

Cascade: Crowdsourcing Taxonomy Creation

Lydia B. Chilton
1
, Greg Little

2
, Darren Edge

3
, Daniel S. Weld

1
, James A. Landay

1

1
University of Washington

2
oDesk Research

3
Microsoft Research Asia

hmslydia@cs.uw.edu, glittle@odesk.com, Darren.Edge@microsoft.com, {weld, landay}@cs.uw.edu

ABSTRACT

Taxonomies are a useful and ubiquitous way of organizing

information. However, creating organizational hierarchies

is difficult because the process requires a global

understanding of the objects to be categorized. Usually one

is created by an individual or a small group of people

working together for hours or even days. Unfortunately, this

centralized approach does not work well for the large,

quickly-changing datasets found on the web. Cascade is an

automated workflow that creates a taxonomy from the

collective efforts of crowd workers who spend as little as 20

seconds each. We evaluate Cascade and show that on three

datasets its quality is 80-90% of that of experts. The cost of

Cascade is competitive with expert information architects,

despite taking six times more human labor. Fortunately, this

labor can be parallelized such that Cascade will run in as

fast as five minutes instead of hours or days.

Author Keywords

Crowdsourcing; human computation; algorithm;

information architecture.

ACM Classification Keywords

H.5.3

INTRODUCTION

Although taxonomies are a useful and ubiquitous way of

organizing information, creating these organizational

hierarchies is difficult because the process requires a global

understanding of the objects to be categorized. Currently,

most taxonomies are created by a small group of experts

who analyze a complete dataset before identifying the

essential distinctions for classification. Unfortunately, this

process is too expensive to apply to many of the user-

contributed datasets, e.g. of photographs or answers to

questions, found on the Internet. Despite recent progress,

completely automated methods, such as Latent Dirichlet

Allocation (LDA) and related AI techniques, produce low-

quality taxonomies. They lack the common sense and

language abilities that come naturally to people.

Figure 1. Example input and output of Cascade. The input is

100 random colors; the output is a taxonomy of the colors.

This paper presents Cascade, a novel method for creating

taxonomies. Cascade is a crowd algorithm that coordinates

human labor with automated techniques. Each worker need

only make a small contribution with no long-term time

commitment or learning curve. None of the workers needs

to have a global perspective of the data or the taxonomy

under construction. Figure 1 contains example results.

Crowdsourcing has become a popular way to solve

problems that are too hard for today’s AI techniques, such

as translation, linguistic tagging, and visual interpretation.

Most successful crowdsourcing systems operate on

problems that naturally break into small units of labor, e.g.,

labeling millions of independent photographs. However,

taxonomy creation is much harder to decompose, because it

requires a global perspective. Cascade is a unique, iterative

workflow that emergently generates this global view from

the distributed actions of hundreds of people working on

small, local problems.

In this paper we first describe the lessons learned from

early, failed attempts to design a crowd workflow for

building taxonomies. We next present the Cascade

algorithm and the three human intelligence task (HIT)

primitives used to implement it. We demonstrate the results

of running Cascade on five representative data sets. We

evaluate Cascade in three ways: we compare its time and

cost to that of four expert information architects who were

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright © 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

mailto:Darren.Edge@microsoft.com
mailto:landay%7D@cs.uw.edu

paid to taxonomize the same data, we count the number of

mistakes in Cascade’s output and interpret it as an error

rate, and we compare the coverage of the categories in

Cascade to those of the expert-made taxonomies.

This paper makes the following contributions:

1. We present Cascade: a novel crowd algorithm that

produces a global understanding of large datasets.

Cascade is an online algorithm that can update the

taxonomy as new data arrives. The tasks given to

workers are quick and parallelizable.

2. We propose three HIT primitives, simple task

interfaces, used as building blocks by Cascade and

useful for future crowd algorithms.

3. We introduce Global Structure Inference as a way to

combine independently-generated judgments into a

cohesive taxonomy.

4. We evaluate Cascade on three datasets showing that

Cascade can perform close to expert level agreement

(80-90% of expert performance) for a competitive cost.

RELATED WORK

Crowdsourcing complex tasks

The idea of using small units of human labor in an

algorithm was introduced by TurKit [15] and demonstrated

on simple workflows such as iteratively improving image

descriptions. More recent work has demonstrated more

complex crowd workflows. CrowdForge [10] uses a

MapReduce-like framework for writing articles by mapping

separate workers to different aspects of the article (e.g., the

outline, the facts, the quotes, etc.) and then composing the

results in a Reduce step. Turk-o-matic [12] asks workers to

break down the task and then creates subtasks for more

workers to do. Mobi [20] solves problems, like travel

planning, that have global constraints met by workers

creating to-do items for other workers to resolve.

Legion:Scribe [16] breaks down audio transcription tasks

into small chunks and uses sequence alignment to combine

results in real-time. The challenge in designing a crowd

workflow is to break down a task into pieces that can be

done independently and then combined. Cascade solves a

particularly hard version of this problem: when data must

be combined to create a global understanding.

Clustering and Taxonomy Creation

Machine learning algorithms, such as LDA [4], can

automatically cluster data. While these automated

approaches are fast and cheap (compared with human

labor), they have several limitations. First, they require a

human to explicitly specify a set of features for each media

type, such as the bag-of-words representation for text or

computer-vision features for images. Second, their

performance is bad; lacking common sense, LDA often

creates incoherent clusters. Finally, they have trouble

naming the resulting categories; incapable of creating an

overarching abstraction, they can only identify a common

feature (i.e., a word or phrase in the case of text).

Several machine-learning techniques have been refitted to

use human inputs. CrowdKernel [18] learns an SVM kernel

from human pairwise comparisons. Matrix completion has

been used to do clustering with spare pairwise labels [19].

Additional, discriminative labels [17] can be found for

image datasets using a mixture of probabilistic principal

component analyzers (MPPCA). Crowdclustering [6] uses

human-created clusters of a subset of the data and

Variational Bayes method to create unlabeled clusters of

data and subclusters. These are novel and intriguing ways to

combine human and machine effort to complete labeling,

and find clusters in data. In contrast, Cascade is an end-to-

end system that requires only quick, easy tasks for workers

and produces human readable category labels on a

taxonomy organizing all the data.

There are several distributed human taxonomy creation

efforts. First, Wikipedia maintains a taxonomy of all its

pages. The work is coordinated though talk pages, not

through a crowd algorithm. Although this is a success in

taxonomy creation, it requires a large time commitment

overhead and thus it is not easy for individuals to contribute

in small increments. Second, Card Sorting [8] is a technique

for members of a group to contribute to an organization of

their data. Participants create labeled clusters for all data

and the similarities between participants’ clusters tells the

moderator how people mentally cluster the space. Card

sorting is an investigative technique. It is not designed to

produce a usable categorization. Third, folksonomies are

community-created labeled clusters of data. WordNet -- a

database of human-contributed semantic knowledge of links

between works -- has been used to turn folksonomies into

hierarchies of concepts [13]. It seems that human common

sense and linguist ability are currently necessary for

taxonomy creation. Cascade uses these human abilities and

breaks down the tasks into short, easy units of labor.

INITIAL APPROACHES

The Cascade algorithm evolved from a sequence of initial

prototypes. Our experience resulted in several surprising

observations that informed our ultimate design of a

crowdsourced taxonomy workflow.

Iterative Improvement

Iterative improvement is a general crowdsourcing pattern

first described in TurKit [15]. Iterative improvement has

proven successful at using multiple workers to build on and

improve each other’s image descriptions, and to collectively

decipher blurry text or bad handwriting.

CrowdFlower and Karampinas, et al. [9] have applied

iterative workflows to clustering. Although it is possible for

this method to work, our experiences were largely negative.

We applied iterative improvement to taxonomy creation by

giving workers a list of items and an editable hierarchy

interface. Workers were asked to improve the taxonomy by

adding, deleting, or moving categories or by placing items

in the taxonomy (Figure 2). We observed that the iterative

improvement interface suffered from two main problems:

1. The taxonomy grows quickly, making the tasks

more time consuming and overwhelming as time

goes on. Creating the first category and placing a few

items in it is quick and easy. However, when 50

categories must be read in order to figure out whether

or not an item belongs in any of the existing categories,

the work becomes so challenging that single workers

have a hard time making contributions in a short time

frame.

2. The task had many options for how to contribute

(add categories, place items, merge categories, etc.)

and workers had trouble selecting tasks. Although

giving workers options for how to contribute made the

task very flexible, it also meant workers had to decide

what was important to do next. It was not always

obvious what meaningful work should be done or how

long it would take. A similar result was found in the

Mobi system [20].

We concluded that we needed to break down the

taxonomization task into manageable units of work and

have an algorithm coordinate the work.

Category Comparison

Similar to the ESP Game [1], we found that workers are

eager and willing to suggest category labels for data. The

problem is deciding which labels are useful. The final

taxonomy should have a non-redundant set of categories

with parent-child relationships. We tried many approaches

for directly soliciting these relationships. Figure 3 shows

one of our prototypes: a matching game where workers can

select pairs of related category labels.

We found that workers were wildly inconsistent in the

relationships they saw in the category labels. For example,

some thought “air travel” was the same as “flying,” while

others thought it was a superset. Some thought “packing”

was the same as “what to bring”, while others thought

“what to bring” was a subset of “advice” but “packing” was

not.

We concluded that it was a mistake to ask workers to

compare abstractions with abstractions. The differing

assumptions people make about abstractions are too hard to

write down, and they render individual worker judgments

incomparable. Instead, judgments should be made relating

actual abstractions to data: in this case, relating categories

to items.

Clustering

In order to elicit both clusters and cluster names from

workers, we prototyped an interface that presented workers

with a small number of items (8-10) and asked them to

suggest categories that fit at least two items (Figure 4).

Although workers found the task easy and intuitive, the

quality of the categories was not as good as when we

generated category suggestions for single items. Restricting

workers to naming categories that satisfied multiple items

encouraged workers to name overly broad categories. They

often gave categories names such as “good tips” or

“advice” because they would fit multiple of the 8 items

displayed. However, these are not useful category names.

Moreover, what workers wanted to do instead was name

categories they felt were good even if they only fit one

item. Workers know these categories are good because of

their knowledge of the world. For example, workers can use

their common sense and intuition about travel advice and

infer that “TSA Security” might fit multiple items even

though it only fits one item in the 8-item subset.

We decided that the clusters workers found in a small

subset of the data were often unnatural and forced, and that

it was better to allow workers to suggest categories that fit

one item very well rather than fit multiple items more

loosely.

THE CASCADE ALGORITHM

We now discuss Cascade’s inputs and outputs, the

parameters governing its execution, its three HIT

primitives, and the flow of the algorithm itself.

Inputs

Cascade takes two inputs: a set of items to be categorized

and a descriptive phrase (the topic) identifying these items.

An example of inputs to Cascade are 100 responses to the

question “What is your best travel advice?” with the topic

“Travel Advice.”

Figure 2. Early prototype interface: iterative improvement

Figure 3. Early prototype interface: category comparison

In theory, Cascade can handle item-sets of arbitrary size,

but the algorithm’s expense grows super-linearly in the

number of items. To date we’ve tested on five datasets,

ranging in size from 22 to 200 items. In the future, we plan

to use co-occurrence statistics to optimize the cost on large

inputs.

Output

The output of Cascade is a taxonomy consisting of labeled

categories and associated items. More precisely, Cascade

generates a tree whose nodes are labeled with a textual

string, called a category; the tree’s root is labeled with the

topic input, and an ‘other’ node is added as a child of the

root if necessary. Items may appear in multiple categories

in the taxonomy; for example, a travel tip about flight deals

may appear in “air travel” and “saving money.”

Parameters

Cascade’s behavior is guided by a set of parameters.

Default values which were used in our experiments are

noted where applicable.

 Let n be the number of items input.

 Let mn be the number of items considered in

Cascade’s initial item-set, default = 32.

 Let n’ = n-m denote the number of items in the

subsequent item-set.

 Let k be the replication factor (the number of workers

who may be asked to repeat a step), default = 5.

 Let g be the first voting threshold, default = 2.

 Let h be the final voting threshold, default = 4.

 Let t be the maximum number of items shown to a

worker at once, default = 8.

 Let c be the maximum number of categories shown to a

worker who is selecting the best category for an item,

default = k = 5.

 Let s be the maximum number of categories shown to a

worker who is judging relevance of categories to an

item, default = 7.

 Let q be the minimum size of a category, default = 2.

 Let p be the percentage of items two categories must

have in common in order to be deemed similar, default

= 75%.

By changing the values of these parameters, the designer

can trade off cost and running time against taxonomy

quality. Decreasing k or increasing t, c, and s will lower the

cost of execution, presuming workers will still accept the

task. Finding the optimal values for these parameters is the

subject of future research.

Primitive Worker Tasks

Before describing Cascade’s overall control flow, we first

present the three types of HITs that are shown to workers.

The order in which these tasks are generated depends on the

characteristics of the input items and can be complex, but

the primitives are individually quite simple. Here we

present them abstractly; Figure 5 displays concrete

instances of these tasks.

 Generate: (t items) → t categories

The Generate HIT presents a worker with t items and

asks her to generate one suggested category for each

item. The categories do not need to be distinct, but they

often are. She may elect not to name a category for

some items.

 SelectBest: (1 item, c categories) → 1 category

The SelectBest HIT shows a worker a single item and c

distinct category tags and asks her to pick the single

best tag.

 Categorize: (1 item, s categories) → bit vector of size s

The Categorize HIT presents a worker with a single

item and s categories and asks the worker to vote

whether the item fits each of the categories.

Algorithm Steps

Described at the highest level, the Cascade algorithm takes

every item and solicits multiple suggested categories for it

from different workers. A new set of workers then votes on

the best suggested category for each item. Cascade then

asks workers to consider every item with all of these ‘best’

categories and judge relevance. Cascade next uses this data

to eliminate duplicate and empty categories and to nest

related categories, creating a hierarchy.

We first present an outline of the steps of Cascade and then

describe the steps in full detail.

0) Select m items to be the initial item-set. All other items

belong to the subsequent item-set.

1) Show each of the m items to k workers, who each

generate a category suggestion for each item.

Figure 4. Early prototype interface: item clustering

Figure 5. HIT Primitives: Generate, SelectBest, Categorize

2) Show each of the m items and the category suggestions

for it. Ask k workers to select the best category for

each item by voting. Filter out suggested categories

with insufficient votes.

3) For all items, for all best suggested categories, ask k

workers to vote whether the category applies to the

item or not. This categorizes the items.

4) Using the item-category membership information, run

a fully-automated process, called global structure

inference, to produce a taxonomy from the categories.

5) If there are items in the subsequent item-set, ask k

workers to vote on whether the items fit into the

categories already created.

6) Regenerate the taxonomy with the new item-category

membership data.

7) If there are items that do not fit into any of the

categories during step 5, create a new item-set from the

uncategorized items. Repeat the algorithm (from step

1) on these uncategorized items.

The algorithm continues until all the items are categorized.

Following are the implementation details for each step.

Step 1. Intentional Category Over-Generation

HIT primitives: Generate is called m/tk times.

Output: k suggested categories for each of the m items.

The first step of Cascade is to show each item to k=5

people, and have each of them suggest a category for it. We

present items in groups of t=8. Although multiple items are

displayed together, a category suggestion are independent –

workers do not have to name categories that apply to

multiple items in that HIT. We display multiple items

together so that workers get more context about the item-set

as a whole. An additional benefit of showing multiple items

together is that workers can easily skip items in the HIT. If

a worker is unable to think of a category, it is better for her

to skip it than to suggest something awkward, forced, or

overly-specific. We allowed workers to skip at most 2 of

every 8 items.

Step 2. Best Category Suggestion Vote

HIT primitives: SelectBest is called mk times.

Output: a set C of best suggested categories (of size ~1.5m)

In Step 1, k=5 individual workers attempted to categorize

each item, resulting in up to five suggested categories for

each item. If an item was skipped in Step1, there will be

fewer than k=5 suggested categories for it. If any of the

suggested categories are exact-string duplicates, we remove

the duplicate, also leaving us with fewer than k=5 suggested

categories. In this step, we show each worker one item and

c<=k of its remaining suggested categories. Workers vote

for the one they think is best or select “None.” Any

suggested category that gets two or more votes is passed on

to the next step. We call these the best suggested

categories, and refer to the set as C.

Step 3. Adaptive Context Filtering

HIT primitives: Categorize is called m|C|/sk + mk times

Output: item-category membership decisions

Phase 1: We take the best suggested categories and partition

them into groups of s=7 categories. In a Categorize HIT, we

present each item with each category group to k=5 workers.

Workers vote on whether each item fits each category or

not. Any category that gets at least g = 2 out of five votes

goes to Phase 2.

Phase 2: In a Categorize HIT, we present each item with all

the categories that had at least g = 2 votes for fitting in that

item. There will hopefully be fewer than s=7 categories. If

there are more, we break the categories into group of s=7.

We get k=5 workers to vote, and any category that gets at

least h=4 out of five votes officially fits in that category.

We call this 2-phase process Adaptive Context Filtering.

We do Adaptive Context Filtering instead of straight

categorization because we observed that workers vote

differently depending on the group of categories we present

to them. We observed that workers are often tempted to

select at least one category that fits an item, even if none of

them fit very well. Thus, we treat the categories found in

Phase 1 as potentially applicable categories. In Phase 2, we

vote on all the potentially applicable categories for an item

together, as a group. When all the categories are at least

potentially applicable to the item being shown, the context

for selecting the categories is better and workers make

better decisions.

Step 4. Global Structure Inference

HIT primitives: none

Output: a taxonomy with m items

At this stage, we have set of category labels generated by

workers. We filtered out some of the category labels, and

then we categorized all m items into all the remaining

category labels. Global structure inference uses this

category membership data to organize the categories into a

cohesive taxonomy. There are three steps:

1. Remove insignificant categories. Remove any

category that has fewer than q=2 items.

2. Remove duplicate categories. For any two

categories that share more than p =75% of their

items, we remove the category with fewer items,

breaking ties by random choice.

3. Create nested categories. For any category csm that

shares more than p=75% of its items with another

category clg, make csm a subcategory of clg.

The result of global structure inference is a taxonomy

where all categories have at least two items, sibling

categories represent distinct concepts, and subset categories

are properly nested under their super category.

Step 5. Categorize Subsequent Item-Set

HIT primitives: Categorize is called (n-m)|C|/sk times

Output: updated item-category membership decisions

Categorize the subsequent item-set on the existing

categories.

Step 6. Update Taxonomy

HIT primitives: none

Output: a taxonomy with n items

Rerun Global Structure Inference on the item-category

membership data from Step 5.

When to Recurse

The taxonomy is complete if it sufficiently explains all the

items. There are two conditions for items that are not

sufficiently explained:

1) Items completely uncategorized

2) Items only in categories with 20 or more items

If either of these conditions are met, we create a new item-

set of the insufficiently explained items and rerun the

algorithm from Step 1. As the algorithm reruns and

generates new categories for these items, we apply the

original items to the new categories as well (as in Step 5),

and rerun global structure inference. This produces a

taxonomy with new categories that explain the previously

unexplained data.

It is obvious why we would want to rerun Cascade while

there are items that are still uncategorized. However, it is

less obvious that we need to rerun Cascade while there are

items that are categorized, but only in large categories. We

call items only in large categories “loosely categorized

items.” If a worker suggested a category that has 50% of the

items in it, we want to make sure we find subcategories

within that category to help users browse the items in it.

The total cost and running time of Cascade is dependent on

worker output and how many iterations are needed. An

example of the cost and running time for a dataset with two

iterations (n=64 and m =32) is presented in Table 1.

EXPERIMENTS

To test the performance of Cascade we run the algorithm on

three datasets obtained from Quora.com and present the

taxonomies it produces.

Datasets

Quora.com is an online question-and-answer site. Often the

questions are open-ended, such as “What are your best

travel hacks?” Hundreds of people respond with valid tips

and opinions. The responses are all valid, and this is the

type of domain where a taxonomy would help users get a

global picture of the data and navigate the responses. We

picked 3 open-ended questions posted on Quora.com and

created a taxonomy of items in the replies. The three

datasets are summarized in Table 2.

Often, a single response will contain multiple tips in

bulleted lists, numbered lists, or paragraphs. We manually

broke these responses into separate items. Previously, we

 Running time HITs Cost

Step 1 : Intentional

Category Over-

Generation

O(m/tk) 20 $3.20

Step 2: Best

Category Suggestion

Vote

O(mk) 160 $3.20

Step 3. Adaptive

Context Filtering –

Phase 1

O(m|C|/sk) 1100 $22

Step 3. Adaptive

Context Filtering –

Phase 2

O(mk) 160 $3.20

Step 5. Categorize

Subsequent Item-Set
O((n-m) |C|/sk) 320 $6.40

Iteration 1 total 1760 $38

Iteration 2 total 1760 $38

Total: 3520 $76

Table 1. Asymptotic running time of Cascade with n=64, m=32

and other values at their stated default values.

have had the crowd do this breakdown. It is a

straightforward step but not a part of the Cascade algorithm.

We randomized the order of the items to avoid any effects

of our workers seeing items in the order they were

generated.

Implementation

We implemented the primitive HITs in HTML and

JavaScript, which served as ExternalQuestions on

Mechanical Turk (MTurk). To dispatch HITs, we used

TurKit [15]. Python scripts were used to process data

between steps.

RESULTS

editWriting was the smallest item-set with 22 items. In one

iteration, Cascade produced a taxonomy with 15 categories,

8 of which were top-level (Figure 6). Global structure

inference correctly eliminated three redundant categories

and eliminated insignificant singleton categories, such as

“reformat” and “write, delete, rewrite.”

sideProjects is a mid-sized domain with 67 items. In the

first iteration, 32 items were used to generate a taxonomy

with 22 categories. Subsequent processing generated no

new categories, and global structure inference created the

parent-child relationships as shown in Figure 6.

travel was the largest item-set with 100 items. In the first

iteration, 32 items were used to generate a taxonomy with

only 7 categories. That taxonomy left 66 of the 68 items in

the subsequent item-set insufficiently categorized. The next

iteration of Cascade yielded a taxonomy with 51 items,

fitting all the items (Figure 6).

EVALUATION

The goal of Cascade is to produce a taxonomy that provides

a global understanding of the items. To evaluate that goal,

we ask and answer three questions:

1. Are the category labels in the taxonomy as good as

labels created by experts?

2. Does the taxonomy have an appropriate

hierarchical structure?

3. Is the cost and running time of Cascade

competitive with hiring experts?

Good Category Labels

Taxonomies are inherently subjective. Experts often

disagree on the categories and level of granularity of the

taxonomy. However, given a small pool of experts

independently categorizing a dataset, one would expect

some of the same categories to appear in multiple experts’

taxonomies. In order to compare Cascade’s categories to

those of experts, we paid four information architects to

produce taxonomies for our three datasets.

We performed the following comparison on the

taxonomies. For each data set, we took the Cascade-

produced taxonomy and the four expert taxonomies. We

compared two things:

1. What fraction of the Cascade taxonomy categories

are also named in at least one expert taxonomy?

2. What fraction of expert categories are named in

another expert taxonomy?

Table 3 contains the results of this comparison. For all three

datasets, about 50% of Cascade’s categories were also

named by an expert. For example, in the editWriting

dataset, four out of four experts named a category closely

matching Cascade’s category “working off an outline” (two

experts named it “outlining.”) The authors of this paper

made the similarity judgments.

 edit-

Writing

side-

Projects

travel Avg.

% of Cascade

categories shared by

at least one expert

47% 50% 53% 50%

avg % of expert

categories shared by

at least one other

expert

32% 70% 64% 55%

When comparing experts to each other, the average expert

matching fraction was 32%, 70%, and 64% for the three

datasets. This averages to 55% of categories matching

another expert’s categories across these three hierarchies,

compared to the 50% agreement between Cascade and the

experts. Comparing these, we note that Cascade had 91% of

the category agreement the experts did among themselves.

Mistakes in Hierarchical Structure

Cascade infers a global understanding of the data from the

item membership of categories. Cascade removes

categories that do not have enough items in them, removes

categories that have a high item overlap, and creates a

parent-child relationship for categories where one category

has high item overlap with the other. These inferences are

based on many small judgments by potentially hundreds of

different people. We want to know if all those judgments

come together to form a coherent hierarchy. In particular,

Abbreviation Topic # items

editWriting “What are some tips for

editing your own writing?”

22

sideProjects “How can I increase my

productivity on my side

projects at the end of the day

when I’m tired from work?”

67

travel “What are your best travel

hacks?”

100

Table 2. Topics and size of item-set

Table 3. Category name quality comparison

we are looking for three types of mistakes in the Cascade

hierarchies:

1. Duplicate categories

2. Missing Parent-Child Relationships

3. Incorrect Parent-Child Relationships

To find the error rate in the hierarchical structure, we divide

the number of errors by the number of categories in the

taxonomy. The authors of the paper judged the errors.

editWriting has the smallest error rate of 13% (Table 4),

with only 2 errors in 15 categories. Both were duplicate-

categories errors. The categories “tips to edit better” and

“how to edit better” should have been the same, but

Cascade left them both in the taxonomy.

edit-

Writing

side-

Projects

travel:

iteration1

travel:

iteration2

categories 15 18 7 51

Duplicate

Categories 2 2 0 2

Missing

Nesting 0 0 0 5

incorrect

Nesting 0 3 1 3

Correct

Nesting 5 3 1 23

total errors 2 5 1 10

Error rate 13% 27% 14% 20%

Table 4. Errors in hierarchical structure

sideProjects had the highest error rate of 27%. This came

from 3 incorrect parent-child relationships: ‘prioritizing’

was the parent of ‘commitment,’ ‘prioritizing’ was the also

parent of ‘consistency,’ and ‘motivation’ was the parent of

‘relaxation.’ In our judgment, there is no clear reason that

prioritizing should be a parent of commitment or

consistency, or that motivation should be the parent of

relaxation, and thus it is a mistake in the hierarchical

structure of the taxonomy. These are errors produced by the

automated global structure inference step. It nested

‘commitment’ under ‘prioritizing’ because more than 75%

of the tips about commitment were also about prioritizing.

Although these categories share many tips in common, they

aren’t semantically related: this is a danger of machine

steps. Perhaps a solution would be to have humans check

the resulting taxonomy for obvious errors.

Across the three datasets, the average error rate was 18.5%.

There were an impressive number of correct parent-child

relationships, especially in the travel dataset, with 23

correct parent child relationship and 3 incorrect ones. Many

air-travel and flight-related categories with complicated

nesting are expressed with coherent hierarchical structure.

For example, “air travel tips” is a parent of “flights,” which

is a parent of “flight layovers.”

Time and Money

It is non-trivial to compare the costs associated with

creating a taxonomy with Cascade versus experts. There is

a cost-quality-time trade-off. For example, on MTurk,

under-priced HITs will eventually get done, but will take a

long time. The most basic comparison we provide is the

actual costs and times in our run of Cascade and that of our

recruited experts (Table 5). Cascade took ~6.5 times longer

to complete the HITs, and was 1-3 times as expensive.

However, the prices were set fairly arbitrarily. We paid our

experts $25/hour as a set wage. We paid MTurk workers

$0.05 per HIT. The average time to complete a HIT was

21.46 seconds. This equates to $8.39/hour, which is high

for MTurk, where $3-$4/hour is more typical. Running the

HITs at this standard marketplace rate would reduce the

cost of Cascade by a factor of 2, making Cascade’s cost

competitive with the wage we offered experts.

The total time spent on all three datasets by the average

expert was 6 hours 50 minutes, and the total time spent by

MTurk workers was 43 hours 3 minutes. This is a factor of

6.3 more time spent by MTurk workers. Seeing as the work

done by workers is basically replicated k=5 times over, the

time it would take for a single person to run Cascade on

himself (k=1) would be competitive with the expert’s time.

More important than comparing total time spent on the

algorithm is to think about the minimum amount of time

that it would take to run the algorithm if sufficiently many

people work in parallel, as is supported by Cascade. Each

worker spends on average 21.3 seconds per HIT, and all the

HITs in any step can be run in parallel. Thus, assuming

Cascade is run in two iterations of 5 steps each, and the

maximum time a worker spend on a task was 30 seconds,

the entire time it would take to run Cascade would be five

minutes.

DISCUSSION

The Cascade algorithm is built on three simple HIT

primitives: Generate, SelectBest and Categorize. These

primitives are seen in other crowd workflows: Generate is

very similar to what the ESP Game [1] and VizWiz [3] ask

for. SelectBest is similar to the voting steps in the iterative

improvement workflow used by TurKit [14] and Soylent

 editWriting sideProjects travel

Cascade Time 7 h 56 m 16h 13 m 16h 32m

Avg expert time 1h 23 m 2h 36m 2h 5 m

Cascade Cost $35.40 $109.45 $224.45

Average

Expert Cost $34.87 $65.13 $71.38

Table 5. Time and cost comparison

[2], and Categorize is explored in Polarity [13] and is a

common task on MTurk – it was the original reason

Amazon created MTurk. Because Cascade uses common

HIT types, workers do not have to spend the overhead of

reading special instructions or learning a complex task.

Cascade is essentially bottom-up. We solicit many

categories based on single items, we filter out bad

categories and then use global structure inference to create

a cohesive global picture out of individual Categorize HITs.

Global structure inference is the reason Cascade works. It is

what combines small, independent contributions into a

taxonomy and decides which items we need to rerun

Cascade on, thus focusing work where it is needed most.

Figure 6. Taxonomies created by Cascade

Cascade allows items to go in multiple categories. This is

what allows Cascade to perform global structure inference.

For example, we know that “LAX security lines” is a child

of “air travel” because all the tips in “LAX security lines”

are also in “air travel.” Additionally, we found that tips

naturally fit multiple generated categories along different

facets. For example, the tip “use kayak.com” is both about

“saving money” and “air travel.” We see no reason to make

workers pick which category it fits better.

In Cascade, we compare data to abstractions, namely we

compare items to a categories. We do not compare items to

items, or categories to categories. We observed that workers

were more comfortable with item-to-category comparisons.

Comparing items to each other involves an assumption

about the aspect of the item the worker is comparing. The

item “use kayak.com” is similar to the item “free wiki at

LAX” because it has to do with saving money and similar

to the item “I hate Travelocity!” because it involves a

website. It’s hard to say which it is more similar to.

Comparing categories to categories involves assuming a

grounding for the abstraction. (Is the category “air travel”

the same as “flights”?) However, “free wiki at LAX” is

clearly about “air travel.”

FUTURE WORK

The biggest area of improvement for Cascade is its cost in

dollars. There are several ways to address this. The first

way would be to optimize the categorization step. We could

adopt machine learning approaches, we could optimize

parameter values of Cascade using decision theory [5] -

currently Cascade uses 5-fold redundancy, but some

item/category pairs likely need fewer eyes. We envision an

adaptive approach. We also plan to apply Cascade to

manage volunteers in community-sourcing [6, 10]. In this

context the work would be free and done by a worker with

domain knowledge.

CONCLUSION

This paper presents a crowd algorithm that generates a

taxonomy over a set of independent data items, such as

travel items, color blocks (Figure 1), or images (Figure 6).

We show that using three HIT primitives -- Generate,

SelectBest, and Categorize -- we can power an algorithm

where workers do as little as 20 seconds of work. A crucial

step in the algorithm is to use global structure inference to

combine small, independent units of work into the final

taxonomy. Compared to expert information architects, the

taxonomies Cascade produced were competitive in quality

and price. Since Cascade is parallelizable and uses small

units of work, it can make use of large crowds of people

and complete in minutes rather than hours or days.

ACKNOWLEDGEMENTS

Big thanks to Haoqi Zhang, Rob Miller, David Molnar,

Jonathan Bragg. This work was supported by the WRF / TJ

Cable Professorship, Office of Naval Research grant

N00014-12-1-0211, and National Science Foundation grant

IIS 1016713.

REFERENCES
1. von Ahn, L., Dabbish, L. Labeling Images with a Computer

Game. CHI 2004

2. Bernstein, M., et al.. Soylent: A Word Processor with a Crowd

Inside.UIST 2010.

3. Bigham, J. P., et al.. VizWiz: Nearly Real-time Answers to

Visual Questions. UIST 2010.

4. Blei, D. M., Ng, A. Y., Jordan, M. I. Latent dirichlet

allocation. The Journal of Machine Learning Research.

Volume 3, 3/1/2003. Pages 993-1022.

5. Dai, P., Mausam, Weld, D.S. Decision-Theoretic Control of

Crowd-Sourced Workflows. AAAI 2010.

6. Gomes, R., Welinder, P., Krause, A., Perona, P.,

"Crowdclustering", NIPS 2011.

7. Heimerl, K., Gawalt B., Chen, K., Parikh, T., Hartmann, B..

Communitysourcing: Engaging Local Crowds to Perform

Expert Work Via Physical Kiosks. CHI 2012.

8. Hudson, W. (2012): Card Sorting. In: Soegaard, Mads

and Dam, Rikke Friis (eds.). "Encyclopedia of Human-

Computer Interaction". Aarhus, Denmark.

9. Karampinas,D. Triantafillou. P. Crowdsourcing Taxonomies,

12th Extended Semantic Web Conference. ESWC 2012.

10. Kittur, A., Smus, B., Khamkar, S., Kraut, R. E. CrowdForge:

crowdsourcing complex work. UIST 2011.

11. Kriplean, T., Morgan, J. T., Freelon, D., Borning, A., Bennett,

L. Supporting Reflective Public Thought with ConsiderIt.

CSCW 2012.

12. Kulkarni, A., Can, M., Hartmann, B. Collaboratively

crowdsourcing workflows with turkomatic. CSCW 2012.

13. Laniado, D., Eynard, D., Colombetti, M. Using WordNet to

turn a folksonomy into a hierarchy of concepts. SWAP 2007.

14. Law, E., Settles, B., & Snook, A.. Human computation for

attribute and attribute value acquisition. CVPR Workshop on

Fine-Grained Visual Categorization 2011.

15. Little, G., Chilton, L. B., Goldman, M., Miller, R. C. TurKit:

human computation algorithms on mechanical turk. UIST

2010.

16. Lasecki, W. S. et al . Real-Time Captioning by Groups of

Non-Experts. UIST 2012.

17. Parikh, D., & Grauman, K. Interactively building a

discriminative vocabulary of nameable attributes. CVPR 2011.

18. Tamuz, O., Liu, C., Belongie, S., Shamir, O., and Kalai, A.T.

Adaptively learning the Crowd Kernel. ICML 2011.

19. Yi, J., Rong, J., Jain, A., and Jain, S. Crowdclustering with

Sparse Pairwise Labels: A Matrix Completion Approach.

HCOMP 2012.

20. Zhang, H., Law, E., Miller, R., Gajos, K., Parkes, D., Horvitz,

E. Human computation tasks with global constraints. CHI

2012

http://people.csail.mit.edu/msbernst/
http://groups.csail.mit.edu/uid/other-pubs/soylent.pdf
http://groups.csail.mit.edu/uid/other-pubs/soylent.pdf
http://hci.cs.rochester.edu/pubs/pdfs/vizwiz.pdf
http://hci.cs.rochester.edu/pubs/pdfs/vizwiz.pdf
http://www.interaction-design.org/references/authors/william_hudson.html
http://www.interaction-design.org/references/authors/mads_soegaard.html
http://www.interaction-design.org/references/authors/rikke_friis_dam.html

