OPE coefficients. For each s-

and t-channel configuration in table 2 with an independent O(2) structure, the resulting

four-point structures are:

〈φφφφ〉 : T 0+

1i1j1k1l
= (wiw̄j + w̄iwj)(wkw̄l + w̄kwl) ,

T 0−

1i1j1k1l
= −(wiw̄j − w̄iwj)(wkw̄l − w̄kwl) ,

T 2
1i1j1k1l

= wiwjw̄kw̄l + w̄iw̄jwkwl ,

〈tttt〉 : T 0+

2i2j2k2l
= (wiw̄j + w̄iwj)

2(wkw̄l + w̄kwl)
2 ,

T 0−

2i2j2k2l
= −(w2

i w̄
2
j − w̄2

iw
2
j )(w

2
kw̄

2
l − w̄2

kw
2
l ) ,

T 4
2i2j2k2l

= (wiwjw̄kw̄l + w̄iw̄jwkwl)
2 ,

〈tφtφ〉 , 〈φttφ〉 : T 1
2i1j2k1l

= (wiw̄j + w̄iwj)(wkw̄l + w̄kwl)(wiw̄k + w̄iwk) ,

T 3
2i1j2k1l

= w2
iwjw̄

2
kw̄l + w̄2

i w̄jw
2
kwl ,

〈ttφφ〉 : T 0+

2i2j1k1l
= (wiw̄j + w̄iwj)

2(wkw̄l + w̄kwl) ,

T 0−

2i1j2k1l
= −(w2

i w̄
2
j − w̄2

iw
2
j )(wkw̄l − w̄kwl) ,

〈ssss〉 : T 0+

0+0+0+0+ = 1 ,

〈φsφs〉 , 〈sφφs〉 : T 1
1i0

+1k0
+ = wiw̄k + w̄iwk ,

〈tsts〉 , 〈stts〉 : T 2
2i0

+2k0
+ = w2

i w̄
2
k + w̄2

iw
2
k ,

〈ttss〉 : T 0+

2i2j0
+0+ = (wiw̄j + w̄iwj)

2 ,

〈φφss〉 : T 0+

1i1j0
+0+ = wiw̄j + w̄iwj ,

〈φsφt〉 , 〈sφφt〉 : T 1
1i0

+1k2l
= (wkw̄l + w̄kwl)(wiw̄l + w̄iwl) ,

〈φφst〉 : T 2
1i1j0

+2l
= w2

l w̄jw̄i + w̄2
l wjwi .

(C.8)

D Crossing vectors

Here we write the explicit vectors of crossing equations. In the following, an entry of 0 will
denote either a scalar or matrix of scalars depending on if the crossing equation is a scalar
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or a matrix.
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E Computed points

∆φ ∆s ∆t
λsss

λφφs

λtts

λφφs

λφφt

λφφs

0.519091478 1.51141697 1.23631316 1.23631316 1.23631316 1.23631316

0.519088325 1.51139275 1.23629816 1.23629816 1.23629816 1.23629816

0.519085258 1.51131148 1.23626768 1.23626768 1.23626768 1.23626768

0.519083027 1.51130787 1.23626810 1.23626810 1.23626810 1.23626810

0.519084900 1.51132513 1.23626125 1.23626125 1.23626125 1.23626125

0.519101167 1.51147622 1.23635261 1.23635261 1.23635261 1.23635261

0.519079494 1.51130889 1.23625139 1.23625139 1.23625139 1.23625139

0.519088780 1.51141601 1.23631255 1.23631255 1.23631255 1.23631255

0.519099104 1.51149674 1.23636042 1.23636042 1.23636042 1.23636042

0.519074036 1.51122813 1.23622003 1.23622003 1.23622003 1.23622003

0.519075834 1.51124069 1.23621228 1.23621228 1.23621228 1.23621228

0.519086133 1.51140646 1.23629626 1.23629626 1.23629626 1.23629626

0.519091591 1.51144378 1.23631466 1.23631466 1.23631466 1.23631466

0.519101492 1.51147122 1.23635764 1.23635764 1.23635764 1.23635764

0.519095922 1.51143997 1.23632426 1.23632426 1.23632426 1.23632426

0.519089922 1.51145388 1.23632418 1.23632418 1.23632418 1.23632418

0.519096569 1.51145694 1.23634757 1.23634757 1.23634757 1.23634757

0.519078927 1.51129693 1.23625413 1.23625413 1.23625413 1.23625413

0.519085163 1.51135762 1.23627100 1.23627100 1.23627100 1.23627100

0.519095326 1.51148380 1.23634189 1.23634189 1.23634189 1.23634189

0.519081546 1.51129674 1.23625401 1.23625401 1.23625401 1.23625401

0.519078552 1.51131491 1.23624987 1.23624987 1.23624987 1.23624987

0.519104279 1.51152063 1.23637609 1.23637609 1.23637609 1.23637609

0.519077715 1.51124447 1.23623187 1.23623187 1.23623187 1.23623187

0.519074849 1.51125858 1.23622291 1.23622291 1.23622291 1.23622291

0.519081236 1.51134317 1.23627346 1.23627346 1.23627346 1.23627346

0.519087675 1.51137648 1.23630209 1.23630209 1.23630209 1.23630209

0.519092708 1.51139697 1.23631672 1.23631672 1.23631672 1.23631672

0.519080005 1.51131897 1.23624739 1.23624739 1.23624739 1.23624739

0.519096168 1.51149661 1.23635270 1.23635270 1.23635270 1.23635270

0.519073619 1.51122331 1.23621261 1.23621261 1.23621261 1.23621261

0.519085778 1.51132384 1.23628076 1.23628076 1.23628076 1.23628076

0.519075030 1.51121405 1.23622082 1.23622082 1.23622082 1.23622082

Table 7. Allowed points in the Λ = 43 island.
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0.519102918 1.51155239 1.23637912

0.519108668 1.51153259 1.23638777

0.519084234 1.51130123 1.23627522

0.519086029 1.51135180 1.23626619

0.519093006 1.51136316 1.23630104

0.519074320 1.51118490 1.23620389

0.519102521 1.51148465 1.23635216

0.519109629 1.51158377 1.23640397

0.519077293 1.51123239 1.23621599

0.519086333 1.51131583 1.23626238

0.519088681 1.51132415 1.23628443

0.519103625 1.51156649 1.23639258

0.519097531 1.51152436 1.23635506

0.519104829 1.51155133 1.23639016

0.519106540 1.51151848 1.23638657

0.519099641 1.51149324 1.23634449

0.519091345 1.51145618 1.23631607

0.519099918 1.51143846 1.23634527

0.519081611 1.51130758 1.23626964

0.519093364 1.51150044 1.23634838

0.519090250 1.51142367 1.23630035

0.519095800 1.51148226 1.23635217

0.519079641 1.51134752 1.23626571

0.519066632 1.51113867 1.23617714

0.519089008 1.51142764 1.23631975

0.519081958 1.51136634 1.23626970

0.519073136 1.51120099 1.23619139

0.519079477 1.51125698 1.23623547

0.519092469 1.51139541 1.23629967

0.519091772 1.51141270 1.23632592

0.519092673 1.51139406 1.23632062

0.519069909 1.51118566 1.23618371

0.519101366 1.51149948 1.23637079

0.519090130 1.51135761 1.23628884

0.519082450 1.51133857 1.23628007

0.519107673 1.51153927 1.23639093

0.519096449 1.51141705 1.23632503

0.519074457 1.51126505 1.23622784

0.519089400 1.51140721 1.23631629

0.519080527 1.51132179 1.23624620

0.519075418 1.51126954 1.23622125

0.519071183 1.51118343 1.23619298

Table 8. Disallowed points computed at Λ = 43.
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0.519101167 1.51147622 1.23635261 1.20936871 1.82235941 1.76596240

0.519079494 1.51130889 1.23625139 1.20934084 1.82223619 1.76589343

0.519089922 1.51145388 1.23632418 1.20972662 1.82245009 1.76596250

0.519075834 1.51124069 1.23621228 1.20906418 1.82207926 1.76585335

0.519075030 1.51121405 1.23622082 1.20879917 1.82210575 1.76586410

0.519091591 1.51144378 1.23631466 1.20970116 1.82235729 1.76594661

0.519086715 1.51136546 1.23628759 1.20932228 1.82228021 1.76592047

Table 9. Allowed points in the Λ = 43 island used for computing upper and lower bounds on CT ,

CJ , and λφφs.

∆φ ∆s ∆t
λsss

λφφs

λtts

λφφs

λφφt

λφφs

0.519130434 1.51173444 1.23648971 1.20977354 1.82254374 1.76606470

0.519135171 1.51172427 1.23649356 1.20947477 1.82245370 1.76605159

0.519076518 1.51110487 1.23620503 1.20766586 1.82191247 1.76584197

0.519115548 1.51167580 1.23642873 1.21014420 1.82257643 1.76603227

0.519113909 1.51170936 1.23646025 1.21013097 1.82272756 1.76607582

0.519096732 1.51147972 1.23636344 1.20944426 1.82251617 1.76600087

0.519128801 1.51168098 1.23648846 1.20929738 1.82252856 1.76605495

0.519119255 1.51170685 1.23646324 1.21007964 1.82275976 1.76606055

0.519109342 1.51150256 1.23640031 1.20891847 1.82236481 1.76600112

0.519087647 1.51141667 1.23630721 1.20963450 1.82247476 1.76594440

0.519105802 1.51141826 1.23635621 1.20856734 1.82219520 1.76595563

0.519125142 1.51173460 1.23646472 1.21012577 1.82250871 1.76605236

0.519107610 1.51164424 1.23640715 1.21022297 1.82258938 1.76603036

0.519115226 1.51174173 1.23647414 1.21033291 1.82281805 1.76609054

0.519084390 1.51137895 1.23628833 1.20979136 1.82229748 1.76593252

0.519096529 1.51153244 1.23635748 1.20995866 1.82250999 1.76599060

0.519122718 1.51168123 1.23647847 1.20940108 1.82261368 1.76607344

0.519138689 1.51177044 1.23653770 1.20947377 1.82262309 1.76609008

0.519057668 1.51097950 1.23611240 1.20794762 1.82181966 1.76576836

0.519074424 1.51116298 1.23616082 1.20864157 1.82181577 1.76579563

Table 10. Allowed points in the Λ = 35 island used for obtaining low-lying scalar operator

dimensions via the extremal functional method.
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