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SUMMARY 

Environmental cues that regulate motility are poorly understood, but specific carbon and 

nitrogen sources, such as casamino acids (CAA), are known to stimulate motility in model 

organisms.  However, natural environments are commonly more nutrient limited than 

laboratory growth media, and the effect of energy-rich CAA on the motility of oligotrophic 

microorganisms is unknown. In this study an extreme oligocarbotroph, Variovorax paradoxus 

YC1, was isolated from weathered shale rock within a disused mine level in North Yorkshire, 

UK. The addition of 0.1 % CAA to minimal media significantly reduced the motility of YC1 

after 72 hours, and inhibited swimming motility resulting in enhanced surface growth. We 

propose this response to CAA is a physiological adaptation to oligotrophy, facilitating the 

colonization of nutrient rich environments.                   

INTRODUCTION 

Survival in oligotrophic environments requires a suite of physiological adaptations, which 

often include a reduced cell size and a lack of nutrient specialisation (Hoehler and Jørgensen, 

2013). In the case of oligocarbotrophic heterotrophs, organisms that can survive and grow at 

extremely low levels of organic carbon (< 0.1 mg L-1), the ability to scavenge and utilise trace 

levels of a range of organic substrates from the surrounding environment is vital (Poindexter, 

1981). For example, the ability to catabolise a wider array of amino acids evolves in 
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populations of Escherichia coli maintained in a state of oligotrophy, allowing dead biomass 

to be more efficiently utilised under nutrient limiting conditions (Zinser and Kolter, 2004).  

Such adaptations are important for microorganisms living on rock surfaces, which are often 

deplete in organic carbon, fixed nitrogen and biologically-available phosphorus (Wainwright 

et al., 1993; Barton et al., 2007). Photoautotrophs inhabiting rocks exposed to sunlight can 

provide a source of fixed carbon to the wider microbial community, but environments that are 

largely isolated from photosynthetic carbon, such as marine sediments (Lever et al., 2015) 

and caves (Barton et al., 2007; Tebo et al., 2015), are more usually colonized by oligotrophic 

and chemoautotrophic communities. Previous studies have suggested that the enhanced 

adhesion of cells to nutrient rich surfaces in marine sediments, and the subsequent 

establishment of biofilms, are important adaptations for microorganisms that would otherwise 

be starving in oligotrophic waters (Marshall, 1988).               

An adaptation that has received less attention is the capacity to move from areas of low to 

high nutrient availability, including modes of motility such as swimming or surface 

swarming. A limited number of studies have investigated the role of motility in oligotrophic,  

rocky environments. These show that reduced cell size and lower exopolysaccharide (EPS) 

production in motile bacteria grown under oligotrophic conditions enable cells to penetrate 

deeper into porous rocks. In the presence of a rich energy source, enhanced EPS production 

and surface colonisation reduce penetration, as biomass and EPS clog the porous channels 

within the rock (Jenneman et al., 1985; Lappin-Scott et al., 1988; Lappin-Scott and Costerton, 

1990). This transition from swimming in an aqueous environment to surface colonization, 
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potentially involving swarming motility and/or biofilm formation, is likely an important 

ecological trait for oligotrophic microbes (Marshall, 1988).       

The addition of casamino acids (CAA) to solid medium is known to promote motility in a 

range of bacterial species including Pseudomonas aeruginosa (Köhler et al., 2000; Caiazza et 

al., 2005), Salmonella typhimurium (Harshey and Matsuyama, 1994), Serratia liquefaciens 

(Bees et al., 2002), and Vibrio sp. (Kjelleberg et al., 1982). This addition is assumed 

necessary to meet the high metabolic cost of increased flagellar synthesis associated with 

motility, particularly swarming (Harshey, 2003). However, most of the strains tested from 

these species are laboratory model organisms or clinical isolates that are unlikely to have 

oligotrophic adaptations. The addition of CAA (a rich energy source) to the motility media of 

an oligocarbotroph may elicit a different response compared to copiotrophs (organisms 

requiring nutrient rich conditions). In this study, the effect of CAA on the swimming and 

swarming motility of an extreme oligocarbotroph isolated from a weathered rock surface, 

Variovorax paradoxus YC1, was investigated.  

RESULTS AND DISCUSSION 

Isolation of Variovorax paradoxus YC1 from a weathered shale environment 

Samples of weathered rock from a 17th century mine level previously sampled (Cockell et al., 

2011) were taken to enrich for oligocarbotrophic organisms. Rock samples were used to 

inoculate enrichment cultures in a minimal medium (M9) lacking an added carbon source. A 

serial culture transfer series was then propagated in M9 and then milli-Q water over a 7 ½ 

month period, until the original enrichment culture was diluted by 1033-fold after numerous 
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rounds of dilution. The surviving microbial community, deemed likely to be enriched in 

extreme oligocarbotrophs, was plated onto nutrient agar and cultured bacterial isolates 

identified via phylogenetic analysis. From these isolates, Variovorax paradoxus YC1 was 

chosen for further physiological analysis, based upon the known swimming and swarming 

capacity of this species (Jamieson et al., 2009; Pehl et al., 2012). A more detailed description 

of the isolation of V. paradoxus YC1 is provided in the supplementary methods.  

Demonstration of oligotrophic growth       

The purpose of this study was to investigate the effect of a commonly used motility stimulant, 

casamino acids, on a motile oligotrophic bacterium. Growth in our enrichment culture series 

containing a community of oligotrophic microbes was sustained without the addition of an 

added carbon source. Therefore after isolation of Variovorax paradoxus YC1, we aimed to 

demonstrate its ability to grow under these conditions in axenic culture. Growth experiments 

were conducted with YC1 in M9 medium with and without an added carbon source, with 

effort taken to reduce contaminating organic carbon in the experimental setup (see 

supplementary methods). The addition of an added carbon source increased the YC1 

population carrying capacity (9 x 106 CFU mL-1 compared to 3 x 105 CFU mL-1) (Figure 1) 

and a two-way ANOVA test performed in R (version 3.5.3) (Team, 2019), with incubation 

time and media type as predictor variables and log CFU mL-1 as the response variable, 

demonstrated this effect to be significant (F(1, 23)=27.66, p=2.46 x 10-5). However, growth 

in the M9 medium without an added carbon source was still substantial, being over three 

orders of magnitude higher than the starting density (5 x 102 CFU mL-1) (Figure 1). This 

indicates that despite extensive effort to eliminate the growth of YC1 by reducing the levels 
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of contaminating or biologically stored carbon in our culturing approach, YC1 still 

maintained high levels of growth (~105 CFU mL-1) in the absence of an added carbon source. 

Potential sources of organic carbon that sustained oligotrophic growth  

Growth in the M9 cultures were likely supported by an organic carbon source that was 

unaccounted for in our experimental design, however the exact nature of this source could not 

be verified. Trace levels of organic carbon from the inoculum used to initiate the experiment 

potentially supported some of the observed growth. The most significant carbon source from 

this inoculum, glycerol (0.25 μg L-1), would only have provided 2.5 ng of organic carbon to a 

10 mL culture. Based upon the average carbon content of an E. coli cell (35 pg) (Makarieva 

et al., 2008), which are similarly sized to V. paradoxus (Willems et al., 1991), this amount of 

carbon could not have supported our observed levels of growth (~3 x 106 cells). The 

production, storage and subsequent utilisation of polyhydroxyalkanoates (PHAs) under 

nutrient limiting conditions is a common mechanism used by oligocarbotrophs for survival. 

One strain of V. paradoxus has been shown to store PHAs (Maskow and Babel, 2001), which 

provides a potential explanation for our results if YC1 also has this capability. 

Geller (Geller, 1983) found that populations of Pseudomonas fluorescens could be cultivated 

in minimal medium lacking an added carbon source, due to the influx of airborne organic 

substances from laboratory air that dissolved into liquid cultures. The study calculated that 

this influx increased the dissolved organic carbon concentration by up to 0.5 mg L-1 per 

week, facilitating substantial growth (Geller, 1983). A similar effect could explain the results 

obtained in this study, with particulate organic material providing the majority of the carbon 

used by the YC1 populations in M9 media.  
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Although we cannot provide an exact mechanism by which V. paradoxus YC1 scavenges 

sufficient organic carbon to support such large population sizes, our findings do demonstrate 

that this organism is an extreme oligocarbotroph, capable of growth in media containing <0.1 

mg mL-1 organic carbon. As such, YC1 is a suitable candidate to explore the effect of nutrient 

rich environments (e.g. the presence of casamino acids) on the motility of oligotrophic 

organisms.      

Casamino acids reduce motile colony size, promote surface growth and induce a 

swarming phenotype         

To determine the effect of casamino acid supplement on the motility of YC1, colonies were 

grown on plates with differing concentrations of agarose, with and without 0.1 % (w/v) CAA. 

This concentration of CAA was chosen based upon its use in the singular study that has 

investigated the effect of differing carbon and nitrogen sources on the motility of Variovorax 

paradoxus (Jamieson et al., 2009), enabling a comparison of our results with this previous 

study. However, similar concentrations ranging from 0.05 to 0.5 % have been used in other 

investigations with bacterial species including S. typhimurium, P. aeruginosa and S. 

liquefaciens (Harshey and Matsuyama, 1994; Köhler et al., 2000; Bees et al., 2002; Caiazza 

et al., 2005). Increasing agarose concentration in the absence of CAA reduced colony size 

from 20-25 mm at 0.3 % agarose to 5 mm at 1 % agarose (Figure 2). Visual assessment of the 

colonies revealed that at 0.3-0.5 % agarose cells are swimming through the agar, where no 

visible growth can be seen on the agarose surface, and a central clear zone in the plate can be 

seen where cells have migrated from the point of inoculation (Figure 3, bottom left). Above 

0.5 % agarose growth is visibly at the plate surface, and a layer of secreted wetting agent 
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(Jamieson et al., 2009) can be seen beyond the colony edge. This suggests that at 0.3-0.5 % 

agarose, the pore size is large enough to enable YC1 cells to swim through the gel, whereas 

above 0.5 % reduced pore size prevents swimming and cells grow and potentially swarm (as 

indicated by the presence of wetting agents) on the gel surface (Figure 3, top left).  

However, in the presence of 0.1 % CAA, colony diameter after 72 hours was reduced to ~5 

mm at all agarose concentrations (Figure 2). Furthermore, swimming cells were no longer 

observed at lower agarose concentrations (0.3-0.5 %), with all growth being found at the 

agarose surface (Figure 3, top right). A one-way ANCOVA revealed that the effect of agarose 

concentration (predictor variable) on colony diameter (response variable) was significantly 

altered by the addition of CAA (covariate), F(2, 44) = 155.67, p=4.76 x 10-16.  

After 6 days of growth, colonies on plates containing below 0.8 % agarose and 0.1 % CAA 

had formed complex dendritic patterns of growth (Figure 3, bottom right) that are 

characteristic of swarming motility (Kearns, 2010). These dendritic colony morphologies 

were not found on agarose plates lacking CAA, suggesting the addition of CAA did induce 

swarming motility, even if it also reduced the extent of colony growth and motility. Previous 

studies have supplemented motility media with CAA to stimulate both swimming and 

swarming motility (Harshey and Matsuyama, 1994; Bees et al., 2002; Caiazza et al., 2005), 

indicating that CAA did not induce surface growth in these organisms as it did for V. 

paradoxus YC1. Finally, this entire motility experiment was duplicated, but with agar as the 

gelling agent instead of agarose, with the effect of CAA on V. paradoxus YC1 motility being 

verified (Supplementary Figure 1).   
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Jamieson et al. (Jamieson et al., 2009) investigated the effect of carbon and nitrogen source 

on the motility of V. paradoxus strain EPS, isolated from the rhizosphere community of a 

sunflower plant (Helianthus annuus) (Han et al., 2013). They show that on M9 medium 

supplemented with CAA (0.1 % w/v) as a sole carbon and nitrogen source, EPS swarming 

colonies were larger (~25 mm at 24 hours) than colonies grown on media containing glucose 

and ammonium chloride (5-10 mm) (Jamieson et al., 2009). These results are in contrast to 

those found in this study, where the addition of 0.1 % CAA significantly reduced colony 

diameter after 72 hours of growth and motility (Figures 2 and 3). These results also contrast 

with numerous studies published on bacterial swarming motility in other species, where the 

addition of CAA is assumed to enhance the extent of swarming motility (Kjelleberg et al., 

1982; Harshey and Matsuyama, 1994; Köhler et al., 2000; Bees et al., 2002; Harshey, 2003; 

Caiazza et al., 2005). In support of our findings, Kjellberg et al. (Kjelleberg et al., 1982) 

found that the growth and motility stimulatory effects of CAA on Vibrio sp. DW1 only 

occurred in the presence of a surface.  

Combined results are better explained by a specific physiological response, rather than 

a toxicity response or phenotypic decay  

A potential explanation for the slowed colony growth is that addition of amino acids induced 

a toxicity response that slowed growth. The addition of single amino acids such as cysteine 

and threonine to media at low concentrations (1mM, ~0.01 %) inhibits growth in some 

obligate oligocarbotrophs (Sato et al., 1993). The mechanism behind this growth inhibition is 

unclear, but the addition of a mixture of amino acids, rather than one single type, is known to 

counteract this growth inhibition (Ingram and Jensen, 1973). We believe our observed 

This article is protected by copyright. All rights reserved.



 

 

physiological response to CAA is a specific response, as opposed to toxicity-induced growth 

inhibition, for two reasons. Firstly, the addition of CAA had three main effects on YC1 

motility a) slowed colony growth and motility (Figure 2), b) induced surface growth at low 

agarose concentrations and c) dendritic swarm morphology (Figure 3). None of these effects 

were observed in the absence of CAA. This combination of phenotypic changes indicates a 

specific physiological response to CAA, rather than a general stress response. Secondly, YC1 

can be cultured on nutrient agar, with colonies growing to a few millimetres in size after 1-2 

days. Nutrient agar contains high concentrations of protein and amino acid sources, such as 

yeast extract (0.2 %), peptone (0.5 %) and lab-lemco powder (0.1 %) (Lapage et al., 1970). It 

therefore seems unlikely that YC1 could be cultivated on this media, if a mixture of amino 

acids induced a toxicity response.    

 Another alternative interpretation of our results could be based upon the state of motile 

phenotypes in YC1, which could have been in the process of decay under relaxed selection 

during growth in the enrichment transfer series. In the absence of a selective pressure for a 

phenotypic trait, particularly one as metabolically expensive as motility (Harshey, 2003), 

genetic drift or selection against that phenotype can result in the loss of the unused trait (Hall 

and Colegrave, 2008). This concept is particularly applicable to oligotrophs, which in 

nutrient-deplete environments are under constant selective pressure to be metabolically 

efficient (Roller and Schmidt, 2015). As such, reduced motility in the presence of CAA could 

be the product of motile phenotypes in YC1 undergoing decay due to the relaxed selective 

conditions of laboratory cultivation. However, our results demonstrate that the addition of 

CAA completely inhibited an otherwise strong swimming motility phenotype (Figure 3, 
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bottom left) and promoted swarming morphology (Figure 3, bottom right), although at a 

reduced rate of colony expansion. These results do not seem to support the loss of motile 

phenotypes in YC1. Flagellar machinery synthesis and flagellar activity are both known to be 

large metabolic costs in their own right, accounting for  ~2 % total metabolic expenditure in 

motile bacteria (Martínez‐García et al., 2014) . It therefore seems unlikely that the swarming 

motility phenotype would be under decay if phenotypes relating to flagellar synthesis and 

activity were not.   

After consideration of alternative hypotheses, we propose that the results presented in this 

study can be best explained by a specific physiological response to CAA in YC1. Reducing 

motility and inducing surface growth upon exposure to CAA, or other energy-rich substrates, 

would likely be advantageous to oligotrophic microbes that encounter nutrient-replete 

surfaces.                    

Conclusions and future research  

The results of this study suggest that the physiological response of V. paradoxus YC1 to 

casamino acids is an adaptation to the environment it was isolated from, as this response 

differs markedly from that of another strain of V. paradoxus (Jamieson et al., 2009) and other 

motile organisms (Kjelleberg et al., 1982; Harshey and Matsuyama, 1994; Köhler et al., 

2000; Bees et al., 2002; Harshey, 2003; Caiazza et al., 2005). We propose that this response 

is an adaptation to oligotrophic, rocky environments, where reduced motility and surface 

growth in nutrient rich conditions is advantageous (Marshall, 1988; Lappin-Scott and 

Costerton, 1990). When a motile oligotrophic microorganism encounters nutrient rich 
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conditions, reduced levels of motility and transitioning from liquid-based (swimming) to 

surface-based motility (swarming) likely facilitates colonization of that environment.  

Future research should further explore the concepts presented in this publication by 

investigating the effect of casamino acids, along with other energy-rich substrates, on the 

motility of bacteria isolated from both copiotropic and oligotrophic environments. We predict 

that the response of V. paradoxus YC1 to casamino acids is not unique to this strain, but is 

likely present in other motile oligotrophs. In contrast, casamino acids are less likely to have 

this effect in copiotrophic bacteria (including many motile model organisms studied 

previously) which are less adapted to energy limiting environments.  
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FIGURE LEGENDS 

FIGURE 1. Demonstration of oligotrophic growth in Variovorax paradoxus YC1 in the 

absence of an added carbon source. Growth curves (CFU mL-1) in M9 medium either with 

(black) or without (grey) an added glucose (0.4%) are presented. Biological replicates (N=3) 
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were used for both conditions. Error bars represent standard error of the mean average. Figure 

produced in the package ggplot2 in R (Wickham, 2016). In order to starve cells and deplete 

stored intracellular carbon (e.g. PHA), initial cultures were inoculated from a frozen glycerol 

stock into 10 mL TOC-free water (1:1000 dilution). This culture was cultivated for three days 

at 30 oC, before being further diluted into fresh TOC-free water (1:1000 dilution) and allowed 

to grow for a further three days. This second dilution in water was used to inoculate (1:1000 

dilution) triplicate 10 mL cultures of M9 medium with or without an added carbon source 

(glucose, 0.4 % w/v). Trace amounts of glycerol (0.25 μg L-1) and glucose (0.002 μg L-1) 

were transferred to these M9 cultures, derived from the diluted glycerol stock inoculum. 

Furthermore, carbon could have been supplied through dead biomass transferred from the 

previous water culture, or from intracellular stores of PHA within the cells inoculated. 

Growth (CFU mL-1) in each culture was monitored by plating out serial dilutions of each 

culture onto nutrient agar at 24 hour intervals for four days.  

FIGURE 2. Colony diameter of V. paradoxus YC1 swarming and swimming colonies after 

72 hours of growth on M9+glucose agarose plates at varying agarose concentrations (0.3-1.0 

%), with (black) and without (grey) 0.1 % CAA. Biological replicates (N=3) were used for 

both conditions. Error bars represent standard error of the mean average, but are hidden at 

some points due to low SE values. Figure produced in the package ggplot2 in R (Wickham, 

2016). Triplicate plates were prepared with differing concentrations of agarose (0.3–1.0 % 

w/v, in 0.1 % increments), with and without 0.1 % (w/v) CAA. Pore size within the gel 

decreases with increasing agarose concentration , meaning that cells will be able to swim 

through lower concentration agarose gels (~0.3-0.5 %), but will be forced to grow on the 
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surface of agarose gels at higher concentrations (~0.6-1.0 %) (Bees et al., 2002). From a 

frozen glycerol stock, a liquid culture of M9-glucose (0.4 % w/v glucose) was inoculated 

(1:1000 dilution) and incubated overnight at 30 oC. This liquid culture was used to inoculate 

single 5 μL spots onto the centre of individual agarose plates, which were then incubated at 

30 oC for three days. Triplicate measurements of colony diameters (mm) were taken using a 

standard ruler under a dissection microscope. A distinction was made between the colony 

edge and the surfactant edge, as previously described (Jamieson et al., 2009). Plates were 

incubated for a further three days, and photographs taken of representative colonies at the end 

of this six-day period. Colony diameters were not measured again after 6 days, as many 

colonies had grown to the plate edge and therefore further colony growth was obstructed.    

 

FIGURE 3. Images of V. paradoxus YC1 colonies after 6 days of growth. Top left, 0.7 % 

agarose plates, insert is a smaller copy of the same image but with the colours inverted to 

make the colony outline clearer; Top right, 0.7% agarose plates amended with CAA (0.1 %); 

Bottom left, 0.4 % agarose plates; Bottom right, 0.6 % agarose plates amended with CAA 

(0.1 %).    
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