
Machine Learning, 41, 315–343, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Cascade Generalization
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Abstract. Using multiple classifiers for increasing learning accuracy is an active research area. In this paper we
present two related methods for merging classifiers. The first method, Cascade Generalization, couples classifiers
loosely. It belongs to the family of stacking algorithms. The basic idea of Cascade Generalization is to use
sequentially the set of classifiers, at each step performing an extension of the original data by the insertion of
new attributes. The new attributes are derived from the probability class distribution given by a base classifier.
This constructive step extends the representational language for the high level classifiers, relaxing their bias. The
second method exploits tight coupling of classifiers, by applying Cascade Generalization locally. At each iteration
of adivide and conqueralgorithm, a reconstruction of the instance space occurs by the addition of new attributes.
Each new attribute represents the probability that an example belongs to a class given by a base classifier. We have
implemented threeLocal Generalization Algorithms. The first merges a linear discriminant with a decision tree,
the second merges a naive Bayes with a decision tree, and the third merges a linear discriminant and a naive Bayes
with a decision tree. All the algorithms show an increase of performance, when compared with the corresponding
single models.Cascadealso outperforms other methods for combining classifiers, likeStacked Generalization,
and competes well againstBoostingat statistically significant confidence levels.
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1. Introduction

The ability of a chosen classification algorithm to induce a good generalization depends
on the appropriateness of its representation language to express generalizations of the ex-
amples for the given task. The representation language for a standard decision tree is the
DNF formalism that splits the instance space by axis-parallel hyper-planes, while the rep-
resentation language for a linear discriminant function is a set of linear functions that split
the instance space by oblique hyper planes. Since different learning algorithms employ
different knowledge representations and search heuristics, different search spaces are ex-
plored and diverse results are obtained. In statistics, Henery (1997) refers torescalingas
a method used when some classes are over-predicted leading to a bias. Rescaling consists
of applying the algorithms in sequence, the output of an algorithm being used as input to
another algorithm. The aim would be to use the estimated probabilitiesWi = P(Ci | X)
derived from a learning algorithm, as input to a second learning algorithm the purpose of
which is to produce an unbiased estimateQ(Ci |W) of the conditional probability for class
Ci .

∗http://www.ncc.up.pt/liacc/ML.
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The problem of finding the appropriate bias for a given task is an active research area.
We can consider two main lines of research: on the one hand, methods that try to se-
lect the most appropriate algorithm for the given task, for instance Schaffer’s selection
by cross validation (Schaffer, 1993), and on the other hand, methods that combine pre-
dictions of different algorithms, for instance Stacked Generalization (Wolpert, 1992). The
work presented here near follows the second line of research. Instead of looking for meth-
ods that fit the data using a single representation language, we present a family of algo-
rithms, under the generic name ofCascade Generalization, whose search space contains
models that use different representation languages. Cascade generalization performs an
iterative composition of classifiers. At each iteration a classifier is generated. The input
space is extended by the addition of new attributes. These are in the form of probability
class distributions which are obtained, for each example, by the generated classifier. The
language of the final classifier is the language used by the high level generalizer. This lan-
guage uses terms that are expressions from the language of low level classifiers. In this
sense, Cascade Generalization generates a unified theory from the base theories generated
earlier.

Used in this form, Cascade Generalization performs a loose coupling of classifiers. The
method can be appliedlocallyat each iteration of a divide-and- conquer algorithm generating
a tight coupling of classifiers. This method is referred to asLocal Cascade Generalization.
In our implementation, it generates a decision tree, which has interesting relations with
multivariate trees (Brodley & Utgoff, 1995) and neural networks, namely with the Cascade
correlation architecture (Fahlman, 1991). Both Cascade Generalization and Local Cascade
Generalization are described and analyzed in this paper. The experimental study shows
that this methodology usually improves accuracy and decreases theory size at statistically
significant levels.

In the next Section we review previous work in the area of multiple models. In Section 3 we
present the framework ofCascade Generalization. In Section 4 we discuss the strengths and
weaknesses of the proposed method in comparison to other approaches to multiple models.
In Section 5 we perform an empirical evaluation of Cascade Generalization using UCI data
sets. In Section 6 we define a new family of multi-strategy algorithms that apply Cascade
Generalizationlocally. In Section 7, we empirically evaluateLocal Cascade Generalization
using UCI data sets. In Section 8, we examine the behavior of Cascade Generalization
providing insights about why it works. The last Section summarizes the main points of the
work and discusses future research directions.

2. Related work on combining classifiers

Voting is the most common method used to combine classifiers. As pointed out by Ali and
Pazzani (1996), this strategy is motivated by the Bayesian learning theory which stipulates
that in order to maximize the predictive accuracy, instead of using just a single learning
model, one should ideally use all of the models in the hypothesis space. The vote of each
hypothesis should be weighted by the posterior probability of that hypothesis given the
training data. Several variants of the voting method can be found in the machine learning
literature, from uniform voting where the opinion of all base classifiers contributes to the
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final classification with the same strength, to weighted voting, where each base classifier
has a weight associated, that could change over the time, and strengthens the classification
given by the classifier.

Another approach to combine classifiers consists of generating multiple models. Several
methods appear in the literature. In this paper we analyze them throughBias-Variance
analysis (Kohavi & Wolpert, 1996): methods that mainly reduce variance, such asBagging
andBoosting1, and methods that mainly reducebias, such asStacked Generalizationand
Meta-Learning.

2.1. Variance reduction methods

Breiman (1998) proposesBagging, that produces replications of the training set by sampling
with replacement. Each replication of the training set has the same size as the original data
but some examples do not appear in it while others may appear more than once. From each
replication of the training set a classifier is generated. All classifiers are used to classify
each example in the test set, usually using a uniform vote scheme.

The Boostingalgorithm of Freund and Schapire (1996) maintains a weight for each
example in the training set that reflects its importance. Adjusting the weights causes the
learner to focus on different examples leading to different classifiers. Boosting is an iterative
algorithm. At each iteration the weights are adjusted in order to reflect the performance of
the corresponding classifier. The weight of the misclassified examples is increased. The
final classifier aggregates the learned classifiers at each iteration by weighted voting. The
weight of each classifier is a function of its accuracy.

2.2. Bias reduction methods

Wolpert (1996) proposedStacked Generalization, a technique that uses learning at two
or more levels. A learning algorithm is used to determine how the outputs of the base
classifiers should be combined. The original data set constitutes the level zero data. All the
base classifiers run at this level. The level one data are the outputs of the base classifiers.
Another learning process occurs using as input the level one data and as output the final
classification. This is a more sophisticated technique of cross validation that could reduce
the error due to the bias.

Chan and Stolfo (1995b) present two schemes for classifier combination:arbiter and
combiner. Both schemes are based on meta learning, where a meta-classifier is generated
from meta data, built based on the predictions of the base classifiers. An arbiter is also a
classifier and is used to arbitrate among predictions generated by different base classifiers.
The training set for the arbiter is selected from all the available data, using a selection rule. An
example of a selection rule is “Select the examples whose classification the base classifiers
cannot predict consistently”. This arbiter, together with an arbitration rule, decides a final
classification based on the base predictions. An example of an arbitration rule is “Use the
prediction of the arbiter when the base classifiers cannot obtain a majority”. Later (Chan
& Stolfo, 1995a), this framework was extended usingarbiters/combinersin an hierarchical
fashion, generatingarbiter/combinerbinary trees.
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Skalak (1997) presents a dissertation discussing methods for combining classifiers. He
presents several algorithms most of which are based onStacked Generalizationwhich are
able to improve the performance ofNearest Neighborclassifiers.

Brodley (1995) presentsMCS, a hybrid algorithm that combines, in a single tree, nodes
that areunivariate tests, multivariate testsgenerated bylinear machinesandinstance based
learners. At each node MCS uses a set ofIf-Thenrules to perform a hill-climbing search
for the best hypothesis space and search bias for the given partition of the dataset. The set
of rules incorporates knowledge of experts.MCSuses a dynamic search control strategy to
perform an automatic model selection.MCSbuilds trees which can apply a different model
in different regions of the instance space.

2.3. Discussion

Results ofBoostingor Baggingare quite impressive. Using 10 iterations (i.e. generating
10 classifiers) Quinlan (1996) reports reductions of the error rate between 10% and 19%.
Quinlan argues that these techniques are mainly applicable for unstable classifiers. Both
techniques require that the learning system not be stable, to obtain different classifiers when
there are small changes in the training set. Under an analysis of bias-variance decomposition
of the error (Kohavi & Wolpert, 1996) the reduction of the error observed with Boosting
or Bagging is mainly due to the reduction in the variance. Breiman (1998) reveals that
Boosting and Bagging can only improve the predictive accuracy of learning algorithms that
are “unstable”.

As mentioned in Bauer and Kohavi (1998) the main problem with Boosting seems to
be robustness to noise. This is expected because noisy examples tend to be misclassified,
and the weight will increase for these examples. They present several cases were the per-
formance of Boosting algorithms degraded compared to the original algorithms. They also
point out that Bagging improves inall datasets used in the experimental evaluation. They
conclude that although Boosting is on average better than Bagging, it isnotuniformly better
than Bagging. The higher accuracy of Boosting over Bagging in many domains was due
to a reduction of bias. Boosting was also found to frequently have higher variance than
Bagging.BoostingandBaggingrequire a considerable number of member models because
they rely on varying the data distribution to get a diverse set of models from a single learning
algorithm.

Wolpert (1992) says that successful implementation ofStacked Generalizationfor clas-
sification tasks is a “black art”, and the conditions under which stacking works are still
unknown:

For example, there are currently no hard and fast rules saying what level0 generalizers
should we use, what level1 generalizer one should use, what k numbers to use to form
the level1 input space, etc.

Recently, Ting and Witten (1997) have shown that successful stacked generalization re-
quires the use of output class distributions rather than class predictions. In their experiments
only the MLR algorithm (a linear discriminant) was suitable for level-1 generalizer.
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3. Cascade generalization

Consider a learning setD = ( Exn, yn) with n = 1, . . . , N, where Exi = [x1, . . . , xm] is
a multidimensional input vector, andyn is the output variable. Since the focus of this
paper is on classification problems,yn takes values from a set of predefined values, that
is yn ∈ {Cl1, . . . ,Clc}, wherec is the number of classes. A classifier= is a function
that is applied to the training setD to construct a model=(D). The generated model
is a mapping from the input spaceX to the discrete output variableY. When used as
a predictor, represented by=(Ex, D), it assigns ay value to the exampleEx. This is the
traditional framework for classification tasks. Our framework requires that the predictor
=(Ex, D) outputs a vector representing conditional probability distribution [p1, . . . , pc],
wherepi represents the probability that the exampleEx belongs to classi , i.e.P(y = Cli | Ex).
The class that is assigned to the exampleEx is the one that maximizes this last expression. Most
of the commonly used classifiers, such asnaive BayesandDiscriminant, classify examples
in this way. Other classifiers (e.g.,C4.5 (Quinlan, 1993)), have a different strategy for
classifying an example, but it requires few changes to obtain a probability class distribution.

We define a constructive operatorϕ(Ex,M) whereM represents the model=(D) for
the training data D, whileEx represents an example. For the exampleEx the operatorϕ
concatenates the input vectorEx with the output probability class distribution. If the operator
ϕ is applied to all examples of datasetD′ we obtain a new datasetD′′. The cardinality of
D′′ is equal to the cardinality ofD′ (i.e. they have the same number of examples). Each
example inEx ∈ D′′ has an equivalent example inD′, but augmented with #c new attributes,
where #c represents the number of classes. The new attributes are the elements of the vector
of class probability distribution obtained when applying classifier=(D) to the exampleEx.
This can be represented formally as follows:

D′′ = 8(D′,A(=(D), D′)) (1)

HereA(=(D), D′) represents the application of the model=(D) to data setD′ and
represents, in effect, a dataset. This dataset contains all the examples that appear inD′

extended with the probability class distribution generated by the model=(D).
Cascade generalization is a sequential composition of classifiers, that at each general-

ization level applies the8 operator. Given a training setL, a test setT , and two classifiers
=1, and=2, Cascade generalization proceeds as follows. Using classifier=1, generates the
Level1 data:

Level1train = 8(L ,A(=(L), L)) (2)

Level1test= 8(T,A(=(L), T)) (3)

Classifier=2 learns onLevel1 training data and classifies theLevel1 test data:

A(=2(Level1train), Level1test)

These steps perform the basic sequence of a Cascade Generalization of classifier=2 after
classifier=1. We represent the basic sequence by the symbol∇. The previous composition
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could be represented succinctly by:

=2∇=1 = A(=2(Level1Train), Level1Test)

which, by applying Eqs. (2) and (3), is equivalent to:

=2∇=1 = A(=2(8(L ,A(=1(L), L))),8(T,A(=1(L), T)))

This is the simplest formulation ofCascade Generalization. Some possible extensions
include the composition ofn classifiers, and the parallel composition of classifiers.

A composition ofn classifiers is represented by:

=n∇=n−1∇=n−2 · · · ∇=1

In this case, Cascade Generalization generatesn − 1 levels of data. The final model is
the one given by the=n classifier. This model could contain terms in the form of conditions
based on attributes build by the previous built classifiers.

A variant of cascade generalization, which includes several algorithms in parallel, could
be represented in this formalism by:

=n∇[=1, . . . ,=n−1] = A(=n(8p(L , [A(=1(L), L), . . . ,

A(=n−1(L), L)])), (8p(T, [A(=1(L), T), . . . ,

A(=n−1(L), T)])))

The algorithms=1, . . . ,=n−1 run in parallel. The operator

8p(L , [A(=1(L), L), . . . ,A(=n−1(L), L)])

returns a new data setL ′which contains the same number of examples asL. Each example in
L ′ contains(n−1)× #cl new attributes, where #cl is the number of classes. Each algorithm
in the set=1, . . . ,=n−1 contributes with #cl new attributes.

3.1. An illustrative example

In this example we will consider the UCI (Blake, Keogh, & Merz, 1999) data setMonks-2.
The Monksdata sets describe an artificial robot domain and are quite well known in the
Machine Learning community. The robots are described by six different attributes and
classified into one of two classes. We have chosen theMonks-2 problembecause it is
known that this is a difficult task for systems that learn decision trees in attribute-value
formalism. The decision rule for the problem is: “The robot is O.K. if exactly two of the
six attributes have theirfirst value.” This problem is similar toparity problems. It combines
different attributes in a way that makes it complicated to describe in DNF or CNF using the
given attributes only.
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Some examples of the original training data are presented:

head, body, smiling, holding, color, tie, Class
round, round, yes, sword, red, yes, not Ok
round, round, no, balloon, blue, no, OK

Using ten-fold cross validation, the error rate ofC4.5 is 32.9%, and ofnaive Bayes
is 34.2%. The composite model C4.5 afternaive Bayes, C4.5∇naive Bayes, operates as
follows. TheLevel1 data is generated, using thenaive Bayesas the classifier. Naive Bayes
builds a model from the original training set. This model is used to compute a probability
class distribution for each example in the training and test set. TheLevel1 is obtained by
extending the train and test set with the probability class distribution given by the naive
Bayes. The examples shown earlier take the form of:

head, body, smiling, holding, color, tie, P(OK), P(not Ok), Class
round, round, yes, sword, red, yes, 0.135, 0.864, not Ok
round, round, no, balloon, blue, no, 0.303, 0.696, OK

where the new attributeP(OK) (P(not OK)) is the probability that the example belongs
to classOK(not OK).

C4.5 is trained on theLevel1 training data, and classifies theLevel1 test data. The
compositionC4.5∇NaiveBayes, obtains an error rate of 8.9%, which is substantially
lower than the error rates of bothC4.5 andnaive Bayes. None of the algorithms in iso-
lation can capture the underlying structure of the data. In this case, Cascade was able to
achieve a notable increase of performance. Figure 1 presents one of the trees generated by
C4.5∇naiveBayes.

Figure 1. Tree generated by C4.5∇Bayes.
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The tree contains a mixture of some of the original attributes (smiling, tie) with some
of the new attributes constructed bynaive Bayes(P(OK), P(not Ok)). At the root of the
tree appears the attributeP(OK). This attribute represents a particular class probability
(Class=OK) calculated bynaive Bayes. The decision tree generated by C4.5 uses the
constructed attributes given by Naive Bayes, but redefining different thresholds. Because
this is a two class problem, the Bayes rule usesP(OK)with threshold 0.5, while the decision
tree sets the threshold to 0.27. Those decision nodes are a kind of function given by the
Bayes strategy. For example, the attributeP(OK) can be seen as a function that computes
p(Class= OK | Ex) using the Bayes theorem. On some branches the decision tree performs
more than one test of the class probabilities. In a certain sense, this decision tree combines
two representation languages: that of naive Bayes with the language of decision trees.
The constructive step performed byCascadeinserts new attributes that incorporate new
knowledge provided by naive Bayes. It is this new knowledge that allows the significant
increase of performance verified with the decision tree, despite the fact that naive Bayes
cannot fit well complex spaces. In theCascadeframework lower level learners delay the
decisions to the high level learners. It is this kind of collaboration between classifiers that
Cascade Generalization explores.

4. Discussion

Cascade Generalization belongs to the family of stacking algorithms. Wolpert (1992) defines
Stacking Generalization as a general framework for combining classifiers. It involves taking
the predictions from several classifiers and using these predictions as the basis for the next
stage of classification.

Cascade Generalization may be regarded as a special case of Stacking Generalization
mainly due to the layered learning structure. Some aspects that make Cascade Generalization
novel, are:r The new attributes are continuous. They take the form of a probability class distribution.

Combining classifiers by means of categorical classes looses the strength of the classifier
in its prediction. The use of probability class distributions allows us to explore that
information.r All classifiers have access to the original attributes. Any new attribute built at lower layers
is considered exactly in the same way as any of the original attributes.r Cascade Generalization does not use internal Cross Validation. This aspect affects the
computational efficiency of Cascade.

Many of these ideas has been discussed in literature. Ting and Witten (1997) has used
probability class distributions as level-1 attributes, but did not use the original attributes.
The possibility of using the original attributes and class predictions aslevel1 attributes
as been pointed out by Wolpert in the original paper of Stacked Generalization. Skalak
(1997) refers that Schaffer has used the original attributes and class predictions aslevel1
attributes, but with disappointing results. In our view this could be explained by the fact that
he combines three algorithms with similar behavior from a bias-variance analysis: decision
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trees, rules, and neural-networks (see Section 8.2 for more details on this point). Chan and
Stolfo (1995a) have used the original attributes and class predictions in a scheme denoted
class-attribute-combinerwith mixed results.

Exploiting all these aspects is what makes Cascade Generalization succeed. Moreover,
this particular combination implies someconceptualdifferences.r While Stacking is parallel in nature, Cascade is sequential. The effect is that intermediate

classifiers have access to the original attributes plus the predictions of low level classifiers.
An interesting possibility, that has not been explored in this paper, is to provide the
classifiern with the original attributes plus the predictions provided by classifiern−1 only.r The ultimate goal of Stacking Generalization is combining predictions. The goal of
Cascade Generalization is to obtain a model that can use terms in the representation
language of lower level classifiers.r Cascade Generalizationprovides rules to choose the low level classifiers and the high
level classifiers. This aspect will be developed in the following sections.

5. Empirical evaluation

5.1. The algorithms

Ali and Pazzani (1996) and Tumer and Ghosh (1996) present empirical and analytical
results that show that “the combined error rate depends on the error rate of individual
classifiers and the correlation among them.” They suggest the use of “radically different
types of classifiers” to reduce the correlation errors. This was our criterion when selecting the
algorithms for the experimental work. We use three classifiers that have different behaviors:
a naive Bayes, a linear discriminant, and a decision tree.

5.1.1. Naive Bayes.Bayes theorem optimally predicts the class of an unseen example,
given a training set. The chosen class is the one that maximizes:p(Ci | Ex) = p(Ci )p(Ex |Ci )/

p(Ex). If the attributes are independent,p(Ex |Ci) can be decomposed into the product
p(x1 |Ci ) ∗ · · · ∗ p(xk |Ci ). Domingos and Pazzani (1997) show that this procedure has a
surprisingly good performance in a wide variety of domains, including many where there are
clear dependencies between attributes. In our implementation of this algorithm, the required
probabilities are estimated from the training set. In the case of nominal attributes we use
counts. Continuous attributes were discretized into equal size intervals. This has been found
to produce better results than assuming a Gaussian distribution (Domingos & Pazzani, 1997;
Dougherty, Kohavi, & Sahami, 1995). The number of bins used is a function of the number
of different values observed on the training set:k = max(1; 2 ∗ log(nr. different values)).
This heuristic was used by Dougherty, Kohavi, and Sahami (1995) with good overall results.
Missing values were treated as another possible value for the attribute. In order to classify a
query point, anaive Bayesclassifier uses all of the available attributes. Langley (1996) states
thatnaive Bayesrelies on an important assumption that the variability of the dataset can be
summarized by a single probabilistic description, and that these are sufficient to distinguish
between classes. From an analysis ofBias-Variance, this implies thatnaive Bayesuses a
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reduced set of models to fit the data. The result is low variance but if the data cannot be
adequately represented by the set of models, we obtain large bias.

5.1.2. Linear discriminant. A linear discriminant function is a linear composition of the
attributes that maximizes the ratio of its between-group variance to its within-group variance.
It is assumed that the attribute vectors for the examples of classCi are independent and
follow a certain probability distribution with a probability density functionfi . A new point
with attribute vectorEx is then assigned to that class for which the probability density
function fi (Ex) is maximal. This means that the points for each class are distributed in
a cluster centered atµi . The boundary separating two classes is a hyper-plane (Michie,
Spiegelhalter, & Taylor, 1994). If there are only two classes, a unique hyper-plane is needed
to separate the classes. In the general case ofq classes,q − 1 hyper-planes are needed to
separate them. By applying the linear discriminant procedure described below, we getq−1
hyper-planes. The equation of each hyper-plane is given by:

Hi = αi +
∑

j

βi j ∗ xj whereαi = −1

2
µT

i S−1µi andβi = S−1µi

We use a Singular Value Decomposition (SVD) to computeS−1. SVD is numerically
stable and is a tool for detecting sources of collinearity. This last aspect is used as a method
for reducing the features of each linear combination. A linear discriminant uses all, or
almost all, of the available attributes when classifying a query point. Breiman (1998) states
that from an analysis of Bias-Variance, Linear Discriminant is a stable classifier. It achieves
stability by having a limited set of models to fit the data. The result is low variance, but if
the data cannot be adequately represented by the set of models, then we obtain large bias.

5.1.3. Decision tree. Dtreeis our version of a univariate decision tree. It uses the standard
algorithm to build a decision tree. The splitting criterion is the gain ratio. The stopping
criterion is similar to C4.5. The pruning mechanism is similar to thepessimistic errorof
C4.5.Dtree uses a kind of smoothing process that usually improves the performance of
tree based classifiers. When classifying a new example, the example traverses the tree from
the root to a leaf. InDtree, the example is classified taking into account not only the class
distribution at the leaf, but also all class distributions of the nodes in the path. That is, all
nodes in the path contribute to the final classification. Instead of computing class distribution
for all paths in the tree at classification time, as it is done in Buntine (1990),Dtreecomputes
a class distribution for all nodes when growing the tree. This is done recursively taking into
account class distributions at the current node and at the predecessor of the current node,
using the recursive Bayesian update formula (Pearl, 1988):

P(Ci | en, en+1) = P(Ci | en)
P(en+1 | en,Ci )

P(en+1 | en)

where P(en) is the probability that one example falls at noden, that can be seen as a
shorthand forP(e∈ En), wheree represents the given example andEn the set of examples
in noden. Similarly P(en+1 | en) is the probability that one example that falls at noden goes
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to noden+1, and P(en+1 | en,Ci ) is the probability that one example from classCi goes
from noden to noden+ 1. This recursive formulation, allowsDtreeto compute efficiently
the required class distributions. The smoothed class distributions influence the pruning
mechanism and the treatment of missing values. It is the most relevant difference from
C4.5.

A decision tree uses a subset of the available attributes to classify a query point. Kohavi
and Wolpert (1996), Breiman (1998) among other researchers, note that decision trees are
unstable classifiers. Small variations on the training set can cause large changes in the
resulting predictors. They have high variance but they can fit any kind of data: the bias of a
decision tree is low.

5.2. The experimental methodology

We have chosen 26 data sets from the UCI repository. All of them were previously used
in other comparative studies. To estimate the error rate of an algorithm on a given dataset
we use 10 fold stratified cross validation. To minimize the influence of the variability of
the training set, we repeat this process ten times, each time using a different permutation
of the dataset.2 The final estimate is the mean of the error rates obtained in each run of the
cross validation. At each iteration of CV, all algorithms were trained on the same training
partition of the data. Classifiers were also evaluated on the same test partition of the data.
All algorithms where used with the default settings.

Comparisons between algorithms were performed usingpaired t-testswith significance
level set at 99.9% for each dataset. We use the Wilcoxon matched-pairs signed-ranks test
to compare the results of the algorithms across datasets.

Our goal in this empirical evaluation is to show thatCascade Generalizationare plausible
algorithms, that compete quite well against other well established techniques. Stronger
statements can only be done after a more extensive empirical evaluation.

Table 1 presents the error rate and the standard deviation of each base classifier. Relative
to each algorithm a+(−) sign on the first column means that the error rate of this algorithm,
is significantly better (worse) thanDtree. The error rate ofC5.0is presented for reference.
These results provide evidence, once more, that no single algorithm is better overall.

5.3. Evaluation of Cascade Generalization

Tables 2 and 3 presents the results of all pairwise combinations of the three base classifiers
and the most promising combination of the three models. Each column corresponds to a
Cascade Generalizationcombination. For each combination we have conductedpaired t-
tests. All composite models are compared against its components usingpaired t-testswith
significance level set to 99.9%. The+(−) signs indicate that the combination (e.g. C4∇Bay)
is significantly better than the component algorithms (i.e. C4.5 and Bayes).

The results are summarized in Tables 4 and 5. The first line shows the arithmetic mean
across all datasets. It shows that the most promising combinations areC4.5∇ Discrim,
C4.5∇ naive Bayes, C4.5∇ Discrim∇ naive Bayes, andC4.5∇ naive Bayes∇ Discrim.
This is confirmed by the second line that shows the geometric mean. The third line that
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Table 1. Data characteristics and results of base classifiers.

Dataset #Classes #Examples Dtree Bayes Discrim C4.5 C5.0

Adult 2 48842 13.93± 0.4 (−)17.40± 0.7 (−)21.93± 0.4 13.98± 0.6 13.86± 0.6

Australian 2 690 14.13± 0.6 14.48± 0.4 14.06± 0.1 14.71± 0.6 14.17± 0.7

Balance 3 625 22.35± 0.7 (+)8.57± 0.3 (+)13.35± 0.3 22.10± 0.7 22.34± 0.8

Banding 2 238 21.35± 1.3 23.24± 1.2 23.20± 1.4 23.98± 1.8 24.16± 1.4

Breast (W) 2 699 5.77± 0.8 (+)2.65± 0.1 (+)4.13± 0.1 5.46± 0.5 5.30± 0.5

Cleveland 2 303 20.66± 1.8 (+)16.06± 0.7 (+)16.07± 0.5 21.87± 1.9 22.21± 1.5

Credit 2 690 14.28± 0.6 14.53± 0.3 14.23± 0.1 14.28± 0.6 14.30± 0.6

Diabetes 2 768 26.46± 0.7 (+)23.87± 0.5 (+)22.71± 0.2 26.14± 0.8 25.70± 1.0

German 2 1000 27.93± 0.7 (+)24.39± 0.4 (+)23.03± 0.5 28.63± 0.7 28.53± 0.9

Glass 6 213 30.14± 2.4 (−)37.43± 1.5 (−)36.65± 0.8 31.96± 2.6 (−)33.26± 2.2

Heart 2 270 23.90± 1.8 (+)15.63± 0.8 (+)16.37± 0.4 22.85± 2.0 21.64± 1.9

Hepatitis 2 155 19.54± 1.5 17.31± 1.0 21.60± 2.2 20.42± 1.6 20.82± 2.1

Ionosphere 2 351 9.45± 1.1 10.64± 0.6 (−)13.38± 0.8 10.47± 1.2 10.47± 1.1

Iris 3 150 4.67± 0.9 4.27± 0.6 (+)2.00± 0.0 4.80± 0.9 5.01± 1.0

Letter 26 20000 13.17± 1.0 (−)40.34± 0.7 (−)29.82± 1.3 (+)12.02± 0.7 (+)11.57± 0.5

Monks-1 2 432 6.76± 2.1 (−)25.00± 0.0 (−)33.31± 0.0 (+)3.52± 1.8 (+)1.09± 1.1

Monks-2 2 432 32.90± 0.0 (−)34.19± 0.6 (−)34.21± 0.3 32.87± 0.0 32.90± 0.0

Monks-3 2 432 0.00± 0.0 (−)2.77± 0.0 (−)22.80± 0.3 0.00± 0.0 0.00± 0.0

Mushroom 2 8124 0.00± 0.0 (−)3.85± 0.0 (−)6.86± 0.0 0.00± 0.0 0.00± 0.0

Satimage 6 6435 13.47± 0.2 (−)19.05± 0.1 (−)16.01± 0.1 13.65± 0.4 13.50± 0.2

Segment 7 2310 3.55± 0.3 (−)10.20± 0.1 (−)8.41± 0.1 3.29± 0.2 3.15± 0.3

Sonar 2 208 28.38± 2.5 24.95± 1.2 25.26± 1.2 27.96± 3.4 24.71± 1.2

Vehicle 4 846 27.48± 1.0 (−)38.73± 0.6 (+)22.16± 0.1 27.10± 1.0 26.82± 1.1

Votes 2 435 3.34± 0.6 (−)9.74± 0.2 (−)5.43± 0.2 3.65± 0.4 3.47± 0.3

Waveform 3 2581 24.28± 0.8 (+)18.72± 0.2 (+)14.94± 0.2 24.66± 0.4 24.89± 0.6

Wine 3 178 7.06± 0.6 (+)2.37± 0.6 (+)1.13± 0.5 6.93± 0.6 7.12± 0.9

shows the average rank of all base and cascading algorithms, computed for each dataset by
assigning rank 1 to the most accurate algorithm, rank 2 to the second best and so on. The
remaining lines compares a cascade algorithm against the top-level algorithm. The fourth
line shows the number of datasets in which the top-level algorithm was more accurate than
the corresponding cascade algorithm, versus the number in which it was less. The fifth line
considers only those datasets where the error rate difference was significant at the 1% level,
using pairedt-tests. The last line shows thep-valuesobtained by applying the Wilcoxon
matched-pairs signed-ranks test.

All statistics show that the most promising combinations use a decision tree as high-level
classifier and naive Bayes or Discrim as low-level classifiers. The new attributes built by
Discrim andnaive Bayesexpress relations between attributes, that are outside the scope
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Table 2. Results of Cascade Generalization. Composite models are compared against its components.

Dataset Bay∇Bay Bay∇Dis Bay∇C4.5 Dis∇Dis Dis∇Bay Dis∇C4.5

Adult (−)18.90± 0.7 (++)17.07± 0.7 (+−)16.85± 0.6 21.93± 0.4 (−)21.93± 0.4 (−)21.93± 0.4

Australian 14.69± 0.5 (++)13.61± 0.2 (+)14.16± 0.6 14.06± 0.1 (++)12.72± 0.4 (+)14.15± 0.7

Balance 7.06± 1.1 (+)8.37± 0.1 (−−)23.38± 1.0 (+)8.41± 0.1 (+−)11.44± 0.8 (−)22.23± 0.8

Banding 22.36± 0.9 21.99± 0.8 (++)18.76± 1.2 23.28± 1.4 22.01± 1.6 (+)22.33± 1.7

Breast 2.83± 0.1 (−+)3.26± 0.1 (−+)3.42± 0.2 4.13± 0.1 (+)2.75± 0.1 (−)5.08± 0.4

Cleveland 17.28± 0.9 16.03± 0.4 (−+) 20.35± 1.5 16.07± 0.5 16.35± 0.5 (−) 21.77± 1.9

Credit 14.91± 0.4 (++)13.35± 0.3 13.97± 0.6 14.22± 0.1 (++)13.59± 0.4 14.34± 0.3

Diabetes 24.71± 0.6 (+)22.44± 0.3 (−)25.33± 0.8 22.71± 0.2 23.51± 0.6 (−)25.99± 0.8

German (−)25.48± 0.6 (+)23.17± 0.6 (−)28.56± 0.5 23.03± 0.5 23.73± 0.6 (−)28.58± 0.7

Glass 37.48± 1.7 35.79± 1.7 (+)30.63± 2.8 36.25± 1.4 35.89± 1.6 (+)31.63± 2.8

Heart 16.67± 0.7 16.30± 0.5 (−)21.74± 1.5 16.37± 0.4 (+)15.56± 0.6 (−)22.89± 1.9

Hepatitis 15.95± 1.6 (+)17.52± 1.3 18.44± 1.9 21.60± 2.0 (+)16.30± 1.2 21.15± 1.8

Ionosphere 9.76± 0.7 (++)9.14± 0.3 (++)8.57± 0.8 13.38± 0.8 (+)10.42± 0.4 (+)10.47± 1.2

Iris 3.80± 0.5 (−)3.27± 0.9 (+)3.67± 1.0 2.00± 0.0 (−+)3.00± 0.4 (−)4.73± 0.9

Letter (+)36.59± 1.1 (++)25.69± 1.0 (+)11.87± 0.7 (+)28.14± 1.3 (+−)36.42± 0.9 (+)11.94± 0.8

Monks-1 25.21± 0.4 (−)33.33± 0.0 (+)3.56± 1.8 (−) 41.07± 1.5 (+)25.01± 0.0 (+−)20.21± 4.2

Monks-2 (+)30.31± 3.0 34.33± 0.9 (−)34.19± 0.6 35.06± 0.8 34.07± 0.6 (−)34.21± 0.3

Monks-3 1.76± 0.8 (−+)14.13± 0.3 (+)0.00± 0.0 (+)20.76± 0.8 (+)2.77± 0.0 (−)22.80± 0.3

Mushroom (+)1.85± 0.0 (+)3.13± 0.0 (+)0.00± 0.0 6.86± 0.0 (++)1.77± 0.0 (−)6.86± 0.0

Satimage (+)18.82± 0.1 (+−)16.57± 0.1 (+−)15.61± 0.1 (+)15.59± 0.1 (++)14.84± 0.1 (+)13.63± 0.4

Segment (+)9.41± 0.2 (++)7.91± 0.1 (+−)3.78± 0.3 (+)7.93± 0.1 (−+)9.29± 0.1 (+)3.27± 0.2

Sonar 25.59± 1.4 (++)23.72± 1.1 (++)21.84± 2.0 24.81± 1.2 (+)24.93± 1.4 25.96± 2.1

Vehicle 39.16± 1.0 (+−)25.34± 0.7 (+−)28.52± 0.8 22.00± 0.3 (−+)23.54± 0.9 (−+)26.33± 1.2

Votes 10.00± 0.3 (+)5.28± 0.2 (+−)4.41± 0.3 5.43± 0.2 (+)5.43± 0.2 (+)3.56± 0.5

Waveform (+)16.42± 0.3 (+)15.24± 0.2 (−+)21.80± 0.7 (+)4.45± 0.2 (−+)16.93± 0.4 (−)24.65± 0.4

Wine 2.62± 0.6 1.06± 0.6 (−+)4.14± 0.9 1.31± 0.7 2.01± 0.7 (−)5.83± 1.2

of DNF algorithms like C4.5. These new attributes systematically appear at the root of the
composite models.

One of the main problems when combining classifiers is:Which algorithms should we
combine?The empirical evaluation suggests:r Combine classifiers with different behavior from aBias-Varianceanalysis.r At low level use algorithms with low variance.r At high level use algorithms with low bias.

OnCascadeframework lower level learners delay the final decision to the high level learners.
Selecting learners with lowbias for high level, we are able to fit more complex decision
surfaces, taking into account the “stable” surfaces drawn by the low level learners.

Given equal performance, we would prefer fewer component classifiers, since training,
and application times will be lower for smaller number of components. Larger number of
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Table 3. Results of Cascade Generalization. Composite models are compared against its components.

Dataset C4.5∇C4.5 C4.5∇Dis C4.5∇Bay C4.5∇Disc∇Bay C4.5∇Bay∇Disc Stacked Gen.

Adult (+)13.85± 0.5 (+)13.92± 0.5 (+)13.72± 0.3 (++)13.71± 0.3 (++)13.76± 0.2 13.96± 0.6

Australian 14.74± 0.5 13.99± 0.9 15.41± 0.8 14.24± 0.5 15.34± 0.9 13.99± 0.4

Balance 21.87± 0.7 (++)5.42± 0.7 (++)4.78± 1.1 (+++)5.34± 1.0 (+++)6.77± 0.6 (−)7.76± 0.9

Banding 23.77± 1.7 21.73± 2.5 22.75± 1.8 21.48± 2.0 22.18± 1.5 21.45± 1.2

Breast 5.36± 0.5 (+)4.13± 0.1 (+)2.61± 0.1 (++)2.62± 0.1 (++)2.69± 0.2 2.66± 0.1

Cleveland 22.27± 2.2 (−)19.93± 1.0 (+)18.31± 1.1 18.25± 2.2 (−−)20.54± 1.6 (+)16.75± 0.9

Credit 14.21± 0.6 13.85± 0.4 15.07± 0.7 14.84± 0.4 13.75± 0.6 (+)13.43± 0.6

Diabetes 26.05± 1.0 (+−)24.51± 0.9 (−)26.06± 0.7 (−)25.02± 0.9 (−−)25.48± 1.4

German 28.61± 0.7 (+−)24.60± 1.0 (+−)26.20± 1.1 (+−−)26.28± 1.0 (+−)25.92± 1.0 (+)24.72± 0.3

Glass 32.02± 2.4 36.09± 1.8 33.60± 1.6 34.68± 1.8 35.11± 2.5 31.28± 1.9

Heart 23.19± 1.9 (+)18.48± 1.5 (−)19.30± 1.9 (+−−)18.67± 1.0 (+−−)18.89± 1.1 (++)16.19± 0.9

Hepatitis 20.60± 1.5 19.89± 2.3 (+)16.63± 1.3 (++)15.97± 1.9 17.21± 2.1 15.33± 1.1

Ionosphere 10.21± 1.3 (+)10.79± 0.8 11.55± 1.0 (+)11.28± 0.8 (+)10.98± 0.6 9.63± 1.2

Iris 4.80± 0.9 (−)3.53± 0.8 5.00± 0.8 (−)4.53± 0.9 (−)4.13± 1.1 4.13± 1.0

Letter 11.79± 0.7 (−+)13.72± 0.8 (−+)13.69± 0.8 (−++)14.41± 0.5 (−++)14.99± 0.9 (++)11.91± 0.7

Monks-1 2.70± 0.8 (+)3.52± 1.8 (+)1.49± 1.7 (+++)0.78± 1.2 (++)1.20± 1.2 (−)3.74± 2.0

Monks-2 32.87± 0.0 (+)32.87± 0.0 (++)8.99± 2.6 (+++)8.99± 2.6 (+++)8.89± 2.8 (−−)32.87± 0.0

Monks-3 0.00± 0.0 (+)0.00± 0.0 (−+)0.60± 0.4 (−++)0.60± 0.4 (−++)0.81± 0.5 (−−)2.24± 0.8

Mushroom 0.00± 0.0 (+)0.00± 0.0 (−+)0.14± 0.0 (−++)0.15± 0.0 (−++)0.04± 0.0 (−−)2.93± 0.04

Satimage 13.58± 0.5 (++)12.18± 0.4 (+)13.06± 0.4 (+++)12.83± 0.3 (+++)12.22± 0.3 (−)13.11± 0.4

Segment 3.21± 0.2 (+)3.09± 0.1 (+)3.67± 0.3 (++)3.44± 0.3 (++)3.40± 0.2 3.32± 0.2

Sonar 28.02± 3.2 24.75± 2.9 24.36± 1.9 24.45± 1.8 23.83± 2.1 24.81± 1.0

Vehicle 26.96± 0.8 (+)22.36± 0.9 (+)28.35± 1.3 (+−+)23.97± 0.9 (++−)24.28± 1.0 (−−)27.72± 0.8

Votes (+)3.17± 0.5 (−+)4.41± 0.5 (+)3.70± 0.3 (−+)4.62± 0.7 (−++)4.45± 0.5 (++)3.65± 0.4

Waveform 24.66± 0.3 (+−)16.86± 0.3 (++)17.30± 0.5 (+−+)16.75± 0.4 (+−+)15.94± 0.3 (−)17.14± 0.4

Wine 6.99± 0.7 (+−)4.25± 0.6 (+)2.97± 0.9 (+−)2.50± 0.6 (+−)2.26± 0.7 2.23± 0.9

Table 4. Summary of results of Cascade Generalization.

Measure Bayes Bay∇Bay Bay∇Dis Bay∇C4 Disc Disc∇Disc Disc∇Bay Disc∇C4

Arithmetic mean 17.62 17.29 16.42 15.29 17.80 17.72 16.39 17.94

Geometric mean 13.31 12.72 12.61 10.71 13.97 13.77 12.14 14.82

Average rank 9.67 9.46 6.63 7.52 9.06 8.77 7.23 10.29

Nr. of wins – 14/12 8/18 9/16 – 4/10 10/16 14/9

Significant wins – 2/6 3/13 8/13 – 1/6 4/10 10/7

Wilcoxon Test – 0.49 0.02 0.16 – 0.19 0.16 0.46
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Table 5. Summary of results of Cascade Generalization.

Measure C4.5 C4.5∇C4.5 C4.5∇Bay C4.5∇Dis C4.5∇Dis∇Bay C4.5∇Bay∇Dis

Arithmetic mean 15.98 15.98 13.44 14.19 13.09 13.27

Geometric mean 11.40 11.20 8.25 9.93 7.95 7.81

Average rank 9.83 9.04 7.85 6.17 6.46 6.69

Nr. of wins – 7/15 4/19 11/15 8/18 8/18

Significant wins – 0/2 3/8 2/9 4/11 4/9

Wilcoxon Test – 0.17 0.04 0.005 0.005 0.008

components has also adverse affects in comprehensibility. In our study the version with three
components seemed perform better than the version with two components. More research
is needed to establish the limits of extending this scenario.

5.4. Comparison with Stacked Generalization

We have compared various versions of Cascade Generalization to Stacked Generalization,
as defined in Ting and Witten (1997). In our re-implementation ofStacked Generalization
the level 0 classifiers were C4.5 and Bayes, and thelevel 1 classifier wasDiscrim. The
attributes for thelevel 1data are the probability class distributions, obtained from thelevel 0
classifiers using a 5-fold stratified cross-validation.3 Table 3 shows, in the last column, the
results ofStacked Generalization. Stacked Generalizationis compared, usingpaired t-tests,
to C4.5∇ Discrim∇ naive BayesandC4.5∇ naive Bayes∇ Discrim in this order. The+(−)
sign indicates that for this dataset the Cascade model performs significantly better (worse).
Table 6 presents a summary of results. They provide evidence that the generalization ability
of Cascade Generalization models is competitive with Stacked Generalization that computes
the level 1 attributes using internal cross-validation. The use of internal cross-validation
affects of course the learning times. Both Cascade models are at least three times faster than
Stacked Generalization.

Table 6. Summary of comparison against Stacked Generalization.

Stacked Generalization C4.5∇ Discrim∇Bayes C4.5∇Bayes∇Discrim

Arithmetic mean 13.87 13.09 13.27

Geometric mean 10.13 7.95 7.81

Average rank 1.8 2.1 2.1

C4.5∇ Disc∇Bay vs. Stack.G. C4.5∇Bay∇Disc vs. Stack.G.

Number of wins 11/15 10/16

Significant wins 6/5 6/4

Wilcoxon Test 0.71 0.58
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Cascade Generalization exhibits good generalization ability and is computationally ef-
ficient. Both aspects lead to the hypothesis:Can we improve Cascade Generalization by
applying it at each iteration of a divide-and-conquer algorithm?This hypothesis is exam-
ined in the next section.

6. Local Cascade Generalization

Many classification algorithms use a divide and conquer strategy that resolve a given com-
plex problem by dividing it into simpler problems, and then by applying recursively the
same strategy to the subproblems. Solutions of subproblems are combined to yield a solu-
tion of the original complex problem. This is the basic idea behind the well known decision
tree based algorithms: ID3 (Quinlan, 1986), CART (Breiman et al., 1984), ASSISTANT
(Kononenko et al., 1987), C4.5 (Quinlan, 1993). The power of this approach derives from the
ability to split the hyper space into subspaces and fit each subspace with different functions.
In this Section we exploreCascade Generalizationon the problems and subproblems that
adivide and conqueralgorithm generates. The intuition behind this proposed method is the
same as behind anydivide and conquerstrategy. The relations that can not be captured at
global level can be discovered on the simpler subproblems.

In the following sections we present in detail how to applyCascade Generalization
locally. We will only develop this strategy for decision trees, although it should be possible
to use it in conjunction with anydivide and conquermethod, likedecision lists(Rivest,
1987).

6.1. The local Cascade Generalization algorithm

Local Cascade Generalizationis a composition of classification algorithms that is elabo-
rated when building the classifier for a given task. In each iteration of a divide and conquer
algorithm,Local Cascade Generalizationextends the dataset by the insertion of new at-
tributes. These new attributes are propagated down to the subtasks. In this paper we restrict
the use ofLocal Cascade Generalizationto decision tree based algorithms. However, it
should be possible to use it with anydivide-and-conqueralgorithm. Figure 2 presents the
general algorithm ofLocal Cascade Generalization, restricted to a decision tree. The method
will be referred to asCGTree.

When growing the tree, new attributes are computed at each decision node by applying the
8 operator. The new attributes are propagated down the tree. The number of new attributes
is equal to the number of classes appearing in the examples at this node. This number can
vary at different levels of the tree. In general deeper nodes may contain a larger number
of attributes than the parent nodes. This could be a disadvantage. However, the number of
new attributes that can be generated decreases rapidly. As the tree grows and the classes are
discriminated, deeper nodes also contain examples with a decreasing number of classes.
This means that as the tree grows the number of new attributes decreases.

In order to be applied as a predictor, anyCGTreemust store, in each node, the model
generated by the base classifier using the examples at this node. When classifying a new
example, the example traverses the tree in the usual way, but at each decision node it is
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Figure 2. Local cascade algorithm based on a decision tree.

extended by the insertion of the probability class distribution provided the base classifier
predictor at this node.

In the framework of local cascade generalization, we have developed aCGLtree, that
uses the8(D,A(Discrim(D), D)) operator in the constructive step. Each internal node of
a CGLtreeconstructs a discriminant function. This discriminant function is used to build
new attributes. For each example, the value of a new attribute is computed using the linear
discriminant function. At each decision node, the number of new attributes built byCGLtree
is always equal to the number of classes taken from the examples at this node. In order to
restrict attention to well populated classes, we use the following heuristic: we only consider
aclassi if the number of examples, at this node, belonging toclassi is greater thanN times
the number of attributes.4 By defaultN is 3. This implies that at different nodes, different
number of classes will be considered leading to addition of a different number of new
attributes. Another restriction to the use of the constructive operatorA(=(D), D), is that
the error rate of the resulting classifier should be less than 0.5 in the training data.

In our empirical study we have used two other algorithms that applyCascade General-
ization locally. The first one isCGBtreethat uses as constructive operator

8(D,A(naiveBayes(D), D)),

and the second one isCGBLtreethat uses as constructive operator:

8p(D, [A(naiveBayes(D), D),A(Discrim(D), D)]),

In all other aspects these algorithms are similar toCGLtree.
There is one restriction to the application of the8(D′,A(=(D), D′)) operator: the in-

duced classifier=(D)must return the corresponding probability class distribution for each
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Figure 3. Tree generated by a CGTree using Discrim∇Bayes as constructive operator.

Ex ∈ D′. Any classifier that satisfies these requisites could be applied. It is possible to imag-
ine aCGTree, whose internal nodes are trees themselves. For example, small modifications
to C4.5.5 enables the construction of aCGTreewhose internal nodes are trees generated by
C4.5.

6.2. An illustrative example

Figure 3 represents the tree generated by aCGTreeon theMonks-2problem. The constructive
operator used is:8(D,Discrim∇Bayes(Ex, D)). At the root of the tree thenaive Bayes
algorithm provides two new attributes—Bayes7 and Bayes8. The linear discriminant
uses continuous attributes only. There are only two continuous attributes, those built by the
naive Bayes. In this case, the coefficients of the linear discriminant shrink to zero by the
process of variable elimination used by the discriminant algorithm. Thegain ratiocriterion
chooses theBayes7 attribute as a test. The dataset is split into two partitions. One of them
contains only examples from classOK: a leaf is generated. In the other partition two new
Bayesattributes are built (Bayes11, Bayes12) and so a linear discriminant is generated
based on these twoBayesattributes and on those built at the root of the tree. The attribute
based on the linear discriminant is chosen as test attribute for this node. The dataset is
segmented and the process of tree construction proceeds.

This example illustrate two points:r The interactions between classifiers: The linear discriminant contains terms built by
naive Bayes. Whenever a new attribute is built, it is considered as a regular attribute. Any
attribute combination built at deeper nodes can contain terms based on the attributes built
at upper nodes.
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r Re-use of attributes with different thresholds. The attributeBayes7, built at the root, is
used twice in the tree with different thresholds.

6.3. Relation to other work on multivariate trees

With respect to the final model, there are clear similarities betweenCGLtreeandMultivariate
treesof Brodley and Utgoff (1995). Langley refers that any multivariate tree is topologically
equivalent to a three-layerinference networkLangley (1996). The constructive ability of our
system is similar to theCascade Correlation Learning architectureof Fahlman and Lebiere
(1991). Also the final model ofCGBtreeis related with therecursive naive Bayespresented
by Langley (1996). This is an interesting feature ofLocal Cascade Generalization: it unifies
in a single framework several systems from different research areas. In our previous work
(Gama & Brazdil, 1999) we have compared systemLtree, similar toCGLtree, with Oc1of
Murthy et al. (1994),LMDT of Brodley et al. (1995), andCARTof Breiman et al. The focus
of this paper is on methodologies for combining classifiers. As such, we only compare our
algorithms against other methods that generate and combine multiple models.

7. Evaluation of local Cascade Generalization

In this section we evaluate three instances of local Cascade Algorithms:CGBtree, CGLtree,
andCGBLtree. We compare the local versions against its corresponding global models, and
against two standard methods to combine classifiers: Boosting and Stacked Generalization.
All the implementedLocal Cascade Generalizationalgorithms are based onDtree. They use
exactly the same splitting criteria, stopping criteria, and pruning mechanism. Moreover they
share many minor heuristics that individually are too small to mention, but collectively can
make difference. At each decision node,CGLtreeapplies theLinear discriminantdescribed
above, whileCGBtreeapplies thenaive Bayesalgorithm.CGBLtreeapplies theLinear
discriminantto theorderedattributes and thenaive Bayesto thecategoricalattributes. In
order to preventoverfittingthe construction of new attributes is constrained to a depth of 5.
In addition, the level of pruning is greater than the level of pruning inDtree.

Table 7 presents the results oflocal Cascade Generalization. Each column corresponds
to a local Cascade Generalization algorithm. Each algorithm is compared against its simi-
lar Cascademodel usingpaired t-tests. For example,CGLtreeis compared againstC4.5∇
Discrim. A +(−) sign means that the error rate of the composite model is, at statistically
significant levels, lower (higher) than the correspondent model. Table 8 presents a compar-
ative summary of the results between local Cascade Generalization and the corresponding
global models. It illustrates the benefits of applying Cascade Generalization locally.

SystemCGBLtreeis compared toC5.0Boosting, a variance reduction method.6 and to
Stacked Generalization, a bias reduction method. Table 7 presents the results ofC5.0Boosting
with the default parameter of 10, that is aggregating over 10 trees, andStacked General-
izationas it is defined in Ting and Witten (1997) and described in an earlier section. Both
Boosting and Stacked are compared againstCGBLtree, usingpaired t-testswith the signifi-
cance level set to 99.9%. A+(−) sign means that Boosting orStackedperforms significantly
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Table 7. Results of Local Cascade Generalization, Boosting and Stacked, Boosting a Cascade algorithm. The
footnote indicates the models used in comparison.

Dataset CGBtreea CGLtreea CGBLtreea C5.0Boostb Stackedb C5B∇ Bayesc

Adult 13.46± 0.4 13.56± 0.3 13.52± 0.4 −14.33± 0.4 13.96± 0.6 14.41± 0.5

Australian 14.45± 0.7 −14.69± 0.9 13.95± 0.7 13.21± 0.7 13.99± 0.4 13.96± 0.9

Balance 5.32± 1.1 8.24± 0.5 −8.08± 0.4 −20.03± 1.0 7.75± 0.9 (+)4.25± 0.7

Banding 20.98± 1.2 23.60± 1.2 20.69± 1.2 (+)17.39± 1.7 21.45± 1.2 18.38± 1.8

Breast (W) 2.62± 0.1 (+)3.23± 0.4 2.66± 0.1 −3.34± 0.3 2.66± 0.1 3.03± 0.2

Cleveland (+)15.10± 1.4 (+)16.54± 0.8 16.50± 0.8 −18.95± 1.3 16.75± 0.9 17.86± 1.1

Credit 15.35± 0.5 14.41± 0.8 14.52± 0.8 13.41± 0.8 13.43± 0.6 13.57± 0.9

Diabetes 25.37± 1.5 24.43± 0.9 24.48± 0.9 24.58± 0.9 23.62± 0.4 24.71± 1.1

German 25.37± 1.1 24.78± 1.1 (+)24.88± 0.8 25.36± 0.8 24.72± 0.3 25.20± 1.1

Glass 32.08± 2.5 34.71± 2.3 32.35± 2.0 (+)25.06± 2.0 31.28± 1.8 −29.23± 1.6

Heart (+)16.37± 1.0 16.85± 1.2 (+)16.81± 1.1 −19.94± 1.3 16.19± 0.9 (+)17.24± 1.5

Hepatitis 16.87± 1.1 (+)16.87± 1.1 16.87± 1.1 16.67± 1.5 15.33± 1.1 15.93± 1.3

Ionosphere 9.62± 0.9 11.06± 0.6 11.00± 0.7 (+)6.57± 1.1 9.63± 1.2 7.71± 0.7

Iris 4.73± 1.3 2.80± 0.4 (+)2.80± 0.4 −5.68± 0.6 4.13± 1.0 5.07± 0.8

Letter 13.47± 0.9 12.97± 0.9 (+)13.06± 0.9 (+)5.16± 0.4 (+)11.91± 0.7 −6.91± 0.5

Monks-1 −9.39± 3.5 6.80± 3.3 −8.53± 3.0 (+)0.00± 0.0 (+)3.74± 2.0 0.33± 0.3

Monks-2 −14.87± 3.3 33.19± 1.7 11.88± 3.3 −35.76± 1.0 −32.87± 0.0 (+)3.64± 1.7

Monks-3 0.39± 0.4 −0.92± 0.5 0.39± 0.4 0.00± 0.0 −2.24± 0.8 0.63± 0.3

Mushroom 0.22± 0.1 −0.96± 0.1 −0.24± 0.0 (+)0.00± 0.0 −2.93± 0.0 0.01± 0.0

Satimage (+)11.86± 0.3 11.99± 0.3 (+)11.99± 0.3 (+)9.25± 0.2 −13.11± 0.4 9.21± 0.2

Segment −4.36± 0.2 3.19± 0.3 3.20± 0.3 (+)1.79± 0.1 3.32± 0.2 −2.09± 0.1

Sonar 26.23± 1.7 25.26± 1.5 25.50± 1.6 (+)19.25± 2.2 24.81± 1.0 23.02± 1.2

Vehicle 28.75± 0.8 21.21± 0.9 (+)21.32± 0.9 −23.71± 0.7 −27.72± 0.8 24.29± 1.3

Votes 3.29± 0.4 4.30± 0.5 (+)3.26± 0.4 4.11± 0.4 3.65± 0.4 4.30± 0.4

Waveform 16.50± 0.6 (+)15.74± 0.5 16.12± 0.5 −17.45± 0.4 −17.14± 0.4 (+)15.58± 0.3

Wine 2.31± 0.6 (+)1.20± 0.6 (+)1.20± 0.6 −3.45± 1.0 2.23± 0.9 2.94± 0.7

avs. Corresponding Cascade Models.
bvs.CGBLtree.
cvs.C5.0Boost.

better (worse) thanCGBLtree. In this study,CGBLtreeperforms significantly better than
Stacked, in 6 datasets and worse in 2 datasets.

7.1. A step ahead

Comparing withC5.0Boosting, CGBLtreesignificantly improves in 10 datasets and loses
in 9 datasets. It is interesting to note that in 26 datasets there are 19 significant differences.
This is evidence that Boosting and Cascade have different behavior. The improvement ob-
served with Boosting, when applied to a decision tree, is mainly due to the reduction of the
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Table 8. Summary of results of local Cascade Generalization.

CGBtree CGLtree CGBLtree C5.0Boost Stacked G. C5B∇ Bayes

Arithmetic mean 13.43 13.98 12.92 13.25 13.87 11.63

Geometric mean 8.70 9.46 8.20 8.81 10.13 6.08

Average rank 3.90 3.92 3.29 3.27 3.50 3.12

C4.5∇ Bayvs C4.5∇ Dis vs C4∇ Bay∇ Dis vs CGBLtreevs CGBLtreevs
CGBtree CGLtree CGBLtree C5.0Boost Stacked G.

Number of wins 10–16 12–14 7–19 13–13 15–11

Significant wins 3–3 3–5 3–8 10–9 6–2

Wilcoxon Test 0.18 0.49 0.07 0.86 0.61

variancecomponent of the error rate while, with Cascade algorithms, the improvement is
mainly due to the reduction on thebiascomponent. Table 7 presents the results of Boosting
aCascadealgorithm. In this case we have used the global combination C5.0 Boost∇ naive
Bayes. It improves overC5.0Boostingon 4 datasets and loses in 3. The summary of the
results presented in Table 8 evidence a promising result, and we intend, in the near future,
to boost CGBLtree.

7.2. Number of leaves

Another dimension for comparisons involves measuring the number of leaves. This corre-
sponds to the number of different regions into which the instance space is partitioned by the
algorithm. Consequently it can be seen as an indicator of the model complexity. In almost
all datasets,7 any Cascade tree splits the instance space into half of the regions needed by
Dtreeor C5.0. This is a clear indication that Cascade models capture better the underlying
structure of the data.

7.3. Learning times

Learning time is the other dimension for comparing classifiers. Here comparisons are less
clear as results may strongly depend on the implementation details as well on the underlying
hardware. However at least the order of magnitude of time complexity is a useful indicator.

C5.0andC5.0Boostinghave run on aSparc 10machine.8 All the other algorithms have
run on aPentium 166 MHz, 32 Mbmachine underLinux. Table 9 presents the average time

Table 9. Relative learning times of base and composite models.

Bayes Discrim C4.5 Bay∇Dis Dis∇Dis Dtree Bay∇Bay Dis∇Bay Bay∇C4 Dis∇C4
1 1.04 2.35 2.67 2.75 C5.0 2.77 2.86 3.31 3.37 3.59 3.65

C4∇Dis C4∇C4 C4∇Bay CGBtree C4∇Dis∇Bay CGLtree CGBLtree C5.0Boost Stacked

4.1 4.55 4.81 6.70 6.85 7.72 11.08 15.16 15.29
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needed by each algorithm to run on all datasets, taking the time ofnaive Bayesas refer-
ence. Our results demonstrate that anyCGTreeis faster thanC5.0Boosting. C5.0Boostingis
slower because it generates 10 trees with increased complexity. Also, anyCGTreeis faster
thanStacked Generalization. This is due to the internal cross validation used inStacked
Generalization.

8. Why does Cascade Generalization improve performance?

Both Cascade Generalization and Local Cascade Generalization transforms the instance
space into a new, high-dimensional space. In principle this could turn the given learning
problem into a more difficult one. This phenomenon is known as thecurse of dimension-
ality Mitchell (1997). In this section we analyze the behavior of Cascade Generalization
through three dimensions: the error correlation, the bias-variance analysis, and Mahalanobis
distances.

8.1. Error correlation

Ali and Pazzani (1996) have shown that a desirable property of an ensemble of classifiers
is diversity. They use the concept oferror correlation as a metric to measure the degree
of diversity in an ensemble. Their definition oferror correlationbetween two classifiers is
defined as the probability that both make the same error. Because this definition does not
satisfy the property that the correlation between an object and itself should be 1, we prefer
to define the error correlation between two classifiers as the conditional probability of the
two classifiers make the same error given that one of them makes an error. This definition
of error correlationlies in the interval [0 : 1] and the correlation between one classifier and
itself is 1. Formally:

φi j = p( f̂i (x) = f̂ j (x) | f̂i (x) 6= f (x) ∨ f̂ j (x) 6= f (x)). (4)

The formula that we use provides higher values than the one used by Ali and Pazzani. As
it was expected the lowest degree of correlation is betweendecision treesandBayesand
betweendecision treesanddiscrim. They use very different representation languages. The
error correlation betweenBayesanddiscrim is a little higher. Despite the similarity of the
two algorithms, they use very different search strategies.

Table 10 presents the results of this analysis. These results provide evidence that the
decision tree and any discriminant function make uncorrelated errors, that is each classifier
make errors in different regions of the instance space. This is a desirable property for
combining classifiers.

Table 10. Error correlation between base classifiers.

C4 vs. Bayes C4 vs. Discrim Bayes vs. Discrim

Average 0.32 0.32 0.40
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8.2. Bias-variance decomposition

Thebias-variancedecomposition of the error is a tool from the statistics theory for analyzing
the error of supervised learning algorithms.

The basic idea, consists of decomposing the expected error into three components:

E(C) =
∑

x

P(x)
(
σ 2+ bias2

x + variancex
)

(5)

To compute the termsbiasandvariancefor zero-one loss functions we use the decomposi-
tion proposed by Kohavi and Wolpert (1996). Thebiasmeasures how closely average guess
of the learning algorithm matches the target. It is computed as:

bias2
x =

1

2

∑
y∈Y

(P(YF = y)− P(YH = y))2 (6)

Thevariancemeasures how much the learning algorithm’s guess “bounces around” for the
different sets of the given size. This is computed as:

variancex = 1

2

(
1−

∑
y∈Y

P(YH = y)2
)

(7)

To estimate the bias and variance, we first split the data into training and test sets. From
the training set we obtain ten bootstrap replications used to build ten classifiers. We ran
the learning algorithm on each of the training sets and estimated the terms of the variance
Eq. (7) and bias9 Eq. (6) using the generated classifier for each pointx in the evaluation set
E. All the terms were estimated using frequency counts.

The base algorithms used in the experimental evaluation have different behavior under
a Bias-Variance analysis. A decision tree is known to have low bias but high variance, and
naive Bayes and linear discriminant are known to have low variance but high bias.

Our experimental evaluation has shown that the most promising combinations use a
decision tree as high level classifier, and naive Bayes or linear discriminant as low level
classifiers. To illustrate these results, we measure the bias and the variance of C4.5, naive
Bayes and C4.5∇naive Bayes in the datasets under study. These results are shown in fig-
ure 4. A summary of the results is presented in Table 11. The benefits of the Cascade

Table 11. Bias variance decomposition of error rate.

C4.5 Bayes C45∇Bayes

Average variance 4.8 1.59 4.72

Average bias 11.53 15.19 8.64
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Figure 4. Bias-Variance decomposition of the error rate for C4.5, Bayes and C4.5∇Bayes for different datasets.

composition are well illustrated in datasets like Balance-scale, Hepatitis, Monks-2, Wave-
form, and Satimage. Comparison between Bayes and C4.5∇Bayes shows that the latter
combination obtain a strong reduction of the bias component at costs of increasing the
variance component. C4.5∇Bayes reduces both bias and variance when compared to C4.5.
The reduction of the error is mainly due to the reduction of bias.

8.3. Mahalanobis distance

Consider that each class defines a single cluster10 in an Euclidean space. For each class
i , the centroid of the corresponding cluster is defined as the vector of attribute meansx̄i ,
which is computed from the examples of that class. The shape of the cluster is given by the
covariance matrixSi .

Using theMahalanobismetric we can define two distances:

1. Thewithin-classdistance. It is defined as theMahalanobisdistance between an example
and the centroid of its cluster. It is computed as:( Ēxi − Ex

)T
S−1

i

( Ēxi − Ex
)

(8)

whereEx represents the example attribute vector,Ēxi denotes the centroid of the cluster
corresponding to classi , andSi is the covariance matrix for classi .

2. Thebetween-classesdistance. It is defined as theMahalanobisdistance between two
clusters. It is computed as:( Ēxi − Ēxj

)T
S−1

pooled

( Ēxi − Ēxj
)

(9)
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Figure 5. Average increase of between-class distance.

where Ēxi denotes the centroid of the cluster corresponding to classi , and Spooled is the
pooled covariance matrix usingSi andSj .

The intuition behind the within-class distance is that smaller values leads to more
compact clusters. The intuition behind the between-classes distance is that larger values
would lead us to believe that the groups are sufficiently spread in terms of separation of
means.

We have measured the between-classes distance and the within-class distance for the
datasets with all numeric attributes. Both distances have been measured in the original
dataset and in the dataset extended using a Cascade algorithm. We observe that while the
within-class distance remains almost constant, the between-classes distance increases. For
example, when using the constructive operator Discrim∇Bay the between-classes distance
almost doubles. Figure 5 shows the average increase of the between-class distance, with
respect to the original dataset, after extending it using Discrim, Bayes and Discrim∇Bayes,
respectively.

9. Conclusions and future work

This paper provides a new and general method for combining learning models by means
of constructive induction. The basic idea of the method is to use the learning algorithms in
sequence. At each iteration a two step process occurs. First a model is built using a base
classifier. Second, the instance space is extended by the insertion of new attributes. These are
generated by the built model for each given example. The constructive step generates terms
in the representational language of the base classifier. If the high level classifier chooses
one of these terms, its representational power has been extended. Thebias restrictions of
the high level classifier is relaxed by incorporating terms of the representational language
of the base classifiers. This is the basic idea behind theCascade Generalizationarchi-
tecture.
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We have examined two different schemes of combining classifiers. The first one provides
a loose coupling of classifiers while the second one couples classifiers tightly:

1. Loose coupling: Base classifier(s) pre-process data for another stage. This framework
can be used to combine most of the existing classifiers without changes, or with rather
small changes. The method only requires that the original data is extended by the insertion
of the probability class distribution that must be generated by the base classifier.

2. Tight coupling through local constructive induction. In this framework two or more
classifiers are coupled locally. Although in this work we have used onlyLocal Cascade
Generalizationin conjunction with decision trees the method could be easily extended
to otherdivide-and-conquersystems, such asdecision lists.

Most of the existing methods such asBaggingandBoostingthat combine learned models,
use a voting strategy to determine the final outcome. Although this leads to improvements in
accuracy, it has strong limitations—loss in interpretability. Our models are easier to interpret
particularly if classifiers are loosely coupled. The final model uses the representational lan-
guage of the high level classifier, possibly enriched with expressions in the representational
language of the low level classifiers. When Cascade Generalization is applied locally, the
models generated are more difficult to interpret than those generated by loosely coupled clas-
sifiers. The new attributes built at deeper nodes, contain terms based on the previously built
attributes. This allows us to built very complex decision surfaces, but it affects somewhat the
interpretability of the final model. Using more powerful representations does not necessarily
lead to better results. Introducing more flexibility can lead to increased instability (variance)
which needs to be controlled. Inlocal Cascade Generalizationthis is achieved by limiting
the depth of the applicability of the constructive operator and requiring that the error rate of
the classifier used as constructive operator should be less than 0.5. One interesting feature
of local Cascade Generalizationis that it provides a single framework, for a collection of
different methods. Our method can be related to several paradigms of machine learning.
For example there are similarities with multivariate trees (Brodley & Utgoff, 1995), neural
networks (Fahlman, 1990), recursive Bayes (Langley, 1993), and multiple models, namely
Stacked Generalization (Wolpert, 1992). In our previous work (Gama & Brazdil, 1999) we
have presented systemLtree that combines a decision tree with a discriminant function by
means of constructive induction. Local Cascade combinations extend this work. InLtree
the constructive operator was a single discriminant function. In Local Cascade composition
this restriction was relaxed. We can useanyclassifier as constructive operator. Moreover, a
composition of several classifiers, like inCGBLtree, could be used.

The unified framework is useful because it overcomes some superficial distinctions and
enables us to study more fundamental ones. From a practical perspective the user’s task
is simplified, because his aim of achieving better accuracy can be achieved with a single
algorithm instead of several ones. This is done efficiently leading to reduced learning times.

We have shown that this methodology can improve the accuracy of the base classifiers,
competing well with other methods for combining classifiers, preserving the ability to
provide a single, albeit structured model for the data.
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9.1. Limitations and future work

Some open issues, which could be explored in future, involve:r From the perspective ofbias-varianceanalysis the main effect of the proposed method-
ology is a reduction on the bias component. It should be possible to combine the Cascade
architecture with avariancereduction method, like Bagging or Boosting.r Will Cascade Generalization work with other classifiers? Could we use neural networks
or nearest neighbors? We think that the methodology presented will work for this type
of classifier. We intend to verify it empirically in future.

Other problems that involve basic research include:r Why doesCascade Generalizationimprove performance? Our experimental study sug-
gests that we should combine algorithms with complementary behavior from the point
of view of bias-varianceanalysis. Other forms of complementarity can be considered,
for example thesearch bias. So, one interesting issue to be explored is: given a dataset,
can wepredictwhich algorithms are complementary?r When doesCascade Generalizationimprove performance? In some datasetsCascade
was not able to improve the performance of base classifiers. Can we characterize these
datasets? That is, can wepredictunder what circumstancesCascade Generalizationwill
lead to an improvement in performance?r How many base classifiers should we use? The general preference is for a smaller number
of base classifiers. Under what circumstances can we reduce the number of base classifiers
without affecting performance?r The Cascade Generalizationarchitecture provides a method for designing algorithms
that use multiplerepresentationsand multiplesearchstrategies within the induction
algorithm. An interesting line of future research should exploreflexibleinductive strate-
gies using several diverse representations. It should be possible to extendLocal Cascade
Generalizationto provide a dynamic control and this make a step in this direction.
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Notes

1. The effect of Boosting depends on the learning algorithm used. Here we consider decision trees.
2. Except in the case of Adult and Letter datasets, where a single 10-fold cross-validation was used.
3. We have also evaluated Stacked Generalization using C4.5 at top level. The version that we have used is

somewhat better. Using C4.5 at top level the average mean of the error rate is 15.14.
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4. This heuristic was suggested by Breiman et al. (1984).
5. Two different methods are presented in Ting and Witten (1997) and Gama (1998).
6. We have preferred C5.0Boosting (instead of Bagging) because it is available for us and allows cross-checking

of the results. There are some differences between our results and those previous published by Quinlan. We
think that this may be due to the different methods used to estimate the error rate.

7. Except on Monks-2 dataset, where bothDtreeandC5.0produce a tree with only one leaf.
8. The running time ofC5.0andC5.0Boostingwere reduced by a factor of 2 as suggested in:www.spec.org.
9. The intrinsic noise in the training dataset will be included in the bias term.

10. This analysis assumes that there is a single dominant class for each cluster. Although this may not always be
satisfied, it can give insights about the behavior of Cascade composition.
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