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Figure 1: Comparison between the state-of-the-art learning-based multi-view stereo approaches [4, 52, 53] and MVS-

Net+Ours. (a)-(d): Reconstructed point clouds of MVSNet [52], R-MVSNet [53], Point-MVSNet [4] and MVSNet+Ours.

(e) and (f): The relationship between reconstruction accuracy and GPU memory or run-time. The resolution of input images

is 1152 × 864.

Abstract
The deep multi-view stereo (MVS) and stereo matching

approaches generally construct 3D cost volumes to regu-

larize and regress the depth or disparity. These methods

are limited with high-resolution outputs since the memory

and time costs grow cubically as the volume resolution in-

creases. In this paper, we propose a memory and time ef-

ficient cost volume formulation complementary to existing

multi-view stereo and stereo matching approaches based on

3D cost volumes. First, the proposed cost volume is built

upon a feature pyramid encoding geometry and context at

gradually finer scales. Then, we can narrow the depth (or

disparity) range of each stage by the prediction from the

previous stage. With gradually higher cost volume resolu-

tion and adaptive adjustment of depth (or disparity) inter-

vals, the output is recovered in a coarser to fine manner.

We apply the cascade cost volume to the representative

MVS-Net, and obtain a 35.6% improvement on DTU bench-

mark (1st place), with 50.6% and 59.3% reduction in GPU

memory and run-time. It is also rank first on Tanks and

Temples benchmark of all deep models. The statistics of

accuracy, run-time and GPU memory on other representa-

tive stereo CNNs also validate the effectiveness of our pro-

posed method. Our source code is available at https:

//github.com/alibaba/cascade-stereo.

∗Equal contribution.
†This work was done during an internship at Alibaba A.I. Labs.

1. Introduction

Convolutional neural networks (CNNs) have been

widely adopted in 3D reconstruction and broader computer

vision tasks. State-of-the-art multi-view stereo [19, 29, 52,

53] and stereo matching algorithms [3,15,22,33,46,56] of-

ten compute a 3D cost volume according to a set of hypoth-

esized depth (or disparity) and warped features. 3D con-

volutions are applied to this cost volume to regularize and

regress the final scene depth (or disparity).

Compared with the methods based on 2D CNNs [30,55],

the 3D cost volume can capture better geometry structures,

perform photometric matching in 3D space, and allevi-

ate the influence of image distortion caused by perspective

transformation and occlusions [4]. However, methods rely-

ing on 3D cost volumes are often limited to low-resolution

input images (and results), because 3D CNNs are generally

time and GPU memory consuming. Typically, these meth-

ods downsample the feature maps to formulate the cost vol-

umes at a lower resolution [3, 4, 15, 19, 22, 29, 33, 46, 52,

53, 56], and adopt upsampling [3, 15, 22, 33, 42, 46, 49, 56]

or post-refinement [4,29] to output the final high-resolution

result.

Inspired by the previous coarse-to-fine learning-based

stereo approaches [8, 9, 11], we present a novel cascade

formulation of 3D cost volumes. We start from a feature

pyramid to extract multi-scale features which are commonly

used in standard multi-view stereo [52] and stereo match-
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ing [3, 15] networks. In a coarse-to-fine manner, the cost

volume at the early stages is built upon larger scale seman-

tic 2D features with sparsely sampled depth hypotheses,

which lead to a relatively lower volume resolution. Sub-

sequently, the later stages use the estimated depth (or dis-

parity) maps from the earlier stages to adaptively adjust the

sampling range of depth (or disparity) hypotheses and con-

struct new cost volumes where finer semantic features are

applied. This adaptive depth sampling and adjustment of

feature resolution ensures the computation and memory re-

sources are spent on more meaningful regions. In this way,

our cascade structure can remarkably decrease computation

time and GPU memory consumption. The effectiveness of

our method can be seen in Figure 1.

We validate our method on both multi-view stereo and

stereo matching on various benchmark datasets. For multi-

view stereo, our cascade structure achieves the best perfor-

mance on the DTU dataset [1] at the submission time of

this paper, when combined with MVSNet [52]. It is also the

state-of-the-art learning-based method on Tanks and Tem-

ples benchmark [24]. For stereo matching, our method

reduces the end-point-error (EPE) and GPU memory con-

sumption of GwcNet [15] by about 15.2% and 36.9% re-

spectively.

2. Related Work

Stereo Matching According to the survey by Scharstein

et al. [38], a typical stereo matching algorithm contains

four steps: matching cost calculation, matching cost ag-

gregation, disparity calculation, and disparity refinement.

Local methods [31, 50, 57] aggregate matching costs with

neighboring pixels and usually utilize the winner-take-all

strategy to choose the optimal disparity. Global methods

[17, 23, 43] construct an energy function and try to min-

imize it to find the optimal disparity. More specifically,

works in [23, 43] use belief propagation and semi-global

matching [17] to approximate the global optimization with

dynamic programming.

In the context of deep neural networks, CNNs based

stereo matching methods are first introduced by Zbontar

and LeCun [54], in which a convolutional neural network

is introduced to learn the similarity measure of small patch

pairs. The introduction of the widely used 3D cost vol-

ume in stereo is first proposed in GCNet [22], in which

the disparity regression step uses the soft argmin opera-

tion to figure out the best matching results. PSMNet [3]

further introduces pyramid spatial pooling and 3D hour-

glass networks for cost volume regularization and yields

better results. GwcNet [15] modifies the structure of 3D

hourglass and introduces group wise correlation to form

a group based 3D cost volume. HSM [48] builds a light

model for high-resolution images with a hierarchical de-

sign. EMCUA [33] introduces an approach for multi-

level context ultra-aggregation. GANet [56] constructs sev-

eral semi-global aggregation layers and local guided ag-

gregation layers to further improve the accuracy. Deep-

Pruner [5] is a coarse to fine method which proposes a dif-

ferentiable PatchMatch-based module to predict the pruned

search range for each pixel.

Although methods based on 3D cost-volume remarkably

boost the performance, they are limited to downsampled

cost volumes and rely on interpolation operations to gen-

erate high-resolution disparity. Our cascade cost volumes

can be combined with these methods to improve the dispar-

ity accuracy and GPU memory efficiency.

Multi-View Stereo According to the comprehensive sur-

vey [12], works in traditional muti-view stereo can be

roughly categorised into volumetric methods [20, 21, 25,

41], which estimate the relationship between each voxel

and surfaces; point cloud based methods [13,26], which di-

rectly process 3D points to iteratively densify the results;

and depth map reconstruction methods [2,7,14,40,44,51],

which use only one reference and a few source images for

single depth map estimation. For large-scale Structure-

from-Motion, works in [58, 59] use distributed methods

based on distributed motion averaging and global camera

consensus.

Recently, learning-based approaches also demonstrate

superior performance on multi-view stereo. Multi-patch

similarity [16] introduces a learned cost metric. Sur-

faceNet [20] and DeepMVS [18] pre-warp the multi-view

images to 3D space and use deep networks for regular-

ization and aggregation. Most recently, multi-view stereo

based on 3D cost volumes have been proposed in [4, 6, 10,

19, 29, 52, 53]. A 3D cost volume is built based on warped

2D image features from multiple views and 3D CNNs are

applied for cost regularization and depth regression. Be-

cause the 3D CNNs require large GPU memory, these meth-

ods generally use downsampled cost volumes. Our cascade

cost volume can be easily integrated into these methods to

enable high-resolution cost volumes and further boosts ac-

curacy, computational speed, and GPU memory efficiency.

High-Resolution Output in Stereo and MVS Recently,

some learning-based methods try to reduce the memory re-

quirement in order to generate high resolution outputs. In-

stead of using voxel grids, Point MVSNet [4] proposes to

use a small cost volume to generate the coarse depth and

uses a point-based iterative refinement network to output

the full resolution depth. In comparison, a standard MVS-

Net combined with our cascade cost volume can output

full resolution depth with superior accuracy using less run-

time and GPU memory than Point MVSNet [4]. Works

in [35, 45] partition advanced space to reduce memory con-

sumption and construct a fixed cost volume representation

which lacks flexibility. Works in [29, 42, 49] build extra re-

finement module by 2D CNNs and output a high resolution

2496



Figure 2: Network architecture of the proposed cascade cost volume on MVSNet [52], denoted as MVSNet+Ours.

prediction. Notably, such refinement modules can be uti-

lized jointly with our proposed cascade cost volume.

3. Methodology

This section describes the detailed architecture of the

proposed cascade cost volume which is complementary to

the existing 3D cost volume based methods in multi-view

stereo and stereo matching. Here, we use the representative

MVSNet [52] and PSMNet [3] as the backbone networks

to demonstrate the application of the cascade cost volume

in multi-view stereo and stereo matching tasks respectively.

Figure 2 shows the architecture of MVSNet+Ours.

3.1. Cost volume Formulation

Learning-based multi-view stereo [4, 52, 53] and stereo

matching [3, 15, 22, 54, 56] construct 3D cost volumes

to measure the similarity between corresponding image

patches and determine whether they are matched. Con-

structing 3D cost volume requires three major steps in

both multi-view stereo and stereo matching. First, the dis-

crete hypothesis depth (or disparity) planes are determined.

Then, we warp the extracted 2D features of each view to the

hypothesis planes and construct the feature volumes, which

are finally fused together to build the 3D cost volume. Pixel-

wise cost calculation is generally ambiguous in inherently

ill-posed regions such as occlusion areas, repeated patterns,

textureless regions, and reflective surfaces. To solve this,

3D CNNs at multiple scales are generally introduced to ag-

gregate contextual information and regularize the possibly

noise-contaminated cost volumes.

3D Cost Volumes in Multi-View Stereo MVSNet [52]

proposes to use fronto-parallel planes at different depth as

hypothesis planes and the depth range is generally deter-

mined by the sparse reconstruction. The coordinate map-

ping is determined by the homography:

Hi(d) = Ki ·Ri · (I −
(t1 − ti) · n1

T

d
) ·R1

T ·K1
−1 (1)

where Hi(d) refers to the homography between the feature

maps of the ith view and the reference feature maps at depth

d. Moreover, Ki, Ri, ti refers to the camera intrinsics, ro-

tations and translations of the ith view respectively, and n1

denotes the principle axis of the reference camera. Then

differentiable homography is used to warp 2D feature maps

into hypothesis planes of the reference camera to form fea-

ture volumes. To aggregate multiple feature volumes to one

cost volume, the variance-based cost metric is proposed to

adapt an arbitrary number of input feature volumes.

3D Cost Volumes in Stereo Matching PSMNet [3] uses

disparity levels as hypothesis planes and the range of dispar-

ity is designed according to specific scenes. Since the left

and right images have been rectified, the coordinate map-

ping is determined by the offset in the x-axis direction:

Cr(d) = Xl − d (2)

where Cr(d) refers to the transformed x-axis coordinate of

the right view at disparity d, and Xl is the source x-axis

coordinate of the left view. To build feature volumes, we

warp the feature maps of the right view to the left view

using the translation along the x-axis. There are multiple

ways to build the final cost volume. GCNet [22] and PSM-

Net [3] concatenate the left feature volume and the right

feature volume without decreasing the feature dimension.

The work [55] uses the sum of absolute differences to com-

pute matching cost. DispNetC [30] computes full correla-

tion about the left feature volume and right feature volume
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Plane Num. Plane Interv. Spatial Res.

Efficiency Negative Positive Negative

Accuracy Positive Negative Positive

Figure 3: Left: the standard cost volume. D is the number

of hypothesis planes, W × H is the spatial resolution and I is

the plane interval. Right: The influence factors of efficiency

(run-time and GPU memory) and accuracy.

and produces only a single-channel correlation map for each

disparity level. GwcNet [15] proposes group-wise corre-

lation by splitting the features into groups and computing

correlation maps in each group.

3.2. Cascade Cost Volume

Figure 3 shows a standard cost volume of a resolution

of W × H × D × F , where W × H denotes the spa-

tial resolution, D is the number of plane hypothesis, and

F is the channel number of feature maps. As mentioned

in [4,52,53], an increased number of plane hypothesis D, a

larger spatial resolution W × H , and a finer plane interval

are likely to improve the reconstruction accuracy. However,

the GPU memory and run-time grow cubically as the reso-

lution of the cost volume increases. As demonstrated in R-

MVSNet [53], MVSNet [52] is able to process a maximum

cost volume of H×W×D×F = 1600×1184×256×32 on

a 16 GB Tesla P100 GPU. To resolve the problems above,

we propose a cascade cost volume formulation and predict

the output in a coarse-to-fine manner.

Hypothesis Range As shown in Figure 4, the depth (or

disparity) range of the first stage denoted by R1 covers the

entire depth (or disparity) range of the input scene. In the

following stages, we can base on the predicted output from

the previous stage, and narrow the hypothesis range. Con-

sequently, we have Rk+1 = Rk · wk, where Rk is the hy-

pothesis range at the kth stage and wk < 1 is the reducing

factor of hypothesis range.

Hypothesis Plane Interval We also denote the depth (or

disparity) interval at the first stage as I1. Compared with the

commonly adopted single cost volume formulation [3, 52],

the initial hypothesis plane interval is comparatively larger

to generate a coarse depth (or disparity) estimation. In the

following stages, finer hypothesis plane intervals are ap-

plied to recover more detailed outputs. Therefore, we have:

Ik+1 = Ik · pk, where Ik is the hypothesis plane interval at

the kth stage and pk < 1 is the reducing factor of hypothesis

plane interval.

Number of Hypothesis Planes At the kth stage, given

the hypothesis range Rk and hypothesis plane interval Ik,

the corresponding number of hypothesis planes Dk is de-

termined by the equation: Dk = Rk/Ik. When the spatial

Figure 4: Illustration of hypothesis plane generation. Rk

and Ik are respectively the hypothesis range and the hypoth-

esis plane number at the kth stage. Pink lines are hypoth-

esis planes. Yellow line indicates the predicted depth (or

disparity) map from stage 1, which is used to determine the

hypothesis range and hypothesis plane intervals at stage 2.

resolution of a cost volume is fixed, a larger Dk generates

more hypothesis planes and correspondingly more accurate

results while leads to increased GPU memory and run-time.

Based on the cascade formulation, we can effectively reduce

the total number of hypothesis planes since the hypothesis

range is remarkably reduced stage by stage while still cov-

ering the entire output range.

Spatial Resolution Following the practices of Feature

Pyramid Network [28], we double the spatial resolution

of the cost volume at every stage along with the doubled

resolution of the input feature maps. We define N as the

total stage number of cascade cost volume, then the spa-

tial resolution of cost volume at the kth stage is defined as
W

2N−k ×
H

2N−k . We set N = 3 in multi-view stereo tasks and

N = 2 in stereo matching tasks.

Warping Operation Applying the cascade cost vol-

ume formulation to multi-view stereo, we base on Equa-

tion 1 and rewrite the homography warping function at the

(k + 1)
th

stage as:

Hi(d
m

k +∆m

k+1) = Ki·Ri·(I−
(t1 − ti) · n1

T

dm
k
+∆m

k+1

)·R1
T ·K1

−1

(3)

where dm
k

denotes the predicted depth of the mth pixel at

the kth stage, and ∆m

k+1
is the residual depth of the mth

pixel to be learned at the k + 1th stage.

Similarly in stereo matching, we reformulate Equation 2

based on our cascade cost volume. The mth pixel coordi-

nate mapping at the k + 1th stage is expressed as:

Cr(d
m

k +∆m

k+1) = Xl − (dmk +∆m

k+1) (4)

where dm
k

denotes the predicted disparity of the mth pixel

at the kth stage, and ∆m

k+1
denotes the residual disparity of

the mth pixel to be learned at the k + 1th stage.

3.3. Feature Pyramid

In order to obtain high-resolution depth (or disparity)

maps, previous works [29, 33, 46, 56] generally generate a

comparatively low-resolution depth (or disparity) map us-

ing the standard cost volume and then upsample and refine
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(a) MVSNet [52] (b) R-MVSNet [53] (c) Point MVSNet [4] (d) MVSNet+Ours (e) Ground Truth

Figure 5: Multi-view stereo qualitative results of scan 10 on DTU dataset [1]. Top row: Generated point clouds of different

methods and ground truth point clouds. Bottom row: Zoomed local areas.

it with 2D CNNs. The standard cost volume is constructed

using the top level feature maps which contains high-level

semantic features but lacks low-level finer representations.

Here, we refer to Feature Pyramid Network [28] and adopt

its feature maps with increased spatial resolutions to build

the cost volumes of higher resolutions. For example, when

applying cascade cost volume to MVSNet [52], we build

three cost volumes from the feature maps {P1, P2, P3} of

Feature Pyramid Network [28]. Their corresponding spatial

resolutions are {1/16, 1/4, 1} of the input image size.

3.4. Loss Function

The cascade cost volume with N stages produces N − 1
intermediate outputs and a final prediction. We apply the

supervision to all the outputs and the total loss is defined as:

Loss =

N∑

k=1

λk · Lk (5)

where Lk refers to the loss at the kth stage and λk refers

to its corresponding loss weight. We adopt the same loss

function Lk as the baseline networks in our experiments.

4. Experiments

We evaluate the proposed cascade cost volume on multi-

view stereo and stereo matching tasks.

4.1. Multi­view stereo

Datasets DTU [1] is a large-scale MVS dataset consisting

of 124 different scenes scanned in 7 different lighting condi-

tions at 49 or 64 positions. Tanks and Temples dataset [24]

contains realistic scenes with small depth ranges. More

specifically, its intermediate set is consisted of 8 scenes

including Family, Francis, Horse, Lighthouse, M60, Pan-

ther, Playground, and Train. Following the work [53], we

Methods Acc.(mm) Comp.(mm) Overall(mm) GPU Mem(MB) Run-time(s)

Camp [2] 0.835 0.554 0.695 - -

Furu [13] 0.613 0.941 0.777 - -

Tola [44] 0.342 1.190 0.766 - -

Gipuma [14] 0.283 0.873 0.578 - -

SurfaceNet [20] 0.450 1.040 0.745 - -

R-MVSNet [53] 0.383 0.452 0.417 7577 1.28

P-MVSNet [29] 0.406 0.434 0.420 - -

Point-MVSNet [4] 0.342 0.411 0.376 8731 3.35

MVSNet(D=192) [52] 0.456 0.646 0.551 10823 1.210

MVSNet+Ours 0.325 0.385 0.355 5345 0.492

Comp. with MVSNet 28.7% 40.4% 35.6% 50.6% 59.3%

Table 1: Multi-view stereo quantitative results of different

methods on DTU dataset [1] (lower is better). We conduct

this experiment using two resolution settings according to

PointMVSNet [4] where MVSNet+Ours uses resolution of

1152 × 864.

use DTU training set [1] to train our method, and test on

DTU evaluation set. To validate the generalization of our

approach, we also test it on the intermediate set of Tanks

and Temples dataset [24] using the model trained on DTU

dataest without fine-tuning.

Implementation We apply the proposed cascade cost vol-

ume to the representative MVSNet [52] and denote the

network as MVSNet+Ours. During training, we set the

number of input images to N=3 and image resolution to

640 × 512. After balancing accuracy and efficiency, we

adopt a three-stage cascade cost volume. From the first to

the third stage, the number of depth hypothesis is 48, 32

and 8, and the corresponding depth interval is set to 4, 2

and 1 times as the interval of MVSNet [52] respectively.

Accordingly, the spatial resolution of feature maps gradu-

ally increases and is set to 1/16, 1/4 and 1 of the original

input image size. We follow the same input view selection

and data pre-processing strategies as MVSNet [52] in both

training and evaluation. During training, we use Adam op-

timizer with β1 = 0.9 and β2 = 0.999. The training is done

for 16 epochs with an initial learning rate of 0.001, which is

downscaled by a factor of 2 after 10, 12, and 14 epochs. We
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Rank Mean Family Francis Horse Lighthouse M60 Panther Playground Train

COLMAP [39, 40] 54.62 42.14 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04

R-MVSNet [53] 40.12 48.40 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38

Point-MVSNet [4] 38.12 48.27 61.79 41.15 34.20 50.79 51.97 50.85 52.38 43.06

ACMH [47] 15.00 54.82 69.99 49.45 45.12 59.04 52.64 52.37 58.34 51.61

P-MVSNet [29] 12.25 55.62 70.04 44.64 40.22 65.20 55.08 55.17 60.37 54.29

MVSNet [52] 52.00 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69

MVSNet+Ours 9.50 56.42 76.36 58.45 46.20 55.53 56.11 54.02 58.17 46.56

Table 2: Statistical results on the Tanks and Temples dataset [24] of state-of-the-art multi-view stereo and our methods.

Figure 6: Point cloud results of MVSNet+Ours on the intermediate set of Tanks and Temples dataset [24].

Stages Resosution >2mm(%) >8mm(%) Overall (mm) GPU Mem. (MB) Run-time (s)

1 1/4 × 1/4 0.310 0.163 0.602 2373 0.081

2 1/2 × 1/2 0.208 0.084 0.401 4093 0.243

3 1 0.174 0.077 0.355 5345 0.492

Table 3: The statistical results of different stages in cascade

cost volume. The statistics are collected on the DTU evalu-

ation set [1] using MVSNet+Ours. The run-time is the sum

of the current and previous stages. The base of resolution

of input images in this experiment is 1152 × 864.

(a) GT&Ref Img (b) Stage1 (c) Stage2 (d) Stage3

Figure 7: Reconstruction results of each stage. Top row:

Ground truth depth map and intermediate reconstructions.

Bottom row: Error maps of intermediate reconstructions.

train our method with 8 Nvidia GTX 1080Ti GPUs with 2

training samples on each GPU.

For quantitative evaluation on DTU dataset [1], we cal-

culate the accuracy and the completeness by the MATLAB

code provided by DTU dataset [1]. The percentage eval-

uation is implemented following MVSNet [52]. The F-

score is used as the evaluation metric for Tanks and Tem-

ples dataset [24] to measure the accuracy and completeness

of the reconstructed point clouds. We use fusibile [36] as

our post-processing consisting of three steps: photometric

filtering, geometric consistency filtering, and depth fusion.

Benchmark Performance Quantitative results on DTU

evaluation set [1] are shown in Table 1. We can see that

MVSNet [52] with cascade cost volume outperforms other

methods [4, 29, 52, 53] in both completeness and overall

quality and rank the 1st place on DTU dataset [1], with

the improvement of 35.6%, and the decrease of memory,

run-time reduction of 50.6% and 59.3%. The qualitative

results are shown in Figure 5. We can see that MVS-

Net+Ours generates more complete point clouds with finer

details. Besides, we demonstrate the generalization abil-

ity of our trained model by testing on Tanks and Temples

dataset [24]. The corresponding quantitative results are re-

ported in Table 2, and MVSNet+Ours achieves the state-of-

the-art performance among the learning-based multi-view

stereo methods. The qualitative point cloud results of the

intermediate set of Tanks and Temples benchmark [24] are

visualized in Figure 6. Note that, we get the results of

above mentioned methods by running their provided pre-

trained model and code except R-MVSNet [53] which pro-

vides point cloud results with their post-processing method.

To analyse the accuracy, GPU memory and run-time at

each stage, we evaluate the MVSNet+Ours method on the

DTU dataset [1]. We provide comprehensive statistics in

Table 3 and visualization results in Figure 7. In a coarse-to-

fine manner, the overall quality is improved from 0.602 to
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Figure 8: Qualitative results on the test set of KITTI2015 [32]. Top row: Input images, Second row: Results of PSMNet [3].

Third row: Results of GwcNet [15]. Bottom row: Results of GwcNet with cascade cost volume (GwcNet+Ours).

0.355. Accordingly, the GPU memory increases from 2,373

MB to 4,093 MB and 5,345 MB, and run-time increases

from 0.081 s to 0.243 s and 0.492 s.

4.2. Stereo Matching

Datasets Scene Flow dataset [30] is a large scale-dataset

containing 35,454 training and 4,370 testing stereo pairs of

size 960 × 540. It contains accurate ground truth disparity

maps. We use the Finalpass of the Scene Flow dataset [30]

since it contains more motion blur and defocus and is more

like a real-world environment. KITTI 2015 [32] is a real-

world dataset with dynamic street views. It contains 200

training pairs and 200 testing pairs. Middlebury [37] is the

publicly available dataset for high-resolution stereo match-

ing contains 60 pairs under imperfect calibration, different

exposures, and different lighting conditions.

Implementation In Scene Flow dataset, we extend PSM-

Net [3], GwcNet [15] and GANet11 [56] with our proposed

cascade cost volume and denote them as PSMNet+Ours,

GwcNet+Ours and GANet11+Ours. Balancing the trade-

off between accuracy and efficiency, a two-stage cascade

cost volume is applied, and the number of disparity hypoth-

esis is 12. The corresponding disparity interval is set to 4

and 1 pixels respectively. The spatial resolution of feature

maps increases from 1/16 to 1/4 of the original input image

size. The maximum disparity is set to 192.

In KITTI 2015 benchmark [32], we mainly compare

GwcNet [15] and GwcNet+Ours. For a fair comparison,

we follow the training details of the original networks. The

evaluation metric in Scene Flow dataset [30] is end-point-

error (EPE), which is the mean absolute disparity error in

pixels. For KITTI 2015 [32], the percentage of disparity

outliers D1 is used to evaluate disparity error larger than

>1px >2px. >3px EPE Mem.

PSMNet [3] 9.46 5.19 3.80 0.887 6871

PSMNet+Ours 7.44 4.61 3.50 0.721 4124

GwcNet [15] 8.03 4.47 3.30 0.765 7277

GwcNet+Ours 7.46 4.16 3.04 0.649 4585

GANet11 [56] - - - 0.95 6631

GANet11+Ours 11.0 5.97 4.28 0.90 5032

Table 4: Quantitative results of different stereo matching

methods with and without cascade cost volume on Scene

Flow dataset [30]. Accuracy, GPU memory consumption

and run-time are included for comparisons.

Methods
All (%) Noc (%)

D1-bg D1-fg D1-all D1-bg D1-fg D1-all

DispNetC [30] 4.32 4.41 4.34 4.11 3.72 4.05

GC-Net [22] 2.21 6.16 2.87 2.02 5.58 2.61

CRL [34] 2.48 3.59 2.67 2.32 3.12 2.45

iResNet-i2e2 [27] 2.14 3.45 2.36 1.94 3.20 2.15

SegStereo [49] 1.88 4.07 2.25 1.76 3.70 2.08

PSMNet [3] 1.86 4.62 2.32 1.71 4.31 2.14

GwcNet [15] 1.74 3.93 2.11 1.61 3.49 1.92

GwcNet+Ours 1.59 4.03 2.00 1.43 3.55 1.78

Table 5: Comparison of different stereo matching methods

on KITTI2015 benchmark [32].

max(3px, 0.05d∗), where d∗ denotes the ground-truth dis-

parity.

Benchmark Performance Quantitative results of differ-

ent stereo methods on Scene Flow dataset [30] is shown in

Table 4. By applying the cascade 3D cost volume, we boost

the accuracy in all the metrics and less memory is required

owing to the cascade design with smaller number of dispar-

ity hypothesis. Our method reduces the end-point-error by

0.166, 0.116 and 0.050 on PSMNet [3] (0.887 vs. 0.721),

GwcNet [15] (0.765 vs. 0.649) and GANet11 [56] (0.950

vs. 0.900) respectively. The obvious improvement on >1px
indicates that small errors are suppressed with the introduc-

tion of high-resolution cost volumes. In KITTI 2015 [32],
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Depth Num. Depth Interv. Acc. Comp. Overall

MVSNet 192 1 0.4560 0.6460 0.5510

MVSNet-Cas2 96, 96 2, 1 0.4352 0.4275 0.4314

MVSNet-Cas3 96, 48, 48 2, 2, 1 0.4479 0.4141 0.4310

MVSNet-Cas4 96, 48, 24, 24 2, 2, 2, 1 0.4354 0.4374 0.4364

MVSNet-Cas3-share 96, 48, 48 2, 2, 1 0.4741 0.4282 0.4512

Table 6: Comparisons between MVSNet [52] and MVS-

Net using our cascade cost volume with different setting of

depth hypothesis numbers and depth intervals. The statis-

tics are collected on DTU dataset [1].

Methods cascade? upsample? feature pyramid? Acc. (mm) Comp. (mm) Overall (mm)

MVSNet × × × 0.456 0.646 0.551

MVSNet-Cas3 X × × 0.450 0.455 0.453

MVSNet-Cas3-Ups X X × 0.419 0.338 0.379

MVSNet+Ours X × X 0.325 0.385 0.355

Table 7: The quantitative comparison between MVSNet

and MVSNet with different settings of the cascade cost vol-

umes. Specifically, ”cascade” denotes that the original cost

volume is divided into three cascade cost volumes, ”upsam-

ple” denotes cost volumes with increased spatial resolutions

by bilinear upsampling corresponding feature maps, and

“feature pyramid” denotes cost volumes with higher spatial

resolutions built on pyramid feature maps. The statistics are

evaluated on the DTU dataset.

Table 5 shows the percentage of disparity outliers D1 eval-

uated for background, foreground, and all pixels. Compared

with the original GwcNet [15], the rank of GwcNet+Ours

rises from 29th to 17th (date: Nov.5, 2019). Several dis-

parity estimation on KITTI 2015 test set [32] is shown in

Figure 8. In Middlebury benchmark, PSMNet+Ours ranks

37th for the avgerr metric(date: Feb.7, 2020).

4.3. Ablation Study

Extensive ablation studies are performed to validate the

improved accuracy and efficiency of our approach. All re-

sults are obtained by the three-stage model on DTU valida-

tion set [1] unless otherwise stated.

Cascade Stage Number The quantitative results with dif-

ferent stage numbers are summarized in Table 6. In our im-

plementation, we use MVSNet [52] with 192 depth hypoth-

esis as the baseline model, and replace its cost volume with

our cascade design which is also consisted of 192 depth hy-

pothesis. Note that the spatial resolution of different stages

are the same as that of the original MVSNet [52]. This ex-

tended MVSNet is denoted as MVSNet-Casi where i in-

dicates the total stage number. We find that as the number

of stages increases, the overall quality first remarkably in-

creases and then stabilizes.

Spatial Resolution Then, we study how the spatial res-

olution of a cost volume W × H affects the reconstruc-

tion performance. Here, we compare MVSNet-Cas3, which

contains 3 stages and all the stages share the same spatial

resolution, and MVSNet-Cas3-Ups where the spatial reso-

lution increases from 1/16 to 1 of the original image size

and bilinear interpolation is used to upsample feature maps.

As shown in Table 7, the overall quality of MVSNet+Ours

is obviously superior to those of MVSNet-Cas3 (0.453 vs.

0.355). Accordingly, a higher spatial resolution also leads

to increased GPU memory (2373 vs. 5345 MB) and run-

time (0.322 vs. 0.492 seconds).

Feature Pyramid As shown in Table 7, the cost vol-

ume constructed from Feature Pyramid Network [28] de-

noted by MVSNet+Ours can slightly improve the overall

quality from 0.379 to 0.355. The GPU memory (6227

vs. 5345 MB) and run-time (0.676 vs. 0.492 seconds) are

also decreased. Compared with the improvement between

MVSNet-Cas3 and MVSNet-Cas3-Ups, the increased spa-

tial resolution is still more critical to the improvement of

reconstruction accuracy.

Parameter Sharing in Cost Volume Regularization We

also analyze the effect of weight sharing in 3D cost vol-

ume regularization across all the stages. As is shown in Ta-

ble 6, the shared parameters cascade cost volume denoted

by MVSNet-Cas3-share achieves worse performance than

MVSNet-Cas3. It indicates that separate parameter learn-

ing of the cascade cost volumes at different stages further

improves the accuracy.

4.4. Run­time and GPU Memory

Table 1 shows the comparison of GPU memory and run-

time between MVSNet [52] with and without cascade cost

volume. Given the remarkable accuracy improvement, the

GPU memory decreases from 10,823 to 5,345 MB, and the

run-time drops from 1.210 to 0.492 seconds. In Table 4,

we compare the GPU memory between PSMNet [3], Gwc-

Net [15] and GANet11 [56] with and without the proposed

cascade cost volume. The GPU memory of PSMNet [3],

GwcNet [15] and GANet11 [56] decreases by 39.97%,

36.99% and 24.11% respectively.

5. Conclusion

In this paper, we present a both GPU memory and

computationally efficient cascade cost volume formulation

for high-resolution multi-view stereo and stereo matching.

First, we decompose the single cost volume into a cascade

formulation of multiple stages. Then, we can narrow the

depth (or dispartiy) range of each stage and reduce the total

number of hypothesis planes by utilizing the depth (or dis-

parity) map from the previous stage. Next, we use the cost

volumes of higher spatial resolution to generate the outputs

with finer details. The proposed cost volume is complemen-

tary to existing 3D cost-volume-based multi-view stereo

and stereo matching approaches.
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