
HAL Id: hal-02043761
https://hal.laas.fr/hal-02043761

Submitted on 21 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CASA: Congestion and Stretch Aware Static Fast
Rerouting

Klaus-Tycho Foerster, Yvonne Anne Pignolet, Stefan Schmid, Gilles Trédan

To cite this version:
Klaus-Tycho Foerster, Yvonne Anne Pignolet, Stefan Schmid, Gilles Trédan. CASA: Congestion
and Stretch Aware Static Fast Rerouting. IEEE Conference on Computer Communications (IEEE
INFOCOM 2019), Apr 2019, Paris, France. ฀10.1109/INFOCOM.2019.8737438฀. ฀hal-02043761฀

https://hal.laas.fr/hal-02043761
https://hal.archives-ouvertes.fr

CASA: Congestion and Stretch Aware

Static Fast Rerouting

Klaus-Tycho Foerster

Faculty of Computer Science

University of Vienna, Austria

klaus-tycho.foerster@univie.ac.at

Yvonne-Anne Pignolet

Dfinity

Switzerland

yvonneanne.pignolet@dfinity.org

Stefan Schmid

Faculty of Computer Science

University of Vienna, Austria

stefan_schmid@univie.ac.at

Gilles Tredan

LAAS-CNRS

France

tredan@laas.fr

Abstract—To meet the stringent requirements on the maxi-
mally tolerable disruptions of traffic under link failures, many
communication networks feature some sort of static failover
mechanism for fast rerouting. However, configuring such static
failover mechanisms to achieve a high degree of robustness is
known to be challenging, in particular when packet tagging or
dynamic node state cannot be used. This paper initiates the
systematic study of such local fast failover mechanisms which not
only provide connectivity guarantees, even under multiple link
failures, but also account for the quality of the resulting failover
routes, with respect to locality (i.e., route length) and congestion.
Failover quality has received less attention in the literature so far,
yet it is increasingly important to support emerging applications.

We first show that there exists an inherent tradeoff in terms
of achievable locality and congestion of failover routes. We then
present CASA, an algorithm providing a high degree of robustness
as well as a provable quality of fast rerouting. CASA combines
two crucial static resilient routing techniques: combinatorial
designs and arc-disjoint arborescences. We complement our
formal analysis with a simulation study, in which we compare
our algorithms with the state-of-the-art in different scenarios and
show benefits in terms of stretch, load, and resilience.

I. INTRODUCTION

Failures are the norm in large-scale communication net-

works, including data center [1], backbone [2] or enterprise [3]

networks. As many of these networks have become a criti-

cal infrastructure of our society, ensuring a high degree of

resilience and availability, even under multiple failures [4],

[5], [6], is important. It is hence not surprising that network

reliability is one of the main network carrier concerns [7], [8]

Reactive approaches that recompute new paths after learning

about link failures are known to result in poor performance,

packet loss, or even transiently inconsistent routes [9]. Reac-

tion times are particularly high if reconvergence is decentral-

ized (one of the motivations for Google’s move to SDN [10]);

but also if failures are handled centrally, e.g., at an SDN

controller, the delay due to round-trip time and processing, can

be undesirably high [11]. Proactive approaches try to overcome

this problem by “preparing” the network for failures, e.g., by

supporting the pre-installation of backup routes. We are hence

particularly interested in static resilience mechanisms which

rely on the pre-installation of (conditional) failover rules to

forward packets, as they are supported by many networks (e.g.,

failover group tables in OpenFlow).

However, the computation of “good” failover rules poses a

non-trivial algorithmic problem: it requires (algorithmic) ma-

neuvers which, using local information about link failures only,

ensure that traffic is steered to the intended destinations in a

reliable manner. In particular, the failover mechanisms face the

challenge that additional failures which occur downstream are

not yet visible when forwarding decisions need to be taken.

This requires the allocation of static resilient routes to be

robust to additional failures and provide connectivity despite

being oblivious to such failures. Today, it is still an open

question [12], [13] whether being oblivious comes at a price,

in the sense that static failover routing cannot leverage the

full connectivity of the underlying physical network without

a global view of all failures in the network.

While much existing work on failover routing focused on

providing connectivity, efficient failover depends on additional

criteria and especially on the resulting load: If a flow is

rerouted onto a long path after a failure (i.e., does not preserve

locality and has a large stretch), this results in an overhead

in terms of bandwidth resources consumed along the failover

path (load sum) and may also introduce a high latency. A

high latency may also be introduced due to congestion on

the resulting paths (max load). Accordingly, and in the light

of emerging applications which come with more stringent

availability, resource and latency requirements, we argue that

these properties are gaining in importance. In this paper, we

hence initiate the study of static resilient routing on multi-hop

networks which accounts for locality and load. Our work is

motivated by the following main observations:

1) High topological connectivity and path diversity alone

may be insufficient to ensure an efficient failover, as

failover routes need to be pre-installed and can only rely

on local knowledge of link failures.

2) There is an inherent tradeoff between the congestion

(load) and the length of failover routes (stretch). See

Fig. 1 for an example. Accordingly, we investigate

whether there exist efficient failover mechanisms finding

a good tradeoff of the two criteria, where possible.

Contributions: We first derive non-trivial lower bounds of

load and stretch for local rerouting schemes. We then present

CASA1 , a deterministic rerouting algorithm which relies on

an intriguing combination of two crucial techniques for static

resilient routing: combinatorial designs (so far only considered

1 CASAis an acronym for Congestion And Stretch Aware static fast rerouting.

v tv1

v2

v3

vℓ

..
.

.....
.

X

Fig. 1: 2-connected graph with l nodes on the left of v and l multi-hop paths
between v and t. In this graph the load and stretch cannot be optimized at the
same time if the dashed link between v and t fails. An algorithm optimizing
for stretch would route the flows on short paths, inducing high load. On the
other hand, an algorithm optimizing for load would distribute the flows over
many (long) paths, resulting in high stretch factors.

in single-hop networks) and arborescences (known to provide

connectivity, so far without load and stretch bounds).

We make the case for going beyond destination-based rout-

ing and leveraging also packet source addresses (e.g., the IP

address, as usual in oblivious routing [14]): this, as we show,

not only helps to reduce load but also to bypass Chiesa et al.’s

conjecture [13]. To this end, we propose an algorithm called

SquareOne that guarantees resilience to k−1 link failures in k-

connected graphs using a very simple backtracking approach.

In addition to our formal analysis, we compare CASA to

state-of-the-art algorithms in simulations, both on synthetic

and real-world networks. Our simulation results highlight the

benefits of our approach in terms of stretch, load, and re-

silience. In our simulations, SquareOne also proves to achieve

a good performance in many practical scenarios.

Organization: The remainder of this paper is organized as

follows. In Section II we introduce our system model and the

problem we study. In Section III we present lower bounds

for stretch and load. In Section IV we describe algorithms

and their achieved bounds, followed by Section V where we

evaluate our algorithms in simulations. After discussing related

work in Section VI, we conclude in Section VII.

II. MODEL

The communication network is modeled as a graph G =
(V,E) connecting n nodes (switches, routers, hosts) V using

undirected links E. We study k-connected networks which stay

connected even after removing k − 1 arbitrary links.

For routing decisions we assume that forwarding rules can

match packet header fields as well as the in-port (the port

from which a packet arrives at v, already used in [15] for fast

reroute), and depending on this match, define the outgoing

port to which a packet is forwarded at v. In other words,

the focus of this paper is on oblivious (i.e., static) routing

algorithms which do not rely on any dynamic state at nodes

(e.g., counters) or in packets: we do not allow packet tagging.

While tagging can improve the robustness of routing [16], [17],

it is often undesirable in practice to change header fields.

The failover mechanism needs to be statically pre-

configured: at the time the failover rules are installed, the set

of link failures F is not known yet. The mechanism must

be configured such that for any possible local link failures, a

failover reaction is taken which provides connectivity, stretch

and load guarantees independently of the additional failures

that may be encountered downstream. It turns out that the

ability to match in-ports can improve resilience and load of

fast rerouting schemes. In particular, thanks to the possibility

to match the in-port and the source of a packet, a node can

be traversed multiple times during failover, without ending up

in an infinite loop. That is, failover routes may not be simple

paths but form walks, e.g., consider a network with a dead-end,

forcing the packets to return along the same link [16].

Our goal is to devise r-resilient deterministic local rerouting

algorithms with stretch and load guarantees. For worst-case

load, we consider all-to-one traffic to a target node t ∈ V :

every node communicates with unit demand to t. We study:

1) Resilience (r): A packet routed according to algorithm

A eventually reaches t despite up to r link failures en-

countered on its walk to the destination. As such, only a

finite number of loops (repeated visits of the same node)

is allowed on the walk to the destination.

2) Congestion resp. Load (φ): Flow allocations are “load-

balanced”, minimizing the number of rerouted flows on

links in G. That is, we aim to minimize φ = maxe∈E φ(e),
where φ(e) describes the number of flows crossing link e
due to rerouting.

3) Locality resp. Stretch (s): Flow allocations are “low-

stretch”, minimizing the (additive) detour packets take

to reach their target: s := maxv∈V |Wv,t| − dist(v, t),
where Wv,t describes the walk by the packet from v to t in

the (re)routing algorithm A and dist(v, t) is the number of

hops on a shortest path in the original failure-free graph G0.

Simply put, we want to devise algorithms that maximize re-

silience while minimizing load and stretch. As a consequence,

the resulting algorithms ensure a low latency overhead even

under multiple link failures. To analyse the performance of a

failover scheme in a network with f failed links (we express

node failures in terms of the node’s incident links which fail

with it), we need some more definitions. In general, to study

the limits of the failover scheme, we focus on worst-case

performance: we assume the link failures are determined by

an adversary knowing the resilient routing protocol.

Definition 1. Let F be a set of failed links, F ⊂ E. A worst

case scenario constitutes a set of failed links F that generate

the worst load φ, chosen by an omniscient adversary knowing

the failover scheme. Fo(φ) is defined as the set of “optimal

attacks” (in terms of minimal required number of failures)

leading to a load φ. That is, ∀φ ≤ n, ∀F ∈ Fo(φ), there is at

least one (non-failed) link e such that the load φ(e) under a

link failure set F is φ and there are no link failure sets smaller

than |F | generating the same load.

Note that while we describe our algorithms in terms of

conditional failover rules, our lower bounds and algorithms are

general and apply to any static rerouting mechanism coping

with local failure information.

III. LOWER BOUNDS

We have seen above that requiring higher resilience may

force algorithms to choose worse routes in term of load and

stretch. There are graphs where it is not possible to minimize

load and stretch at the same time, e.g., on the graph depicted

in Fig. 1. Next, we lower bound load and stretch individually.

A. A Load Lower Bound

We derive a non-trivial lower bound for oblivious routing

schemes where routes do not only depend on the destination

(but e.g., can also depend on the source) without requiring

additional state maintained in nodes or packets.

Theorem 1. For any local r-resilient failover scheme (0 <
r < k) without disconnecting any source-destination pair,

there exists a failure scenario which results in a link load

of at least
√
r on any graph.

Proof: Let G be a k-connected graph, and let A be an

r-resilient algorithm on G. Consider an all-to-one communica-

tion pattern where all nodes send messages to some node t ∈
V . Let the degree of the destination be deg(t) ≥ k, due to

the fact that G is k-connected, and let Vt = v1, . . . , vdeg(t) be

the direct neighbors of t. Observe that each of these neighbors

sends a flow to t, for a total flow of deg(t) from the node set

Vt. Observe also that since G is k-connected, there exist at

least k link-disjoint paths between any two neighbors of t.
Let K be the graph induced from the subset Vt ∪ {t} of

G. In addition we add for each pair vi, vj ∈ Vt a link (vi, vj)
to K representing the (multiple) link-disjoint options for vi to

transmit a message to vj using paths from G \K.

Observe that the resulting graph K is a complete graph

on which an all-to-one communication pattern to t must be

realized. This situation has already been addressed in [18],

and the corresponding lower bound still holds: it is possible

to generate
√
r load for r < k failures. We summarize the key

steps of the proof in the next paragraph.

Pick a node vi and its corresponding flow. Since A is correct

it must lead the flow from vi to t in the absence of failures. Let

a0i be the last link taken by this flow to reach t. Assume now a0i
has failed. Since A is r ≥ 1 resilient, there must similarly exist

a link used to reach t despite the failure of a0i . Let a1i be this

link. Observe that this process can be repeated r times for node

vi, but also for all the other nodes of Vt, providing us with a

collection of A’s strategical choices, which can be formalized

as (aji)1≤i≤deg(t),0≤j<r ∈ {(t, v1), . . . , (t, vdeg(t))}deg(t)×r.

By carefully analyzing this set (that can conveniently be seen

as a matrix), it is possible to identify at least one link that

appears early (that is, before the
√
r first failures) and often

(that is, in
√
r flows). Exposing this link for all those

√
r flows

creates a load of
√
r and requires at most (

√
r)2 = r failures.

Let F be this strategy. Now observe that this strategy F has

the same impact on G as on K.

Interestingly, it has been proved in [18] that if a failover rule

only depends on destination addresses, the situation is even

worse, with linear load, even in the most densely connected

graph, a clique. This shows that for low load it is crucial to use

more than the destination for routing decisions. Accordingly,

in the following, we will propose schemes which distribute

the flows based on the source address as well.

B. A Stretch Lower Bound

Regarding the minimum additive stretch, we can derive the

following lower bound, which generalizes and improves upon

the girth-based results of [19]:

Theorem 2. Consider any local failover scheme for a graph

G with resilience r. Let WG,t,r be a shortest walk through

nodes in V \{t} that contains r+1 neighbors of t. The additive

stretch of the failover scheme is at least maxt∈V |WG,t,r|.
Proof: For a deterministic r-resilient scheme, an adver-

sary can fail r different links incident to the destination. Hence,

any local scheme can be forced to visit at least r+1 neighbors

of the destination, where the first r visited neighbors have

failures on their connecting link to the destination, and only

the (r+1)-th neighbor has a working connection to t. Note that

such a described walk must exist, as the graph has a resilience

of r, i.e., when an adversary uses its r failures incident to a

destination t, all neighbors of t (and in general, all nodes,

under any r failures) still form a connected component.

For example, consider a local failover scheme with re-

silience 2 for 2-dimensional x×y torus graphs: for x, y ≥ 4, a

shortest walk through 2+1 = 3 neighbors of any destination t
has a length of exactly 4, i.e., its additive stretch is at least 4.

In general, finding a shortest path through some nodes is

NP-hard, but it is tractable for many situations [20], e.g., for

constant r, even under link capacity constraints [21].

IV. UPPER BOUNDS AND ALGORITHMS

A. First Observations

We first observe that going beyond destination-based for-

warding, and including also the source address (as it is usually

performed in oblivious routing), cannot only reduce network

load but also help to reach the maximum oblivious resilience

possible, as desired in Chiesa et al. [13]. To this end, when a

failure is encountered, we backtrack to the source and select

another (pre-determined) disjoint path to the destination. We

note that our proof relies on the source, see also [13, §4.2].

Theorem 3. Given a k-connected graph, there is an oblivious

deterministic (k − 1)-resilient routing scheme.

Proof: We prove the following claim for a single des-

tination t: Let r + 1 be the number of link-disjoint paths

between a source v and a destination t; then there is an

oblivious deterministic r-resilient routing scheme from v to t.
The theorem then follows by a simple application for all

source-destination pairs. Since the choice of one of the r + 1
paths can depend on source, destination and in-port, and due

to link-disjointness, nodes can determine which route packets

were following so far. If they cannot forward the message

towards the destination along the currently used path, either

because the corresponding outgoing link has failed, or because

the message has been received from the next node on this path,

they send the message to their predecessor on the path from

the source. Now, the message will be able to backtrack to

the source (as the r + 1 paths are not just arc-disjoint, but

link-disjoint), from where the next path is tried. Due to the

fact that no link belongs to more than one of the r + 1 paths

from the source to the destination, the message will reach the

destination if at most r links fail.

Note that such source-destination link-disjoint paths can

be computed efficiently with, e.g., (min cost) flow formu-

lations [22]. While the approach described in the proof of

Theorem 3 provides optimal resilience, it does not consider

stretch or load. In the remainder of this section we study

resilient routing schemes with such additional guarantees.

Our algorithms will leverage rooted spanning arbores-

cences, a known approach to implement robust routing [12],

[23]. We will quickly revisit these concepts in the following.

Let (u, v) denote a directed arc from node u to v. A directed

subgraph T is an r-rooted spanning arborescence of G if (i)

r ∈ V (G), (ii) V (T) = V (G), (iii) r is the only node without

outgoing arcs and (iv), for each v ∈ V \ {r}, there exists a

single directed path from v to r.

When it is clear from the context, we use the term ‘arbores-

cence’ to refer to a t-rooted spanning arborescence, where t is

the destination node. A set of arborescences T = {T1, . . . Tk}
are arc-disjoint if no pair of arborescences in T share common

arcs, i.e., if (u, v) ∈ E(Ti) then (u, v) /∈ E(Tj) for all i 6= j.

It is known that k arc-disjoint arborescences exist in any k-

connected graph [24] and can be computed efficiently [25].

Chiesa et al. [12] showed how decompositions of G into T
can be used to define failover routes: If a packet encounters

a failed link at node v, then v forwards the packet along a

different arborescence Tj . The crucial question studied in this

paper is which arborescence to use when a packet hits a failed

link (i.e., a node where the next link to be used is unavailable).

In the following, we say that a packet is routed according to

an arborescence Ti if a packet is forwarded along the unique

directed path of Ti towards the destination.

When choosing the next arborescence to be used in case of

failure in an arbitrary circular order, we have a (⌊k/2⌋ − 1)-
resilience for k arc-disjoint arborescences as each link will be

used at most twice due to a failure.

B. Avoiding Unnecessary Load

We next introduce the ideas underlying CASA, which pro-

vides efficient failover routes even under multiple failures.

In particular, we observe that by varying the order of the

arborescences used, we can give load-balancing guarantees

for arborescence-based routing as well. This helps avoid the

following problem: when a failure incurs and all affected flows

use the same rerouting arborescence, then the links of this

arborescence can be overloaded.

For example, consider all flows that use the link (v, t),
v being some neighbor of t in their default routes. For a

destination of degree deg(t), there is such a link which

carries n/deg(t) flows. If this link fails, and all these flows

are rerouted to t via another neighbor of t, called v′, then

the link (v′, t) will experience a load of n/deg(t) due to

one single failure. On the other hand, a rerouting scheme

that balances the load better, can achieve a maximal load of

n/deg(t)/(deg(t)− 1) for the same scenario, by distributing

the flows to all remaining neighbors of t.
A general way to represent the decisions for the next

arborescence for oblivious routing schemes, which is also used

to describe CASA, is to use an n × k matrix, containing the

indices of the arborescences to be used as elements. Each row

of this failover matrix is assigned to a source node. Once we

have constructed such a matrix and the assignment of nodes

to rows, we use them for the decision which arborescence to

choose in the case of a failure:

C. Failover Matrix-based Arborescence Routing

Given a failover matrix, consider a packet arriving at node j,

with in-port p originating from source node i. Each in-port

corresponds to exactly one arborescence due to the fact that

we use arc-disjoint arborescences. Thus node j can determine

on which arborescence Tl the packet has been routed so far

and look up the index of l in row i. If the link leaving node j of

arborescences Tl has failed, the next available arborescence is

selected in the order of the ith row of the failover matrix after

element l in this row. An illustration of this scheme is depicted

in Fig. 2, corresponding to the pseudo-code in Algorithm 1.

Algorithm 1 CASA: Rerouting given a Failover Matrix M

Upon receiving a packet of flow i at node v:

1: if destination not reached yet, t 6= v then

2: current arborescence Tl (determined by in-port)

3: if next hop on Tl is up then forward packet along Tl

4: else j = index of v in ith row + 1, mi,j−1 = l.
5: while next hop on Tmi,j

is down do j = j + 1
6: forward packet along Tmi,j

v1

v2

v3

v4 III

III

X

X

Fig. 2: A subgraph of four nodes and three arborescences. When a packet
arrives at node v1, the in-port determines which arborescence it follows
at the moment. A packet arriving at v1 from v2 is currently following
arborescence II (blue, dash-dotted). If the next link on this arborescence to v4

is unavailable, then node v1 can look up the matrix for the next arborescence
to follow. If the next arborescence is I (orange, dotted) and the link to v3 has
failed too, it resorts to arborescence III (green, dashed) to v2. Note that this
allows flows that have been following the same arborescence to take different
next hops when encountering a failure. E.g., depending on the source node,
the next arborescence to be used can differ.

For arborescence routing, this means that we need to ensure

that the arborescences used in case of failures are as diverse as

possible. Towards this end, we apply a second key technique:

we leverage ideas from block design using k arc-disjoint

arborescences. For simplicity we first assume that k can be

written as q2+q+1 for some prime power q and we construct

a latin failover matrix using a (q2 + q + 1, q + 1, 1)-BIBD

as in [26]. While the (efficient) construction algorithm is

immaterial for the following discussion, it is important to note

that each of the rows in this matrix is a permutation of k
elements and that any two of its q-length prefixes of rows

have exactly one element in common. We can then use this

k × k matrix to build a n× k matrix, with one row for each

node (and thus for each flow in the all-to-one traffic pattern).

The steps to build this larger matrix are described in the proofs

of the following theorems. Once we have this matrix, we use

them to decided which arborescence to choose under failures.

As we will see in the following, the BIBD failover matrix

construction guarantees low load, whereas the right selection

of short arborescences ensures a low routing stretch.

Theorem 4. For ρ <
√
k/λ a circular rerouting scheme

with k arborescences can optimally spread the use of the

arborescences across λk flows leading to a load φ ≤ ρ with

Ω(ρ2) failures with a BIBD failover matrix.

Proof: As a first step, we prove that in all-to-one routing

one of the most loaded arcs is incident to the destination under

a minimal number of failures. Assuming the contrary, there is

an arc from node u to v, v 6= t carrying more load than the arcs

incident to the destination. Together with the fact that this arc

is used by exactly one arborescence, this implies that there

must be another failure on this arborescence. Otherwise the

load on the last arc would be at least as high as the load on the

arc from u to v. Since we could hence omit this failure and still

have the same load, we have reached a contradiction. Thus,

we can focus on the arcs to the destination. If the degree of

the destination is k, each of them is used by one arborescence.

Thus, the arborescence chosen due to the last failure on the

path to the destination determines the load. Thanks to the fact

that we use circular arborescence routing, the order of the

arborescences chosen for a flow does not affect the resilience.

Analogously to the proof of Theorem 1 of [26], k flows that

select the next arborescence to route along according to the

(k × k)-BIBD-failover matrix ensures that an arborescence is

used for rerouting ρ flows if at least Ω(ρ2) links fail. Due to

the lower bound proved earlier, this is optimal.

This can be extended for more than k flows, parametrized

by the number of failures to be tolerated:. for more than k
flows we cannot construct a latin submatrix where the first√
k rows intersect in exactly one element, as we have only k

elements to fill the matrix with. However, when maintaining

low intersection size, we can keep the number of failures

needed for arborescence reuse high. Consider the case when

each element can occur twice in each column, but the pairwise

intersection of the first l elements of two rows is still one.

In this case we can use the same arguments as above to

show that the necessary number of failures is quadratic in the

resulting load, if the maximum number of failures affecting

any arborescence is at most 2l.
Hence we can split BIBD blocks into smaller blocks and

use the BIBD failover construction to build matrices for more

flows with the same asymptotic load behavior, albeit tolerating

fewer failures for the guarantees. More precisely, given a

(q2 + q + 1, q + 1, 1)-BIBD for q =
√
k we can construct

a (23 logn/2−log λ, λ, 1)-BIBD by partitioning each block into

(q+1)/λ disjoint subblocks. With the smaller blocks, we can

use the same approach as before, for λ times more flows.

The scheme can be generalized for values of k which are not

q2+q+1 for some prime power q by selecting a suitable power

of 2 and extending the resulting BIBD matrix with repeated

rows and permutations of the remaining elements like in [26]

to a k× k matrix. The subsequent steps are the same and the

constants in Theorem 4 increase by at most a factor of four.

Note that the circular routing scheme retains its (⌊k/2⌋−1)-
resilience, regardless of the use of the BIBD scheme. However,

the load bound only holds for up to k/(2λ2) failures.

Instead of reducing the fault tolerance, we can also use the

same rows for multiple flows. In other words, two or more

flows use the same sequence of arborescences for failover and

their load increases. More precisely, this option leads to a

linear increase in the joint use of the same arborescences.

Hence we can trade-off between paying a re-use factor or

lowering the failure resistance as we please.

Corollary 1. A rerouting scheme with k arborescences can

spread the use of the arborescences across λk flows for |F | <
⌊k/2⌋ failures incurring a re-use of λ

√

|F |.

D. Adding Locality to the Picture

Next, we investigate how to control the stretch. If we have

multiple shortest paths, we can reach optimal resilience and

stretch. However, a proof by contradiction shows that only one

shortest path arborescence may exist. Hence, we need to select

arborescences with low depth. While they do not guarantee

shortest paths, we can use them to bound the stretch.

For k independent arborescences (no common nodes on

paths from v to d on different arborescences), the proof of

Theorem 3 can be adapted to circular arborescence routing.

Theorem 5. Given k independent arborescences of maximal

depth d, any order of following the arborescences with back-

tracking is (k − 1)-resilient with an additive stretch of d|F |.

Proof: Due to the independence property no link belongs

to more than one of the k paths from the source s to the

destination t, thus a message reaches the destination if at most

k links fail. Moreover, due to the arborescences’ depth each

path from s to t is at most d hops long and at most |F | paths

are tried out, thus the stretch is at most d|F |.
However, sometimes one can find arborescences where a

better bound can be shown. For example, Yang et al. [27] de-

scribe a construction of k rooted Independent Spanning Trees

(ISTs) for the k-dimensional hypercube, with an additional

property: for any node v 6= t, the path from v to the child of t
in Ti is a shortest path in G. Such ISTs are called optimal and

can be used for algorithms with resilience and stretch bounds.

Lemma 1. Given a set of k independent spanning trees

T = {T1, . . . , Tk} rooted at t, the following is an arc-disjoint

arborescence set T ′ = {T ′
1, . . . , T

′
k}: ∀{u, v} ∈ Ti, where v

is closer to the root t on Ti than u, add an arc (u, v) to T ′
i .

Proof: Due to the fact that Ti does not contain any

undirected cycles, the link set T ′
i cannot contain any directed

cycles, thus we have a set of arborescences. To prove their arc-

disjointness, assume for the sake of contradiction, that there

are two arborescences sharing arc (u, v). This is not possible

as it would violate the independence property of the IST.

Theorem 6. Given a set of k optimal ISTs, circular arbores-

cence routing is (⌊k/2⌋ − 1)-resilient with additive stretch

2a|F |, where a is the maximal distance between two neighbors

of t in the graph without t.

Proof: Using ISTs as arc-disjoint arborescences, circular

arborescence routing guarantees that packets reach the des-

tination if at most ⌊k/2⌋ − 1 links fail. Whenever a failure

leads to change the currently used arborescence, this implies

that shortest paths to a different neighbor of the destination

are used. As the distance of these neighbors is at most a by

definition, a detour of at most a is added for each change of

arborescences. |F | failures can thus cause up to 2|F | arbo-

rescence changes. Hence, the stretch is at most 2a|F |.
In addition to the hypercubes mentioned earlier, there are

also other graphs for which constructions of optimal ISTs have

been found. Among them are cartesian products of complete

graphs [28], hybrid graphs [29], even [30] and odd graphs [31].

For arc-disjoint arborescences without the optimal path

lengths to neighbors of the destination, a weaker result holds.

Theorem 7. Given a set of k arc-disjoint arborescences of

maximal depth d, circular arborescence routing is (⌊k/2⌋−1)-
resilient with additive stretch 2d|F |.

Proof: Whenever the arborescence is changed due to a

failed link, an additional detour of at most d has to be taken

into account. As |F | failed links can cause 2|F | arborescence

changes, the total stretch is bounded by 2d|F |.
E. Stretch-Load Tradeoff

Having derived the main properties of CASA, we next dis-

cuss a fundamental tradeoff that any static failover algorithm

faces. The order in which arborescences are chosen when

encountering failures (i.e., to ensure resilience) has an impact

on both load and stretch. More precisely, the two objectives

contradict. To illustrate this, first consider a node v that reaches

t with a low stretch in arborescence T . Then T must be low

stretch for all nodes between v and t in T also have a low

stretch in T . This hints that selecting always the lowest stretch

backup tree T will lead to a high load on T . To avoid this

load, some nodes must deliberately choose another T ′ with

longer paths to t even though T is available.

This situation can be generalized: imagine a set of trees T =
T1, . . . Tk sorted by increasing stretch for a node v and such

that the stretch using Ti is, say, σi. Consider a partition of these

arborescences into two sets of low stretch L = {Ti, i ≤ k/2}
and high stretch H = T \H . Imagine a strategy consisting of

exploiting first the trees of L and then only the trees of H .

This strategy provides a 2
√

k/2 =
√
2k worst case load, for a

worst case stretch of σk/2 due to the use of the Tk/2 tree. On

the other hand, a strategy that directly uses all T trees would

provide a better load guarantees of
√
k at the expense of a

worse stretch of σk due to the assignment of Tk to some flow.

V. EXPERIMENTAL EVALUATION

In order to complement the formal analysis of CASA and

the worst-case guarantees derived above, we conducted an

extensive simulation study in which we investigate stretch,

load, and resilience properties in different scenarios and com-

pared to existing algorithms. More precisely, we measure the

performance of adding a BIBD failover matrix to circular

arborescence routing (see the CASA Algorithm 1) and of the

link-disjoint backtracking scheme from Theorem 3, which we

denote as SquareOne. For SquareOne we iterate through the

paths by lengths, setting the shortest one as the default route.

For comparison, we also include the circular arborescence

failover scheme from Chiesa et al. [32] (also in [16]). In par-

ticular, this allows us to judge the practical impact of CASA’s

approach of combining BIBDs with circular arborescence

routing. Similarly, we furthermore include their randomized

arborescence scheme without bouncing [12], to have a good

load competitor, e.g., for worst-case failure scenarios2.

Similar to the evaluation in [32], we evaluate all four algo-

rithms on one hundred 8-connected 8-regular random networks

(RR) with 100 routers each3 (each node as a destination,

10K experiments), for all-to-one traffic with randomly picked

destinations. The eccentricity is between 3 and 4 and the

average shortest path around 2.4. Furthermore, we also study

well-connected cores of various autonomous systems [33], see

Table I (again, each node as a destination, 1583 experiments).

AS 1239 A 2914 B 3356 C 7018 D

Number of nodes 389 225 377 204
Number of links 3621 1696 4736 1667
Eccentricity 6 6 6 6
Avg shortest path length 3.06 2.48 3.14 3.17

TABLE I: Properties of 8-connected cores of various ASes

We study two failure scenarios: (i) In the random scenario,

we fail links uniformly at random, in numbers also greatly

beyond the connectivity of the network. Hence, some nodes

might be disconnected4, but usually many paths to the des-

tination remain. (ii) In the targeted scenario, links directly

connected to the destination fail. Thus, a failover scheme might

use an expensive rerouting in the last moment.

In our plots, we mark the algorithms as CASA (Algorithm 1),

SquareOne (Theorem 3), DetCirc ([32]), and PRNB ([12]).

The stretch and load is measured with respect to the situation

in a failure-free network, showing the multiplicative stretch

respective load overhead induced by the failed links.

2 We also evaluated their randomized scheme with bouncing, it performed
like its no-bouncing alternative. 3 We note that all schemes only required
minimal preprocessing to compute the routing rules on the random graphs,
< 1s for SquareOne, and up to 2s for the arborescence decompositions.
4 which we then omit as sources

● ● ● ● ●

●

● ● ●
● ● ● ● ●

● ● ●
● ● ● ● ●

● ● ● ●

● ● ● ●

● ●
● ● ● ● ● ●

●

●

●

●

●

●

● ● ●
● ● ● ● ●

● ● ●
● ● ● ● ●

● ● ● ●

●
● ●

●

● ●
● ● ● ●

● ●

● ● ● ●
●

●

● ● ●
● ● ● ● ●

● ● ●
● ● ● ● ●

● ● ● ●

● ●
● ●

● ●
● ● ● ● ● ●

● ● ● ●

●

●

● ● ● ● ● ● ●
●

● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ●

● ● ● ● ● ●
●

●

BIBD DetCirc PRNB Square1

R
R

A
B

C
D

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

2.5
5.0
7.5

10.0
12.5

2

4

6

2
4
6

1
2
3
4

2
4
6

|F|

S
tr

e
tc

h
CASA

Fig. 3: Plots of the stretch for targeted link failures F.

● ● ● ● ●

● ● ● ● ● ●

●
●

● ● ● ● ●

● ●

● ● ● ● ● ●

●

●

● ● ● ● ●
● ●

● ● ● ● ●

● ● ● ● ● ●
●

●

● ● ● ● ●
●

●

● ● ● ● ● ● ●

●

● ● ● ● ●
●

●

● ● ● ●

●

● ● ● ● ● ●

●

●

● ● ● ● ●

●

●

● ● ● ● ● ●

●

●

● ● ● ● ●
●

●

● ● ● ● ●

● ● ● ● ● ●
● ●

● ● ● ● ●
●

●

● ● ● ● ● ● ● ●

● ● ● ● ●
●

●

BIBD DetCirc PRNB Square1

R
R

A
B

C
D

20 100 1000 20 100 1000 20 100 1000 20 100 1000

0

10

20

2
4
6

2

4

6

1
2
3
4

2
4
6
8

|F|

S
tr

e
tc

h

CASA

Fig. 4: Plots of the stretch for random link failures F.

●

● ● ●

●

●

●
●

● ● ●
● ● ●

●
●

● ●
● ● ● ●

● ● ● ● ● ●
● ●

●
● ● ● ● ● ● ●

● ● ● ● ● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

● ●
●

●

●

●

●
● ● ● ● ● ● ●

●
●

●
●

● ● ●
●

● ● ● ● ● ● ● ●

●
●

●
● ●

● ● ●

● ●
●

●

●

●

●
● ● ● ● ● ● ●

● ●
● ●

● ●
●

●

● ● ● ● ● ● ● ●

●
●

●
● ● ●

●
●

BIBD DetCirc PRNB Square1

R
R

A
B

C
D

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

|F|

L
o

a
d

CASA

Fig. 5: Plots of the load for targeted link failures F.

● ●
●

●
●

● ● ● ●
●

●

●
●

● ● ● ●
●

● ●

● ● ● ● ●
●

●

●

● ● ● ●
●

● ●

●
●

●
●

●

● ● ●
●

●

●

● ●

● ● ●

●

●

● ●

● ● ● ●
●

●

●

●

● ● ●

●

●
●

●

● ●
●

●

●

● ● ● ● ●
●

●

●

● ● ● ●
●

●

●

● ● ● ● ●
●

●

●

● ● ● ●
●

●

●

● ● ●
●

●

● ● ● ●
●

●
●

●

● ● ● ●
●

●
●

● ● ● ● ●
●

●
●

● ● ●
●

●
●

●

BIBD DetCirc PRNB Square1

R
R

A
B

C
D

20 100 1000 20 100 1000 20 100 1000 20 100 1000

0
50

100
150

0
20
40
60
80

0
25
50
75

100

0
20
40
60

0
30
60
90

|F|

L
o

a
d

CASA

Fig. 6: Plots of the load for random link failures F.

A. Stretch Performance

We start by discussing the stretch of all four algorithms,

plotted in Fig. 3 and 4: the median values are shown as dots,

whereas the grey-shaded area depicts the values between the

10th and 90th percentiles.
1) Targeted failures (Fig. 3): Regarding the median stretch

values, CASA, DetCirc, and PRNB perform quite similar, with

DetCirc being slightly worse on random graphs. Our back-

tracking scheme SquareOne is significantly better, reaching

mostly median stretch values of just 1, which might seem

counter-intuitive at first. However, up to 4 link failures will

only affect up to half of the sources in SquareOne, i.e., half of

the network can still route optimally. Considering the 10% and

90% percentiles, CASA and PRNB perform best on the ASes

(with a small bad outlier for PRNB on random graphs), with

DetCirc being close, except for larger failure values. Note that

these numbers are much better than the upper bounds derived

in Theorem 7, as the depth d of the arborescences produced

in the evalution is between 10 and 24, with a median of 15.

SquareOne is more impacted in the stretch variance, especially

for larger failure numbers. Interestingly, on random graphs,

SquareOne performs best regarding the variance, though only

slightly better than BIBD.
2) Randomized failures (Fig. 4): A large number of failures

(mostly over a 100) is required for the median stretch values to

go beyond 1, where all four schemes behave roughly identical.

In the 10th to 90th percentiles, DetCirc slightly outperforms

BIBD and PRNB, where PRNB again has several outliers

for large failure numbers. SquareOne outperforms the other

schemes for failures up to roughly 100, but for larger failure

numbers, the variance can be nearly twice as large.

B. Load Performance

The load results for all algorithms are shown in Fig. 5 and 6,

where again the median values are shown as dots and the 10th

to 90th percentile in gray-shading.

1) Targeted failures (Fig. 5): For random graphs, already

a single failure induces worst-case load for DetCirc, as each

of the eight arborescences only has a single link connected

to the destination. The cores of the four ASes are usually

better connected, i.e., failing a single link then only reroutes

a part of the traffic along the first arborescence. Notwith-

standing, DetCirc performs worst under adversarial failures.

The performance of CASA, PRNB, and SquareOne is roughly

similar, though SquareOne is slightly better than PRNB, which

in turn is slightly better than CASA. SquareOne benefits from

the fact that its walks to the destination do not use the last

hops in the same order as DetCirc and is not restricted to

arborescences, hence the load can be distributed among more

links. The random nature of picking arborescences in PRNB is

advantageous in comparison to the deterministic CASA, though

the randomness of PRNB comes with practical implementation

difficulties, as we will discuss later.

2) Randomized failures (Fig. 6): Similar to targeted fail-

ures, DetCirc performs again worst under load considerations.

However, the difference is not as large, as failures upstream

actually help spreading the load over multiple arborescences

for DetCirc. The performance order of the three other algo-

rithms remains as under targeted failures, i.e., first SquareOne,

followed by PRNB and CASA, due to the reasons outlined

above. Especially for few failures, the load overhead is low.

In many graphs the last data point shows less load than the

points before. This is due to the fact that the resilience of the

scheme is reached, as confirmed in the next subsection.

C. Resilience

The resilience is shown in Fig. 7, plotting results for random

link failures (for targeted failures, scenarios, the success rate

is 100% four the plotted data points).

● ● ●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ●
●

● ● ● ● ● ●

●

● ● ●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ● ●
●

● ● ● ● ● ●

●

● ● ● ●

●

● ● ● ● ● ● ●
●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

● ● ● ● ● ●

●

● ● ●

●

●

● ● ● ● ● ●

●

●

● ● ● ● ●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ●

●

●

BIBD DetCirc PRNB Square1

R
R

A
B

C
D

20 100 1000 20 100 1000 20 100 1000 20 100 1000

0.4
0.6
0.8
1.0

0.4
0.6
0.8
1.0

0.4
0.6
0.8
1.0

0.4
0.6
0.8
1.0

0.4
0.6
0.8
1.0

|F|

R
o

u
ti

n
g

 S
u

c
c

e
s

s
 R

a
te

CASA

Fig. 7: Plots of the resilience for random link failures F.

Except for the most extreme failure settings, all schemes

route successfully. For the highest link failure settings, (100-

1000 failures), the PRNB scheme performs best. DetCirc and

CASA perform similarly, except on random graphs: here, when

large parts of the network fail, the packets can end up in

permanent loops, though with a success rate above 90%.

The backtracking scheme SquareOne performs worst for ex-

treme failure scenarios, but the success rate remains over 80%.

The reason is that already 8 unlucky failures can disconnect all

8 routes, which becomes more likely when removing hundreds

of links. Arborescences, however, are more resilient, as failures

upstream do not affect links downstream.

D. Discussion

Briefly summarizing our evaluation results, we observe that

CASA and PRNB [12] both perform quite well, outclassing

DetCirc in nearly all scenarios. An especially large gap can

be seen in targeted failure scenarios, where the deterministic

nature of DetCirc yields high stretch- and load-values. We note

that CASA is of course deterministic as well, but our BIBD

failover construction can be thought of as a derandomization.

• CASA performs similarly to PRNB, where PRNB however

faces practical performance obstacles. A major drawback of

the PRNB approach presented in [12] is that the randomized

forwarding can lead to a high number of packet reorderings

and hence low throughput.5 CASA on the other hand delivers

packets on deterministic routes, for any failure scenario.

Notwithstanding, the truly random nature of PRNB leads

to higher resilience results once hundreds of links failed in

our experiments, albeit at the cost of high load and stretch.

• Furthermore, CASA provides theoretical performance guar-

antees, in particular for load, which are absent in DetCirc,

PRNB, and SquareOne. Nonetheless, SquareOne also per-

forms quite well in our simulations, slightly outperforming

CASA and PRNB for roughly 4-5 targeted or up to ≈ 100
random failures, from which on the situation is reversed. It

would thus be interesting to see how SquareOne could be

extended to give theoretical performance guarantees, as in

its current state it is a (apparently well-working) heuristic.

• We used unit load and all-to-one traffic as a reference

scenario for the load evaluation to illustrate worst case

conditions for unknown traffic patterns. Otherwise, our

approach can be applied to optimize for elephant flows.

VI. RELATED WORK

Routing mechanisms which tolerate multiple failures have

been studied intensively in the literature already, and a most

well-known technique relies on link reversals [34]. However,

link reversal algorithms require dynamic tables which are not

always supported, and they also introduce non-trivial delays of

up to Ω(|V |2) [35]. Some schemes also exploit packet-header

rewriting [23], [36], [37], [38] or packet-duplication [39].

However, the former consumes header space and the latter

introduces additional loads, which is undesirable. Another

approach is to monitor TCP flows [40] or to pre-compute

multiple flow paths s.t. in the event of failures, the ingress

switches can rescale the traffic load efficiently without ad-

ditional computational overhead [41]. Notwithstanding, The

packets currently en route are not protected by such schemes.

Designing fast failover mechanisms which do not rely on

packet marking however is challenging, and our model is

closely related to the papers by Feigenbaum et al. [11], Chiesa

et al. [12], [32], Elhourani et al. [23] and Stephens et al. [42],

[43] which all study reachability even under multiple failures.

In contrast to our work, however, these papers do not account

for performance and load aspects of the computed failover

paths (and at best provide only trivial stretch guarantees).

The work of Foerster et al. [19] provides stretch guarantees

for some special graph classes, such as Hypercubes, Tori,

Grids, and Clos-/BCube-topologies. Additionally, the authors

provide stretch bounds based on the network’s girth. However,

their rerouting techniques do not take load into account and do

not provide any worst-case guarantees accordingly. To the best

of our knowledge, the only works considering load so far are

by Borokhovich et al. [18] and Pignolet et al. [26], combined

in [44]. Pignolet et al. [26] establish an interesting connection

to distributed computing problems without communication,

5 Additionally, PRNB [12] needs to perform truly random decisions, as
packets can return to a node with identical source, destination, and in-port
fields. One solution could be to extend the hash function to non-immutable
fields such as the TTL, which requires modifications and uses header space.

and in particular the results by Malewicz et al. [45]. However,

this line of research focuses on single-hop topologies only. The

extension to multi-hop networks is practically important and

was left as the main open question. Our paper suggests that

this extension is also non-trivial. Nevertheless, in our work

we can leverage (and successfully combine) two key concepts

introduced in prior work, namely combinatorial designs (due

to Pignolet et al. [26]) and arborescence decompositions (due

to Elhourani et al. [23] and Chiesa et al. [12], [32]).

VII. CONCLUSION

We argued that the performance of a routing scheme should

be measured not only in terms of 1) fault-tolerance (resilience),

but also with respect to the resulting 2) congestion (load),

and 3) locality (stretch). We then presented two algorithms,

SquareOne and CASA, which perform well for all three

measures, as we show in extensive simulations. Our main

contribution, CASA, even provides provable guarantees.

Our work opens interesting research avenues. In particular,

it would be interesting to refine our algorithms and bounds

toward more specific network topologies arising in different

contexts (e.g., data centers). Moreover, once could explore

randomized algorithms with probabilistic guarantees.

Acknowledgements We would like to thank Marco Chiesa and

Ilya Nikolaevskiy for their support and helpful discussions.

REFERENCES

[1] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: measurement, analysis, and implications,” in ACM

SIGCOMM CCR, vol. 41, 2011, pp. 350–361.
[2] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and

C. Diot, “Characterization of failures in an ip backbone,” in Proc. IEEE

INFOCOM, 2004.
[3] A. Shaikh, C. Isett, A. Greenberg, M. Roughan, and J. Gottlieb, “A case

study of ospf behavior in a large enterprise network,” in Proc. IMW

Workshop at SIGCOMM. ACM, 2002, pp. 217–230.
[4] J. Tapolcai, B. Vass, Z. Heszberger, J. Bıró, D. Hay, F. A. Kuipers,

and L. Rónyai, “A tractable stochastic model of correlated link failures
caused by disasters,” in Proc. IEEE INFOCOM, 2018.

[5] T. Elhourani, A. Gopalan, and S. Ramasubramanian, “Ip fast rerouting
for multi-link failures,” in Proc. IEEE INFOCOM, 2014.

[6] A. K. Atlas and A. Zinin, “Basic specification for ip fast-reroute: loop-
free alternates,” IETF RFC 5286, 2008.

[7] Telemark, “Survey,” in Web http://www.telemarkservices.com/, 2006.
[8] Y. Wang, H. Wang, A. Mahimkar, R. Alimi, Y. Zhang, L. Qiu, and

Y. R. Yang, “R3: resilient routing reconfiguration,” ACM SIGCOMM

CCR, vol. 40, no. 4, pp. 291–302, 2010.
[9] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker,

“Ensuring connectivity via data plane mechanisms,” Proc. NSDI, 2013.
[10] A. Vahdat, D. Clark, and J. Rexford, “A purpose-built global network:

Google’s move to sdn,” Commun. ACM, vol. 59, no. 3, pp. 46–54, 2016.
[11] J. Feigenbaum, B. Godfrey, A. Panda, M. Schapira, S. Shenker, and

A. Singla, “Ba: On the resilience of routing tables,” PODC, 2012.
[12] M. Chiesa, A. V. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevskiy,

M. Schapira, and S. Shenker, “On the resiliency of randomized routing
against multiple edge failures,” in Proc. ICALP, 2016.

[13] M. Chiesa, A. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevkiy, A. Panda,
M. Schapira, and S. Shenker, “Exploring the limits of static failover
routing (v4),” arXiv:1409.0034 [cs.NI], 2016.

[14] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke, “Optimal oblivious
routing in polynomial time,” in Proc. STOC, 2003.

[15] J. Wang and S. Nelakuditi, “Ip fast reroute with failure inferencing,” in
Proc. SIGCOMM Workshop on Internet Network Management, 2007.

[16] M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. V. Gurtov, A. Madry,
M. Schapira, and S. Shenker, “On the resiliency of static forwarding
tables,” IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1133–1146, 2017.

[17] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane connec-
tivity with local fast failover: Introducing openflow graph algorithms,”
in Proc. ACM SIGCOMM HotSDN, 2014.

[18] M. Borokhovich and S. Schmid, “How (not) to shoot in your foot with
sdn local fast failover: A load-connectivity tradeoff,” OPODIS, 2013.

[19] K.-T. Foerster, Y.-A. Pignolet, S. Schmid, and G. Tredan, “Local fast
failover routing with low stretch,” ACM SIGCOMM CCR, vol. 1, pp.
35–41, Jan. 2018.

[20] P. N. Klein and D. Marx, “A subexponential parameterized algorithm
for subset tsp on planar graphs,” in Proc. SODA, 2014.

[21] S. Akhoondian Amiri, K.-T. Foerster, and S. Schmid, “Walking through
waypoints,” in Proc. LATIN, 2018.

[22] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algo-

rithms, 5th ed. Springer, 2012.
[23] T. Elhourani, A. Gopalan, and S. Ramasubramanian, “Ip fast rerouting

for multi-link failures,” IEEE/ACM Trans. Netw., vol. 24, no. 5, pp.
3014–3025, 2016.

[24] J. Edmonds, “Edge-disjoint branchings,” Combinatorial algorithms,
vol. 9, no. 91-96, p. 2, 1973.

[25] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi, “Fast edge split-
ting and edmonds’ arborescence construction for unweighted graphs,” in
Proc. SODA, 2008.

[26] Y.-A. Pignolet, S. Schmid, and G. Tredan, “Load-optimal local fast
rerouting for dependable networks,” in Proc. DSN, 2017.

[27] J. Yang, S. Tang, J. Chang, and Y. Wang, “Parallel construction of
optimal independent spanning trees on hypercubes,” Parallel Computing,
vol. 33, no. 1, pp. 73–79, 2007.

[28] X.-B. Chen, “Parallel construction of optimal independent spanning
trees on cartesian product of complete graphs,” Information Processing

Letters, vol. 111, no. 5, pp. 235–238, 2011.
[29] J.-S. Yang and J.-M. Chang, “Optimal independent spanning trees on

cartesian product of hybrid graphs,” The Computer Journal, vol. 57,
no. 1, pp. 93–99, 2014.

[30] J.-S. Kim, H.-O. Lee, E. Cheng, and L. Lipták, “Independent spanning
trees on even networks,” Information Sciences, vol. 181, no. 13, pp.
2892–2905, 2011.

[31] ——, “Optimal independent spanning trees on odd graphs,” The Journal

of Supercomputing, vol. 56, no. 2, pp. 212–225, 2011.
[32] M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. Panda, A. Gurtov, A. Madry,

M. Schapira, and S. Shenker, “The quest for resilient (static) forwarding
tables,” in Proc. IEEE INFOCOM, 2016.

[33] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
topologies with rocketfuel,” IEEE/ACM Trans. Netw., vol. 12, no. 1, pp.
2–16, 2004, http://research.cs.washington.edu/networking/rocketfuel/.

[34] E. Gafni and D. Bertsekas, “Distributed algorithms for generating loop-
free routes in networks with frequently changing topology,” Communi-

cations, IEEE Transactions on, vol. 29, no. 1, pp. 11–18, Jan 1981.
[35] C. Busch, S. Surapaneni, and S. Tirthapura, “Analysis of link reversal

routing algorithms for mobile ad hoc networks,” in Proc. SPAA, 2003.
[36] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A Distributed and

Robust SDN Control Plane for Transactional Network Updates,” in Proc.

IEEE INFOCOM, 2015.
[37] K.-T. Foerster, M. Parham, M. Chiesa, and S. Schmid, “TI-MFA:

keep calm and reroute segments fast,” in Proc. IEEE Global Internet

Symposium, 2018.
[38] K.-T. Foerster, M. Parham, S. Schmid, and T. Wen, “Local fast segment

rerouting on hypercubes,” in Proc. OPODIS, 2018.
[39] P. Hande, M. Chiang, R. Calderbank, and S. Rangan, “Network pricing

and rate allocation with content-provider participation,” in Proc. IEEE

INFOCOM, 2010.
[40] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,

and L. Vanbever, “Blink: Fast connectivity recovery entirely in the data
plane,” in Proc. NSDI, 2019.

[41] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic
engineering with forward fault correction,” in Proc. SIGCOMM, 2014.

[42] B. Stephens, A. L. Cox, and S. Rixner, “Plinko: Building provably
resilient forwarding tables,” in Proc. ACM HotNets, 2013.

[43] ——, “Scalable multi-failure fast failover via forwarding table compres-
sion,” SOSR. ACM, 2016.

[44] M. Borokhovich, Y. A. Pignolet, S. Schmid, and G. Tredan, “Load-
optimal local fast rerouting for dense networks,” IEEE/ACM Trans.

Netw., vol. 26, no. 6, pp. 2583–2597, 2018.
[45] G. Malewicz, A. Russell, and A. A. Shvartsman, “Distributed scheduling

for disconnected cooperation,” Distr. Comp., vol. 18(6), pp. 409–420,
2005.

