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ABSTRACT 

Taxonomies are a useful and ubiquitous way of organizing 

information. However, creating organizational hierarchies 

is difficult because the process requires a global 

understanding of the objects to be categorized. Usually one 

is created by an individual or a small group of people 

working together for hours or even days. Unfortunately, this 

centralized approach does not work well for the large, 

quickly-changing datasets found on the web. Cascade is an 

automated workflow that creates a taxonomy from the 

collective efforts of crowd workers who spend as little as 20 

seconds each. We evaluate Cascade and show that on three 

datasets its quality is 80-90% of that of experts. The cost of 

Cascade is competitive with expert information architects, 

despite taking six times more human labor. Fortunately, this 

labor can be parallelized such that Cascade will run in as 

fast as five minutes instead of hours or days. 
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INTRODUCTION 

Although taxonomies are a useful and ubiquitous way of 

organizing information, creating these organizational 

hierarchies is difficult because the process requires a global 

understanding of the objects to be categorized. Currently, 

most taxonomies are created by a small group of experts 

who analyze a complete dataset before identifying the 

essential distinctions for classification. Unfortunately, this 

process is too expensive to apply to many of the user-

contributed datasets, e.g. of photographs or answers to 

questions, found on the Internet. Despite recent progress, 

completely automated methods, such as Latent Dirichlet 

Allocation (LDA) and related AI techniques, produce low-

quality taxonomies. They lack the common sense and 

language abilities that come naturally to people.  

 

Figure 1. Example input and output of Cascade. The input is 

100 random colors; the output is a taxonomy of the colors. 

This paper presents Cascade, a novel method for creating 

taxonomies. Cascade is a crowd algorithm that coordinates 

human labor with automated techniques. Each worker need 

only make a small contribution with no long-term time 

commitment or learning curve. None of the workers needs 

to have a global perspective of the data or the taxonomy 

under construction. Figure 1 contains example results. 

Crowdsourcing has become a popular way to solve 

problems that are too hard for today’s AI techniques, such 

as translation, linguistic tagging, and visual interpretation. 

Most successful crowdsourcing systems operate on 

problems that naturally break into small units of labor, e.g., 

labeling millions of independent photographs. However, 

taxonomy creation is much harder to decompose, because it 

requires a global perspective. Cascade is a unique, iterative 

workflow that emergently generates this global view from 

the distributed actions of hundreds of people working on 

small, local problems.  

In this paper we first describe the lessons learned from 

early, failed attempts to design a crowd workflow for 

building taxonomies. We next present the Cascade 

algorithm and the three human intelligence task (HIT) 

primitives used to implement it. We demonstrate the results 

of running Cascade on five representative data sets. We 

evaluate Cascade in three ways: we compare its time and 

cost to that of four expert information architects who were 
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paid to taxonomize the same data, we count the number of 

mistakes in Cascade’s output and interpret it as an error 

rate, and we compare the coverage of the categories in 

Cascade to those of the expert-made taxonomies.  

This paper makes the following contributions: 

1. We present Cascade: a novel crowd algorithm that 

produces a global understanding of large datasets. 

Cascade is an online algorithm that can update the 

taxonomy as new data arrives. The tasks given to 

workers are quick and parallelizable. 

2. We propose three HIT primitives, simple task 

interfaces, used as building blocks by Cascade and 

useful for future crowd algorithms. 

3. We introduce Global Structure Inference as a way to 

combine independently-generated judgments into a 

cohesive taxonomy. 

4. We evaluate Cascade on three datasets showing that 

Cascade can perform close to expert level agreement 

(80-90% of expert performance) for a competitive cost. 

 
RELATED WORK 

Crowdsourcing complex tasks 

The idea of using small units of human labor in an 

algorithm was introduced by TurKit [15] and demonstrated 

on simple workflows such as iteratively improving image 

descriptions. More recent work has demonstrated more 

complex crowd workflows. CrowdForge [10] uses a 

MapReduce-like framework for writing articles by mapping 

separate workers to different aspects of the article (e.g., the 

outline, the facts, the quotes, etc.) and then composing the 

results in a Reduce step. Turk-o-matic [12] asks workers to 

break down the task and then creates subtasks for more 

workers to do. Mobi [20] solves problems, like travel 

planning, that have global constraints met by workers 

creating to-do items for other workers to resolve. 

Legion:Scribe [16] breaks down audio transcription tasks 

into small chunks and uses sequence alignment to combine 

results in real-time. The challenge in designing a crowd 

workflow is to break down a task into pieces that can be 

done independently and then combined. Cascade solves a 

particularly hard version of this problem: when data must 

be combined to create a global understanding. 

Clustering and Taxonomy Creation 

Machine learning algorithms, such as LDA [4], can 

automatically cluster data. While these automated 

approaches are fast and cheap (compared with human 

labor), they have several limitations. First, they require a 

human to explicitly specify a set of features for each media 

type, such as the bag-of-words representation for text or 

computer-vision features for images. Second, their 

performance is bad; lacking common sense, LDA often 

creates incoherent clusters. Finally, they have trouble 

naming the resulting categories; incapable of creating an 

overarching abstraction, they can only identify a common 

feature (i.e., a word or phrase in the case of text). 

Several machine-learning techniques have been refitted to 

use human inputs. CrowdKernel [18] learns an SVM kernel 

from human pairwise comparisons. Matrix completion has 

been used to do clustering with spare pairwise labels [19]. 

Additional, discriminative labels [17] can be found for 

image datasets using a mixture of probabilistic principal 

component analyzers (MPPCA). Crowdclustering [6] uses 

human-created clusters of a subset of the data and 

Variational Bayes method to create unlabeled clusters of 

data and subclusters. These are novel and intriguing ways to 

combine human and machine effort to complete labeling, 

and find clusters in data. In contrast, Cascade is an end-to-

end system that requires only quick, easy tasks for workers 

and produces human readable category labels on a 

taxonomy organizing all the data.  

There are several distributed human taxonomy creation 

efforts. First, Wikipedia maintains a taxonomy of all its 

pages. The work is coordinated though talk pages, not 

through a crowd algorithm. Although this is a success in 

taxonomy creation, it requires a large time commitment 

overhead and thus it is not easy for individuals to contribute 

in small increments. Second, Card Sorting [8] is a technique 

for members of a group to contribute to an organization of 

their data. Participants create labeled clusters for all data 

and the similarities between participants’ clusters tells the 

moderator how people mentally cluster the space. Card 

sorting is an investigative technique. It is not designed to 

produce a usable categorization. Third, folksonomies are 

community-created labeled clusters of data. WordNet -- a 

database of human-contributed semantic knowledge of links 

between works -- has been used to turn folksonomies into 

hierarchies of concepts [13]. It seems that human common 

sense and linguist ability are currently necessary for 

taxonomy creation.  Cascade uses these human abilities and 

breaks down the tasks into short, easy units of labor. 

INITIAL APPROACHES 

The Cascade algorithm evolved from a sequence of initial 

prototypes. Our experience resulted in several surprising 

observations that informed our ultimate design of a 

crowdsourced taxonomy workflow. 

Iterative Improvement 

Iterative improvement is a general crowdsourcing pattern 

first described in TurKit [15]. Iterative improvement has 

proven successful at using multiple workers to build on and 

improve each other’s image descriptions, and to collectively 

decipher blurry text or bad handwriting. 

CrowdFlower and Karampinas, et al. [9] have applied 

iterative workflows to clustering. Although it is possible for 

this method to work, our experiences were largely negative. 

We applied iterative improvement to taxonomy creation by 

giving workers a list of items and an editable hierarchy 

interface. Workers were asked to improve the taxonomy by 



 

adding, deleting, or moving categories or by placing items 

in the taxonomy (Figure 2). We observed that the iterative 

improvement interface suffered from two main problems: 

1. The taxonomy grows quickly, making the tasks 

more time consuming and overwhelming as time 

goes on. Creating the first category and placing a few 

items in it is quick and easy. However, when 50 

categories must be read in order to figure out whether 

or not an item belongs in any of the existing categories, 

the work becomes so challenging that single workers 

have a hard time making contributions in a short time 

frame. 

2. The task had many options for how to contribute 

(add categories, place items, merge categories, etc.) 

and workers had trouble selecting tasks. Although 

giving workers options for how to contribute made the 

task very flexible, it also meant workers had to decide 

what was important to do next. It was not always 

obvious what meaningful work should be done or how 

long it would take. A similar result was found in the 

Mobi system [20]. 

We concluded that we needed to break down the 

taxonomization task into manageable units of work and 

have an algorithm coordinate the work.  

Category Comparison 

Similar to the ESP Game [1], we found that workers are 

eager and willing to suggest category labels for data. The 

problem is deciding which labels are useful. The final 

taxonomy should have a non-redundant set of categories 

with parent-child relationships. We tried many approaches 

for directly soliciting these relationships. Figure 3 shows 

one of our prototypes: a matching game where workers can 

select pairs of related category labels. 

We found that workers were wildly inconsistent in the 

relationships they saw in the category labels. For example, 

some thought “air travel” was the same as “flying,” while 

others thought it was a superset. Some thought “packing” 

was the same as “what to bring”, while others thought 

“what to bring” was a subset of “advice” but “packing” was 

not.  

We concluded that it was a mistake to ask workers to 

compare abstractions with abstractions. The differing 

assumptions people make about abstractions are too hard to 

write down, and they render individual worker judgments 

incomparable. Instead, judgments should be made relating 

actual abstractions to data: in this case, relating categories 

to items.  

Clustering 

In order to elicit both clusters and cluster names from 

workers, we prototyped an interface that presented workers 

with a small number of items (8-10) and asked them to 

suggest categories that fit at least two items (Figure 4). 

Although workers found the task easy and intuitive, the 

quality of the categories was not as good as when we 

generated category suggestions for single items. Restricting 

workers to naming categories that satisfied multiple items 

encouraged workers to name overly broad categories. They 

often gave categories names such as “good tips” or 

“advice” because they would fit multiple of the 8 items 

displayed. However, these are not useful category names. 

Moreover, what workers wanted to do instead was name 

categories they felt were good even if they only fit one 

item. Workers know these categories are good because of 

their knowledge of the world. For example, workers can use 

their common sense and intuition about travel advice and 

infer that “TSA Security” might fit multiple items even 

though it only fits one item in the 8-item subset. 

We decided that the clusters workers found in a small 

subset of the data were often unnatural and forced, and that 

it was better to allow workers to suggest categories that fit 

one item very well rather than fit multiple items more 

loosely. 

THE CASCADE ALGORITHM 

We now discuss Cascade’s inputs and outputs, the 

parameters governing its execution, its three HIT 

primitives, and the flow of the algorithm itself. 

Inputs 

Cascade takes two inputs: a set of items to be categorized 

and a descriptive phrase (the topic) identifying these items. 

An example of inputs to Cascade are 100 responses to the 

question “What is your best travel advice?” with the topic 

“Travel Advice.”  

Figure 2. Early prototype interface: iterative improvement 

Figure 3. Early prototype interface: category comparison 



 

In theory, Cascade can handle item-sets of arbitrary size, 

but the algorithm’s expense grows super-linearly in the 

number of items. To date we’ve tested on five datasets, 

ranging in size from 22 to 200 items. In the future, we plan 

to use co-occurrence statistics to optimize the cost on large 

inputs. 

Output 

The output of Cascade is a taxonomy consisting of labeled 

categories and associated items. More precisely, Cascade 

generates a tree whose nodes are labeled with a textual 

string, called a category; the tree’s root is labeled with the 

topic input, and an ‘other’ node is added as a child of the 

root if necessary. Items may appear in multiple categories 

in the taxonomy; for example, a travel tip about flight deals 

may appear in “air travel” and “saving money.” 

Parameters 

Cascade’s behavior is guided by a set of parameters. 

Default values which were used in our experiments are 

noted where applicable.  

 Let n be the number of items input.  

 Let mn be the number of items considered in 

Cascade’s initial item-set, default = 32. 

 Let n’ = n-m denote the number of items in the 

subsequent item-set. 

 Let k be the replication factor (the number of workers 

who may be asked to repeat a step), default = 5.  

 Let g be the first voting threshold, default = 2. 

 Let h be the final voting threshold, default = 4. 

 Let t be the maximum number of items shown to a 

worker at once, default = 8.  

 Let c be the maximum number of categories shown to a 

worker who is selecting the best category for an item, 

default = k = 5.  

 Let s be the maximum number of categories shown to a 

worker who is judging relevance of categories to an 

item, default = 7.  

 Let q be the minimum size of a category, default = 2. 

 Let p be the percentage of items two categories must 

have in common in order to be deemed similar, default 

= 75%. 

By changing the values of these parameters, the designer 

can trade off cost and running time against taxonomy 

quality. Decreasing k or increasing t, c, and s will lower the 

cost of execution, presuming workers will still accept the 

task. Finding the optimal values for these parameters is the 

subject of future research. 

Primitive Worker Tasks  

Before describing Cascade’s overall control flow, we first 

present the three types of HITs that are shown to workers. 

The order in which these tasks are generated depends on the 

characteristics of the input items and can be complex, but 

the primitives are individually quite simple. Here we 

present them abstractly; Figure 5 displays concrete 

instances of these tasks. 

 Generate: (t items) → t categories 

The Generate HIT presents a worker with t items and 

asks her to generate one suggested category for each 

item. The categories do not need to be distinct, but they 

often are. She may elect not to name a category for 

some items. 

 SelectBest: (1 item, c categories) → 1 category 

The SelectBest HIT shows a worker a single item and c 

distinct category tags and asks her to pick the single 

best tag. 

 Categorize: (1 item, s categories) → bit vector of size s 

The Categorize HIT presents a worker with a single 

item and s categories and asks the worker to vote 

whether the item fits each of the categories. 

Algorithm Steps  

Described at the highest level, the Cascade algorithm takes 

every item and solicits multiple suggested categories for it 

from different workers. A new set of workers then votes on 

the best suggested category for each item. Cascade then 

asks workers to consider every item with all of these ‘best’ 

categories and judge relevance. Cascade next uses this data 

to eliminate duplicate and empty categories and to nest 

related categories, creating a hierarchy. 

We first present an outline of the steps of Cascade and then 

describe the steps in full detail. 

0) Select m items to be the initial item-set. All other items 

belong to the subsequent item-set. 

1) Show each of the m items to k workers, who each 

generate a category suggestion for each item. 

Figure 4. Early prototype interface: item clustering 



 

 

 

 

 

 

 

 

 

Figure 5. HIT Primitives: Generate, SelectBest, Categorize 

2) Show each of the m items and the category suggestions 

for it. Ask k workers to select the best category for 

each item by voting. Filter out suggested categories 

with insufficient votes. 

3) For all items, for all best suggested categories, ask k 

workers to vote whether the category applies to the 

item or not. This categorizes the items.  

4) Using the item-category membership information, run 

a fully-automated process, called global structure 

inference, to produce a taxonomy from the categories.  

5) If there are items in the subsequent item-set, ask k 

workers to vote on whether the items fit into the 

categories already created. 

6) Regenerate the taxonomy with the new item-category 

membership data. 

7) If there are items that do not fit into any of the 

categories during step 5, create a new item-set from the 

uncategorized items. Repeat the algorithm (from step 

1) on these uncategorized items. 

The algorithm continues until all the items are categorized. 

Following are the implementation details for each step. 

Step 1. Intentional Category Over-Generation 

HIT primitives: Generate is called m/tk times. 

Output: k suggested categories for each of the m items. 

The first step of Cascade is to show each item to k=5 

people, and have each of them suggest a category for it. We 

present items in groups of t=8. Although multiple items are 

displayed together, a category suggestion are independent – 

workers do not have to name categories that apply to 

multiple items in that HIT. We display multiple items 

together so that workers get more context about the item-set 

as a whole. An additional benefit of showing multiple items 

together is that workers can easily skip items in the HIT. If 

a worker is unable to think of a category, it is better for her 

to skip it than to suggest something awkward, forced, or 

overly-specific. We allowed workers to skip at most 2 of 

every 8 items. 

Step 2. Best Category Suggestion Vote 

HIT primitives: SelectBest is called mk times. 

Output: a set C of best suggested categories (of size ~1.5m) 

In Step 1, k=5 individual workers attempted to categorize 

each item, resulting in up to five suggested categories for 

each item. If an item was skipped in Step1, there will be 

fewer than k=5 suggested categories for it. If any of the 

suggested categories are exact-string duplicates, we remove 

the duplicate, also leaving us with fewer than k=5 suggested 

categories. In this step, we show each worker one item and 

c<=k of its remaining suggested categories. Workers vote 

for the one they think is best or select “None.” Any 

suggested category that gets two or more votes is passed on 

to the next step. We call these the best suggested 

categories, and refer to the set as C. 

Step 3. Adaptive Context Filtering  

HIT primitives: Categorize is called m|C|/sk + mk times 

Output: item-category membership decisions 

Phase 1: We take the best suggested categories and partition 

them into groups of s=7 categories. In a Categorize HIT, we 

present each item with each category group to k=5 workers. 

Workers vote on whether each item fits each category or 

not. Any category that gets at least g = 2 out of five votes 

goes to Phase 2. 

 

Phase 2: In a Categorize HIT, we present each item with all 

the categories that had at least g = 2 votes for fitting in that 

item. There will hopefully be fewer than s=7 categories. If 

there are more, we break the categories into group of s=7. 

We get k=5 workers to vote, and any category that gets at 

least h=4 out of five votes officially fits in that category.  

 

We call this 2-phase process Adaptive Context Filtering. 

We do Adaptive Context Filtering instead of straight 

categorization because we observed that workers vote 

differently depending on the group of categories we present 

to them. We observed that workers are often tempted to 

select at least one category that fits an item, even if none of 

them fit very well. Thus, we treat the categories found in 

Phase 1 as potentially applicable categories. In Phase 2, we 



 

vote on all the potentially applicable categories for an item 

together, as a group. When all the categories are at least 

potentially applicable to the item being shown, the context 

for selecting the categories is better and workers make 

better decisions.  

Step 4. Global Structure Inference 

HIT primitives: none 

Output: a taxonomy with m items 

At this stage, we have set of category labels generated by 

workers. We filtered out some of the category labels, and 

then we categorized all m items into all the remaining 

category labels. Global structure inference uses this 

category membership data to organize the categories into a 

cohesive taxonomy. There are three steps: 

1. Remove insignificant categories. Remove any 

category that has fewer than q=2 items. 

2. Remove duplicate categories. For any two 

categories that share more than p =75% of their 

items, we remove the category with fewer items, 

breaking ties by random choice. 

3. Create nested categories. For any category csm that 

shares more than p=75% of its items with another 

category clg, make csm a subcategory of clg.  

The result of global structure inference is a taxonomy 

where all categories have at least two items, sibling 

categories represent distinct concepts, and subset categories 

are properly nested under their super category. 

Step 5. Categorize Subsequent Item-Set 

HIT primitives: Categorize is called (n-m)|C|/sk times 

Output: updated item-category membership decisions 

Categorize the subsequent item-set on the existing 

categories. 

Step 6. Update Taxonomy  

HIT primitives: none 

Output: a taxonomy with n items 

Rerun Global Structure Inference on the item-category 

membership data from Step 5.  

When to Recurse 

The taxonomy is complete if it sufficiently explains all the 

items. There are two conditions for items that are not 

sufficiently explained:  

1) Items completely uncategorized 

2) Items only in categories with 20 or more items 

If either of these conditions are met, we create a new item-

set of the insufficiently explained items and rerun the 

algorithm from Step 1. As the algorithm reruns and 

generates new categories for these items, we apply the 

original items to the new categories as well (as in Step 5), 

and rerun global structure inference. This produces a 

taxonomy with new categories that explain the previously 

unexplained data.  

It is obvious why we would want to rerun Cascade while 

there are items that are still uncategorized. However, it is 

less obvious that we need to rerun Cascade while there are 

items that are categorized, but only in large categories. We 

call items only in large categories “loosely categorized 

items.” If a worker suggested a category that has 50% of the 

items in it, we want to make sure we find subcategories 

within that category to help users browse the items in it. 

The total cost and running time of Cascade is dependent on 

worker output and how many iterations are needed. An 

example of the cost and running time for a dataset with two 

iterations (n=64 and m =32) is presented in Table 1.  

EXPERIMENTS 

To test the performance of Cascade we run the algorithm on 

three datasets obtained from Quora.com and present the 

taxonomies it produces.  

Datasets  

Quora.com is an online question-and-answer site. Often the 

questions are open-ended, such as “What are your best 

travel hacks?” Hundreds of people respond with valid tips 

and opinions. The responses are all valid, and this is the 

type of domain where a taxonomy would help users get a 

global picture of the data and navigate the responses. We 

picked 3 open-ended questions posted on Quora.com and 

created a taxonomy of items in the replies. The three 

datasets are summarized in Table 2.  

Often, a single response will contain multiple tips in 

bulleted lists, numbered lists, or paragraphs. We manually 

broke these responses into separate items. Previously, we 

 Running time HITs Cost 

Step 1 : Intentional 

Category Over-

Generation 

O(m/tk) 20  $3.20 

Step 2: Best 

Category Suggestion 

Vote 

O(mk)  160 $3.20 

Step 3. Adaptive 

Context Filtering –

Phase 1 

O(m|C|/sk)  1100 $22 

Step 3. Adaptive 

Context Filtering –

Phase 2 

O(mk) 160 $3.20 

Step 5. Categorize 

Subsequent Item-Set 
O( (n-m) |C|/sk) 320 $6.40 

Iteration 1 total  1760 $38 

Iteration 2 total  1760 $38 

Total:  3520 $76 

Table 1. Asymptotic running time of Cascade with n=64, m=32 

and other values at their stated default values. 

 



 

have had the crowd do this breakdown. It is a 

straightforward step but not a part of the Cascade algorithm. 

We randomized the order of the items to avoid any effects 

of our workers seeing items in the order they were 

generated. 

Implementation 

We implemented the primitive HITs in HTML and 

JavaScript, which served as ExternalQuestions on 

Mechanical Turk (MTurk). To dispatch HITs, we used 

TurKit [15]. Python scripts were used to process data 

between steps. 

RESULTS 

editWriting was the smallest item-set with 22 items. In one 

iteration, Cascade produced a taxonomy with 15 categories, 

8 of which were top-level (Figure 6). Global structure 

inference correctly eliminated three redundant categories 

and eliminated insignificant singleton categories, such as 

“reformat” and “write, delete, rewrite.”  

sideProjects is a mid-sized domain with 67 items. In the 

first iteration, 32 items were used to generate a taxonomy 

with 22 categories. Subsequent processing generated no 

new categories, and global structure inference created the 

parent-child relationships as shown in Figure 6.  

travel was the largest item-set with 100 items. In the first 

iteration, 32 items were used to generate a taxonomy with 

only 7 categories. That taxonomy left 66 of the 68 items in 

the subsequent item-set insufficiently categorized. The next 

iteration of Cascade yielded a taxonomy with 51 items, 

fitting all the items (Figure 6). 

EVALUATION 

The goal of Cascade is to produce a taxonomy that provides 

a global understanding of the items. To evaluate that goal, 

we ask and answer three questions: 

1. Are the category labels in the taxonomy as good as 

labels created by experts? 

2. Does the taxonomy have an appropriate 

hierarchical structure?  

3. Is the cost and running time of Cascade 

competitive with hiring experts? 

Good Category Labels 

Taxonomies are inherently subjective. Experts often 

disagree on the categories and level of granularity of the 

taxonomy. However, given a small pool of experts 

independently categorizing a dataset, one would expect 

some of the same categories to appear in multiple experts’ 

taxonomies. In order to compare Cascade’s categories to 

those of experts, we paid four information architects to 

produce taxonomies for our three datasets. 

We performed the following comparison on the 

taxonomies. For each data set, we took the Cascade-

produced taxonomy and the four expert taxonomies. We 

compared two things: 

1. What fraction of the Cascade taxonomy categories 

are also named in at least one expert taxonomy? 

2. What fraction of expert categories are named in 

another expert taxonomy? 

Table 3 contains the results of this comparison. For all three 

datasets, about 50% of Cascade’s categories were also 

named by an expert. For example, in the editWriting 

dataset, four out of four experts named a category closely 

matching Cascade’s category “working off an outline” (two 

experts named it “outlining.”) The authors of this paper 

made the similarity judgments.  

 edit-

Writing 

side-

Projects 

travel Avg. 

% of Cascade 

categories shared by 

at least one expert 

47% 50% 53% 50% 

avg % of expert 

categories shared by 

at least one other 

expert 

32% 70% 64% 55% 

When comparing experts to each other, the average expert 

matching fraction was 32%, 70%, and 64% for the three 

datasets. This averages to 55% of categories matching 

another expert’s categories across these three hierarchies, 

compared to the 50% agreement between Cascade and the 

experts. Comparing these, we note that Cascade had 91% of 

the category agreement the experts did among themselves. 

Mistakes in Hierarchical Structure 

Cascade infers a global understanding of the data from the 

item membership of categories. Cascade removes 

categories that do not have enough items in them, removes 

categories that have a high item overlap, and creates a 

parent-child relationship for categories where one category 

has high item overlap with the other. These inferences are 

based on many small judgments by potentially hundreds of 

different people. We want to know if all those judgments 

come together to form a coherent hierarchy. In particular, 

Abbreviation Topic # items 

editWriting “What are some tips for 

editing your own writing?” 

22 

sideProjects “How can I increase my 

productivity on my side 

projects at the end of the day 

when I’m tired from work?” 

67 

travel “What are your best travel 

hacks?”  

100 

Table 2. Topics and size of item-set 

Table 3. Category name quality comparison 



 

we are looking for three types of mistakes in the Cascade 

hierarchies: 

1. Duplicate categories 

2. Missing Parent-Child Relationships 

3. Incorrect Parent-Child Relationships 

To find the error rate in the hierarchical structure, we divide 

the number of errors by the number of categories in the 

taxonomy. The authors of the paper judged the errors. 

editWriting has the smallest error rate of 13% (Table 4), 

with only 2 errors in 15 categories. Both were duplicate-

categories errors. The categories “tips to edit better” and 

“how to edit better” should have been the same, but 

Cascade left them both in the taxonomy.  

 

edit- 

Writing 

side- 

Projects 

travel:  

iteration1 

travel:  

iteration2 

# categories 15 18 7 51 

Duplicate 

Categories 2 2 0 2 

Missing 

Nesting 0 0 0 5 

incorrect 

Nesting 0 3 1 3 

Correct 

Nesting 5 3 1 23 

total errors 2 5 1 10 

Error rate 13% 27% 14% 20% 

Table 4. Errors in hierarchical structure 

sideProjects had the highest error rate of 27%. This came 

from 3 incorrect parent-child relationships: ‘prioritizing’ 

was the parent of ‘commitment,’ ‘prioritizing’ was the also 

parent of ‘consistency,’ and ‘motivation’ was the parent of 

‘relaxation.’ In our judgment, there is no clear reason that 

prioritizing should be a parent of commitment or 

consistency, or that motivation should be the parent of 

relaxation, and thus it is a mistake in the hierarchical 

structure of the taxonomy. These are errors produced by the 

automated global structure inference step. It nested 

‘commitment’ under ‘prioritizing’ because more than 75% 

of the tips about commitment were also about prioritizing. 

Although these categories share many tips in common, they 

aren’t semantically related: this is a danger of machine 

steps. Perhaps a solution would be to have humans check 

the resulting taxonomy for obvious errors.  

Across the three datasets, the average error rate was 18.5%.  

There were an impressive number of correct parent-child 

relationships, especially in the travel dataset, with 23 

correct parent child relationship and 3 incorrect ones. Many 

air-travel and flight-related categories with complicated 

nesting are expressed with coherent hierarchical structure. 

For example, “air travel tips” is a parent of “flights,” which 

is a parent of “flight layovers.” 

Time and Money 

It is non-trivial to compare the costs associated with 

creating a taxonomy with Cascade versus experts. There is 

a cost-quality-time trade-off. For example, on MTurk, 

under-priced HITs will eventually get done, but will take a 

long time. The most basic comparison we provide is the 

actual costs and times in our run of Cascade and that of our 

recruited experts (Table 5). Cascade took ~6.5 times longer 

to complete the HITs, and was 1-3 times as expensive. 

However, the prices were set fairly arbitrarily. We paid our 

experts $25/hour as a set wage. We paid MTurk workers 

$0.05 per HIT. The average time to complete a HIT was 

21.46 seconds. This equates to $8.39/hour, which is high 

for MTurk, where $3-$4/hour is more typical. Running the 

HITs at this standard marketplace rate would reduce the 

cost of Cascade by a factor of 2, making Cascade’s cost 

competitive with the wage we offered experts. 

The total time spent on all three datasets by the average 

expert was 6 hours 50 minutes, and the total time spent by 

MTurk workers was 43 hours 3 minutes. This is a factor of 

6.3 more time spent by MTurk workers. Seeing as the work 

done by workers is basically replicated k=5 times over, the 

time it would take for a single person to run Cascade on 

himself (k=1) would be competitive with the expert’s time.  

More important than comparing total time spent on the 

algorithm is to think about the minimum amount of time 

that it would take to run the algorithm if sufficiently many 

people work in parallel, as is supported by Cascade. Each 

worker spends on average 21.3 seconds per HIT, and all the 

HITs in any step can be run in parallel. Thus, assuming 

Cascade is run in two iterations of 5 steps each, and the 

maximum time a worker spend on a task was 30 seconds, 

the entire time it would take to run Cascade would be five 

minutes. 

DISCUSSION 

The Cascade algorithm is built on three simple HIT 

primitives: Generate, SelectBest and Categorize. These 

primitives are seen in other crowd workflows: Generate is 

very similar to what the ESP Game [1] and VizWiz [3] ask 

for. SelectBest is similar to the voting steps in the iterative 

improvement workflow used by TurKit [14] and Soylent 

 editWriting sideProjects travel 

Cascade Time 7 h 56 m 16h 13 m 16h 32m 

Avg expert time 1h 23 m 2h 36m 2h 5 m 

Cascade Cost $35.40 $109.45 $224.45 

Average 

Expert Cost $34.87 $65.13 $71.38 

Table 5. Time and cost comparison  



 

[2], and Categorize is explored in Polarity [13] and is a 

common task on MTurk – it was the original reason 

Amazon created MTurk. Because Cascade uses common 

HIT types, workers do not have to spend the overhead of 

reading special instructions or learning a complex task.  

Cascade is essentially bottom-up. We solicit many 

categories based on single items, we filter out bad 

categories and then use global structure inference to create 

a cohesive global picture out of individual Categorize HITs. 

Global structure inference is the reason Cascade works. It is 

what combines small, independent contributions into a 

taxonomy and decides which items we need to rerun 

Cascade on, thus focusing work where it is needed most. 

Figure 6. Taxonomies created by Cascade 



 

Cascade allows items to go in multiple categories. This is 

what allows Cascade to perform global structure inference. 

For example, we know that “LAX security lines” is a child 

of “air travel” because all the tips in “LAX security lines” 

are also in “air travel.” Additionally, we found that tips 

naturally fit multiple generated categories along different 

facets.  For example, the tip “use kayak.com” is both about 

“saving money” and “air travel.” We see no reason to make 

workers pick which category it fits better. 

In Cascade, we compare data to abstractions, namely we 

compare items to a categories. We do not compare items to 

items, or categories to categories. We observed that workers 

were more comfortable with item-to-category comparisons. 

Comparing items to each other involves an assumption 

about the aspect of the item the worker is comparing. The 

item “use kayak.com” is similar to the item “free wiki at 

LAX” because it has to do with saving money and similar 

to the item “I hate Travelocity!” because it involves a 

website. It’s hard to say which it is more similar to. 

Comparing categories to categories involves assuming a 

grounding for the abstraction. (Is the category “air travel” 

the same as “flights”?) However, “free wiki at LAX” is 

clearly about “air travel.”  

FUTURE WORK 

The biggest area of improvement for Cascade is its cost in 

dollars. There are several ways to address this. The first 

way would be to optimize the categorization step. We could 

adopt machine learning approaches, we could optimize 

parameter values of Cascade using decision theory [5] - 

currently Cascade uses 5-fold redundancy, but some 

item/category pairs likely need fewer eyes. We envision an 

adaptive approach. We also plan to apply Cascade to 

manage volunteers in community-sourcing [6, 10]. In this 

context the work would be free and done by a worker with 

domain knowledge. 

CONCLUSION 

This paper presents a crowd algorithm that generates a 

taxonomy over a set of independent data items, such as 

travel items, color blocks (Figure 1), or images (Figure 6). 

We show that using three HIT primitives -- Generate, 

SelectBest, and Categorize -- we can power an algorithm 

where workers do as little as 20 seconds of work. A crucial 

step in the algorithm is to use global structure inference to 

combine small, independent units of work into the final 

taxonomy. Compared to expert information architects, the 

taxonomies Cascade produced were competitive in quality 

and price. Since Cascade is parallelizable and uses small 

units of work, it can make use of large crowds of people 

and complete in minutes rather than hours or days.  
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