
Cascade: Hardware for High/Variable Precision 

Arithmetic* 

Tony Carter 
UUCS-89-005 

January 30, 1989 

Abstract 

The Cascade hardware architecture for high/variable 

precision arithmetic is described. It uses a radix-16 

redundant signed-digit number representation and di

rectly supports single or multiple precision addition, 

subtraction, multiplication, division, extraction of the 

square root and computation of the greatest common 

divisor. It is object-oriented and implements an ab

stract class of objects, variable precision integers. It 

provides a complete suite of memory management func

tions implemented in hardware, including a garbage col

lector. The Cascade hardware permits free tradeoff's of 

space versus time. 

1 Introduction 

Applications such as solid modeling of geometric 

objects [16], solving complex sets of equations us

ing Grobner bases [10], and encryption/decryption 

often involve the use of very high precision arith

metic operations that generally must be imple

mented using the relatively low precision arith

metic units available in today's computers. The 

numbers used in such calculations are of variable 

length. For example, in Grabner bases calculations 

number lengths vary from a few to several hundred 

decimal digits. In Thomas' algorithm for combin

ing b-spline surfaces [16J, numbers vary in length 

from a few to over one thousand decimal digits. In 

"This research was supported by DARPA through con

tract number DAAKl1-84-K-0017. 

encryption and decryption algorithms, the use of 

large primes is desirable. 

Some systems make use of Common Lisp 

bignums [17J in algorithms which solve these prob

lems, but bignum arithmetic operations imple

mented in software are slow. This slowness is ne

cessitated by the digit-serial nature of high pre

cision arithmetic computations using conventional 

processors with limited word-widths as well as 

by significant overhead for memory allocation and 

garbage collection. Digit-serial algorithms for ad

dition and subtraction have O(n) time complex

ity and those for multiplication and division have 

O(n2
) complexity [9J. 

A way to significantly reduce the time re

quired for arithmetic operations on high / variable 

precision numbers is to provide specialized, scal

able arithmetic hardware in which the width of 

the memory used to store numbers and the width 

of the arithmetic unit can be increased to match 

the size of numbers used in solving a problem. 

To accelerate solutions to the problems of solid 

modeling, Grobner bases solutions to systems of 

equations and encryption/decryption the hardware 

must scale from precisions of a few decimal digits 

to potentially thousands of digits, permitting con

stant time complexity for additions and subtrac

tions and O( n) time complexity for multiplications 

and divisions. 

Hardware solutions using conventional tech

niques such as the two's complement number rep

resentation and fast carry lookahead are not viable 
1 



Cascade Arithmetic Architecture - Draft: January 30, 1989 2 

given such constraints. Full carry lookahead is im

practical at large word widths since it has an area 

complexity of 0(n2 ). Furthermore the full-carry 

lookahead circuit actually slows down linearly with 

the number of bits in the operand due to gate fanin 

and fanout effects. Even with a very small constant 

on the O( n) time complexity offull carry lookahead 

schemes, the area*time complexity of the full carry 

lookahead approach is unacceptable at O( n3 ). If 

block carry lookahead is used, the time complexity 

is reduced from O(n) to O(1og n), but the physi

cal design is still complicated since a tree of block 

carry lookahead units must be used. In area, the 

block carry lookahead scheme has O( n log n) com

plexity which results in an area*time complexity 

of 0(nlog2 n) [18] which is significantly better but 

still unacceptable. 

The ideal area*time complexity for addition 

and subtraction is O(n). This can be provided by 

digit-serial adders (using any implementation tech

nique) with 0(1) space and O(n) time or by redun

dant signed-digit methods (of which carry-save is 

one) with O( 1) time with O( n) space. 

Cascade is a hardware architecture being de

veloped to accelerate high/variable precision arith

metic operations. As mentioned above, software 

packages for performing variable precision arith

metic exhibit two time related problems: 

• digit-serial arithmetic based on very limited 

precision arithmetic units, and 

• significant memory management overhead. 

The architecture of Cascade takes both problems 

into account. In profiling a complex software sys

tem (Alpha_l [1]) we discovered that memory man

agement for objects required more time than the 

arithmetic. The cost of memory management fre

quently equals or exceeds the cost of arithmetic 

computation so the speed of memory management 

operations is at least as important as the speed of 

the arithmetic. 

Cascade is based on a design for a variable 

precision processor proposed by Chow in [8]. The 

radix-16 digit slice in Chow's processor has been 

designed and implemented using VLSI [4], [7], [14]. 

As described hereafter, the digit-slice used in 

Cascade differs from the one proposed by Chow 

in some simple yet significant ways to better sup

port division and extraction of the square root. 

Cascade provides linear scalability in space while 

maintaining constant addition time, but also di

rectly supports multiple precision arithmetic oper

ations when the physical word-width is not ade

quate. Cascade also provides specialized memory 

management hardware. 

2 Representing Numbers 

Cascade uses only redundant signed-digit number 

[2]; conversions to and from the two's comple

ment number representation are performed as in

frequently as possible and only when requested by 

an external agent. For reasons described in [8], 

Cascade uses radix 16 digits that represent num

bers between -10 and 10 (for a total of 21 values). 

As noted by Robertson [12], there are two 

critical parameters that describe the set of val

ues (digit-set) that can be represented by a sin

gle digit. They are the diminished cardinality b 

- the number of distinct arithmetic values that 

a digit can represent, minus one, and the offset w 

- the distance of the most negative value from 

zero. In this paper we denote digit-sets using the 

notation < b.w >. In particular, Cascade uses 

< 20.10 > digits which can be represented as 

4 < 4.2 > + < 4.2 >. This makes it possible 

to model division using two radix-4 steps rather 

than one radix-16 step [5]. Each radix-4 digit is 

implemented as 2 < 1.1 > + < 2.0 >, making 

the design of the Cascade arithmetic circuitry pos

sible using Robertson's Theory of Decomposition 

[12], [13] and its physical counterpart, Structured 

Arithmetic Tiling [3], [6]. Thus, there are three 

useful views of digits in Cascade: 

< 20.10 > 
4 < 4.2 > + < 4.2 > 

8 < 1.1 > +4 < 2.0 > +2 < 1.1 > + < 2.0 >. 

3 Cascade's Architect ure 

The Cascade hardware is essentially an opaque 

physical implementation of an abstract class of 

objects, variable precision integers. (Some minor 



Cascade Arithmetic Architecture - Draft: January 30, 1989 3 

modifications to its control chip would permit it 

to operate on normalized fractions as well). It 

contains its own storage for both numbers and 

memory management information. The sole inter

face to the outside world is through a self-timed 

request/acknowledge message interface. Cascade 

normally returns handles to variable precision inte

gers, although it can return the value of a variable 

precision integer in an extended two's complement 

form if necessary. 

Cascade is composed of two distinct types of 

modules as shown in figure 1. The first is a single 

control module with associated number manage

ment memory. The second is a set of N arithmetic 

modules each of which contain a single arithmetic 

chip with associated digit memory. 

The control chip in the control module con

tains a multi-faceted controller that: 

• interacts with external agents via the message 

port, 

• manages the available digit memory through 

a hardware-resident garbage collection and 

memory allocation scheme, 

• controls single and multiple precision arith

metic operations (+ , - , * , +- ,.j, and 

gcd) on variable precision integers, and 

• optimizes both memory management and 

common arithmetic operations. 

The control chip also contains model division hard

ware for the two-stage, radix-16 division algorithm 

described in [5]. 

The Cascade hardware supports the use of 

arithmetic futures. At the option of the sender 

of a message, the Cascade hardware can return 

a handle to the new variable precision integer re

sult as soon as storage has been allocated but be

fore the arithmetic operation has been completed. 

This permits external modules that use Cascade to 

proceed without necessarily having to wait for the 

value to be computed. 

At the top of each module there is a memory 

interface. The control module originates all mem

ory control signals to both management memory 

and digit memory. As seen in figure 1, there are 

six signal loops in the system. The top two (spO 

and spJ) are digit-wide shift paths capable of shift

ing left or right by whole digits (radix-16) or half 

digits (radix-4). They are used during multiplica

tion for shifting the partial product and the mul

tiplicand and during division and square root ex

traction for normalization and shifting the partial 

remainder (partial radicand). The next three are 

transfer digit paths. The top transfer digit path 

(dbf) is used only during extraction of the square 

root. The next one (mf) is used during multipli

cation, division and extraction of the square root 

and the bottom one (of) is used during all opera

tions except shifting. The bottom loop is labeled 

"±Ndp". It has three uses. First (±), it computes 

the sign of a signed-digit number (for which the 

sign is given by the sign of the most significant 

non-zero digit). Second (N), it is used to report 

on whether a number is normalized (for radix-16, 

radix-4 or radix-2) so that the control module can 

decide whether further shifts are necessary. Third 

(dp), it is used during square root extraction to 

signal where the root digit just produced should 

be inserted into the accumulating root. 

On the lower left of the control module 

there is the message port which consists of re

quest/acknowledge lines and a twenty-bit data bus 

through which handles, values and other informa

tion is passed between external agents and the Cas

cade system. There is a system clock which is di

rectly used only by the control chip. There is a 

master reset signal so the system can be restored 

to a known state. The control module generates 

a ten-bit instruction word that is broadcast to the 

arithmetic modules where it is decoded and ap

plied to control points within the arithmetic chips. 

The strobe signal is generated by the control chip 

and sent to all the arithmetic chips, causing reg

isters to capture data from digit memory or the 

arithmetic unit. The sdv signal is an open-drain 

bus driven by all the arithmetic chips. It is used 

by the control chip to detect when an arithmetic 

operation results in zero or a value that is repre

sented as a single digit. The control chip can then 

optimize storage use and future arithmetic opera

tions that involve very common values such as 0, 1 

and -1. Each arithmetic chip also has two signals 

indicating whether or not it contains the most or 

least / significan t digit. 



Cascade Arithmetic Architecture - Draft: January 30, 1989 4 

4 Arithmetic Modules 

Each arithmetic module consists of a I6-digit (80 

bit) wide digit memory and a custom arithmetic 

chip containing a IS-digit slice of the arithmetic 

datapath (roughly equivalent to 64-bits). Figure 2 

shows the structure ofthe arithmetic chip. The XL 

and LX boxes encode and decode each six-signal 

< 20.10 > digit as a five-bit < 31.10 > digit for 

storage in digit memory. Thus the storage over

head in Cascade over what would be required in a 

normal two's complement system is only 25%. 

At the top, there are the two shift paths which 

permit right or left shifts by whole (radix-16) or 

half (radix-4) digits. Each of these shift paths in

terfaces directly to four 16-digit (96-bit) registers 

enabling any of these to be shifted. 

The addition of two large numbers with op

posite sign results in a number of much smaller 

magnitude. The size of this result cannot be pre

dicted before the addition, so the number of lead

ing zeros must be computed following each addi

tion or subtraction. This calculation is done in 

the sign computer/leading zeros counter by having 

each arithmetic chip count the number of leading 

zeros on one of the arithmetic unit buses (input or 

output). This will be a number between 0 and 16. 

The collection of arithmetic chips then shifts these 

counts to the left using a shift path and the control 

chip accumulates the number ofleading zeros until 

a count of less than 16 is encountered. 

Each of the four registers can serve as input to 

either port of the arithmetic unit and can latch the 

output of the arithmetic unit. Under control of the 

token replicating root digit position register, any 

given digit in a register can store the value of the 

current root digit during square root extraction. 

At each digital position there is flip-flop. Initially 

all flip-flops are cleared. When the flip-flop at a 

digital position is clear but the flip-flop immedi

ately to its left is set, the next root digit generated 

is stored at that digital position. This permits the 

unknown root to be accumulated in position, left 

to right. 

The sign computer uses a self-timed priority 

encoding scheme to find the sign of the most signif

icant non-zero digit. The sign is propagated from 

the most significant non-zero digit to the control 

module at the left. If a digital position contains a 

non-zero value it reports its own sign, otherwise it 

reports the sign of the digital position immediately 

to its right. 

The normalization sensor examines the three 

most significant digits of a number to see if any 

more normalization operations are required. Un

der control of the instruction received from the con

trol module, the arithmetic chip can detect radix-

16, radix-4 or radix-2 normalization. 

Below the normalization sensor and the arith

metic unit is a distribution box in which routing 

is performed. It also contains a set of switches to 

connect the output of the arithmetic unit directly 

to the memory bus so the result of an addition or 

subtraction can be stored to memory without first 

being moved to a register. 

At the bottom is the arithmetic unit. It is 

composed of sixteen identical radix-16 digit slices 

(described in section 4.1). The arithmetic unit con

tains zero detecting ROMS at all digital positions. 

It also contains a small single digit value detecting 

ROM at the least significant digital position to en

able the detection of results that are represented 

as a single digit. This permits the control mod

ule to detect values like 1, 0 and -1 as the result 

of an arithmetic operation. When such values can 

be detected, storage need not necessarily be used 

for them and operations such as multiplication by 

zero or one can be dynamically optimized in the 

hardware. 

Note that the transfer digit at the multiplier 

level (mle and mlo) is recoded from a five-bit to a 

four-bit representation, saving two pins. 

4.1 The Radix-16 Digit Slice 

The heart of the arithmetic chip is the radix-16 

digit slice pictured in figure 3. It has a con

ditional doubling circuit (an adder plus a multi

plexor) used during extraction of the square root. 

During square root extraction using completion of 

the square; all root digits are doubled except the 

most recently generated as indicated by the root 

digit position register. This doubling circuit is not 

present in the digit-slice proposed by Chow in [8]. 

A < 20.10 > digit is broadcast to all digi

tal positions of the arithmetic unit for use dur-



Cascade Arithmetic Architecture - Draft: January 30, 1989 5 

ing multiplication, division and square-root extrac

tion. There, an elementary multiplier performs the 

radix-16 multiplication of the multiplier digit by 

the multiplicand digit. The output of the elemen

tary multiplier is sent to the rnO adder which trans

forms the result into a 16 < 12.6 > transfer digit, 

a < 8.4 > sum digit that is recombined in the rn1 

adder with the incoming < 12.6 > transfer digit 

to form a < 20.10 > digit, and a 4 < 2.1 > digit 

that is passed on to the normal addition circuitry. 

Just below the rn1 adder is a pair of multiplexors. 

During multiplication, division and extraction of 

the square root these multiplexors pass on the out

put ofthe multiplication circuitry. During addition 

and subtraction they do not. 

There is a pair of conditional complementing 

circuits just below these multiplexors to permit 

su btraction by addition of the complement, assist

ing in division by permitting the recurrence equa

tion Pj+l = rpj - qj+l d to be computed in a single 

step. The location of these conditional comple

menting has been changed from Chow's proposed 

digit slice. Below the conditional complementers 

is the two-level signed-digit addition circuitry, the 

aO adder and the a1 adder. 

5 Control Module 

5.1 Memory Management 

One of the most significant functions of the con

trol module is the management of variable pre

cision integer objects. Figure 4 shows the com

plete memory organization of the Cascade hard

ware. There is a bifurcated management memory 

that contains descriptors and descriptor pointers. 

Descriptor pointers are directly referred to by han

dles and never move. Descriptors are referred to by 

descriptor pointers and may be moved as part of 

the memory allocation/garbage collection scheme. 

Descriptor pointers are allocated from the bottom 

up while descriptors, like digit memory locations, 

are allocated from the top down. Descriptors are 

maintained such that there are no crossing pointers 

into digit memory, facilitating garbage collection. 

The memory management strategy attempts 

to avoid garbage collection if at all possible. If a 

number has been destroyed but has not yet been 

reclaimed by the garbage collector and if it has ad

equate storage for the next result it will be reused 

immediately without garbage collection. Up to one 

megaword of digit memory and one megaword of 

management memory can be addressed. A setup 

register in the control chip permits lesser amounts 

of real memory to be installed in the system. 

5.2 External Message Port 

The external message port consists of a re

quest/acknowedge signal pair and a twenty bit data 

bus. When an external agent wishes to send a mes

sage to the Cascade hardware, it first asserts its 

data and then raises the request line. When the 

Cascade hardware is ready, it latches the data and 

interprets it. When done, it raises the acknowledge 

line until the external agent lowers the request line. 

There are two types of message cycles in Cas

cade, REQUESTs and Results. Each message may 

consist of any number of request and result cy

cles, depending on what data must be transferred. 

Most messages that cause arithmetic operations to 

be performed have three request cycles and one 

result cycle (for the returned handle). The conver

sion messages have unbounded message lengths to 

permit values and digit sequences of variable pre

cision integers to be returned to the invoking ex

ternal agent. External agents must follow message 

protocols exactly. 

The arithmetic message codes (indicated by 

an @ following the message name) have two flags 

that modify the behavior of the Cascade hardware. 

The first indicates that a future is to be returned 

and the second indicates that the numbers passed 

as arguments to the arithmetic operation should 

be destroyed at the completion of the operation. 

Multiple messages cycles are indicated by enclos

ing the message name in brackets (e.g., [multiple 

cycle] ). 

5.3 Model Division 

The SRT division algorithm used in Cascade is de

scribed in [5]. The model division used a three digit 

estimate of the divisor and a two digit estimate of 

the partial remainder. The three digit estimate of 

the divisor is stored in a special register since mul-



Cascade Arithmetic Architecture - Draft: January 30, 1989 6 

tiples of it must be constantly computed as part of 

the model division. The two digit estimate of the 

partial remainder can be obtained by the model in 

one of three ways: 

1. keep the two most significan t digits of the divi

sor and partial remainder in the control chip, 

or 

2. keep the most significant digit of the divisor 

and partial remainder in the control chip and 

have the most significant arithmetic chip send 

the next most significant digit to the control 

chip via a shift path, or 

3. keep all of the divisor and partial remainder 

in the arithmetic chips and have the most sig

nificant arithmetic chip shift its two most sig

nificant digits to the control chip via the shift 

paths. 

Of t hese three, the third is clearly the least desir

able since it requires special shift path connections 

at t he second most significant digital position . The 

first is fastest and the most desirable since it re

quires no off chip communication for forming the 

estimates of the partial remainder. The second is 

a t radeoff that can be made if there is inadequate 

room on the cont rol chip. 

6 Performance Estimates 

A software model of this architecture has been 

simulated to verify correctness of the control al

gorithms for the arithmetic operations. Detailed 

spice simulation of the individual arithmetic cir

cui t modules (called operators) that make up the 

arithmetic unit have been done. Table 2 shows 

the propagation delays used to estimate the speed 

of t he arithmetic modules . The arithmetic regis

ters are edge-triggered rather than clocked using 

the normal two-phase MOS clocking scheme. This 

avoids slowing them down to the speed of the sys

tem clock . Table 2 does not include time required 

for memory management functions preliminary to 

the ari t hmetic operations . 

The quotient/root digit selection hardware 

has not yet been fully designed so the speed of 

division and square-root extraction cannot be ac

curately estimated. For division and square root, 

the table contains only the time necessary for a 

single-precision recursion step. 

A critical issue in addition and subtraction is 

memory access time since three or four memory 

cycles are required (two to fetch the operands and 

one or two to store the result). If fast (25 ns ) static 

RAM is not used as suggested in table 2 then the 

times for addition and subtraction slow down dra

matically. In general, memory cycle time has less 

effect on single-precision multiplication and divi

sion than it does on addition and subtraction. 

7 Conclusion 

Cascade is a hardware architecture designed specif

ically for performing arithmetic operations on 

high/variable precision integers. Relative to Com

mon Lisp bignums running on a professional work

station, it is possible to realize speed improvements 

of several orders of magnitude in arithmetic com

putations involving bignums of around 256 digi ts 

of precision. 

The Cascade hardware permits free tradeoffs 

of time versus space since it is linearly scalable 

in space with no time cost incurred for additional 

word-width. The combination of high speed ari th

metic function and memory management capabili

ties is a unique feature of this object-oriented pro

cessor. 

References 

[lJ CAGD Research Group , Alpha_l User 's Man

ual, Univ. of Utah , Dept . of Computer Sci

ence, 1983. 

[2J A. Avizienis, "Signed-digit number repre

sentations for fast parallel arithmetic", IRE 

Trans. on Electronic Computers, vol. EC- 10, 

No.9 , Sep. 1961 , pp. 389-400. 

[3J T . M. Carter , Structured Arithmetic Tiling 

of Integmted Circuits, Ph .D. Diss ., Univ. of 

Utah, Dept. of Computer Science, Dec. 1983. 



Cascade Arithmetic Architecture - Draft: January 30, 1989 7 

[4] T. M. Carter and L. A . Hollaar "The Im

plementation of a Radix-16 Digit-Slice Using 

a Cellular VLSI Technique", Proceedings of 

ICCD 1983, Nov. 1983, pp. 688-69l. 

[5] T. M. Carter and J. E. Robertson, "Radix-16 

Signed-Digit Division", Report UUCS-88-004, 

Univ. of Utah, Dept. of Computer Science. 

[6] T. M. Carter, "Structured Arithmetic Tiling 

of Integrated Circuits", Proc. 8th Symp. on 

Computer Arithmetic, May 1987, pp. 41-48. 

[7] C. Y. F. Chow, "A Variable Precision Proces-

sor Module", Proc. IEEE Int'l Conf. on Com

puter Design, Nov. 1983, pp. 692-695. 

[8J C. Y. F. Chow, A Variable Precision Pro

cessor Module, Ph.D. Diss., Univ. of ill. at 

Urbana-Champaign, Dept . of Compo Science, 

July 1980. 

[9] D. W. Knuth, The Art of Computer Pro

gramming, Vol. 2, Seminumerical Algorithms, 

Reading, MA: Addison- Wesley, 1981, pp. 250-

265. 

[10J H. Melenk , H. M. Moiler and W. Neun,"On 

Grabner Bases Computation on a Supercom

puter Using REDUCE", Preprint SC 88-2, 

J an. 1988, FB Mathematik und Informatik 

der Fernuniversitat Hagen. 

[l1J J. E. Robertson , "Normalization and Quotient 

Digit Selection in a Variable Precision Arith

metic Unit", Report UIUCDCS-R-86-1229, 

Univ. of ill. at Urbana-Champaign, 1986. 

[12J J. E. Robertson, "A Theory of Decomposi

tion of Structures for Binary Addition and 

Subtraction", Report UIUCDCS-R-81-1004, 

Univ. of ill. at Urbana-Champaign, Jan . 1983. 

[13J J. E. Robertson , "A Systematic Approach to 

the Design of Structures for Arithmetic" , Pro

ceedings of the 5th Symp. on Computer Arith

metic, May 1981, pp. 35-4l. 

[14J J. E. Robertson, "Design of the Combina

tional Logic for a Radix-16 Digit-Slice for a 

Variable Precision Processor Module", Fmc . 

of ICCD 1983, Nov. 1983, pp. 696-699. 

[15] G.1. Steele, Common Lisp. 

[16] S. W. Thomas, Modeling Volumes Bounded by 

B-Spline Surfaces, Ph.D. Diss., Univ. of Utah, 

Dept. of Computer Science, 1984. 

[17] J. L. White, "Reconfigurable, Retargetable 

Bignums: A Case Study in Efficient, Portable 

Lisp System Building", Proc. A CM Conf. on 

Lisp and Functional Prog., 1986, pp. 174-19l. 

[18] D. Zuras and W. H. McCallister, "Balanced 

Delay Trees and Combinational Division in 

VLSI", IEEE J. of Solid-State Circuits, vol. 

SC-21, no. 5, Oct. 1986, pp. 814-819. 



(j 
III 
fJl 

n 
III 
0.. 
~ 

> ::!. .... 
••• ::r' 

Mgmt 
Memory 

" ! 
addr 

cll data addr ctl 

••• 3 
~ .... .... 
n 

addr cll > ., 
J~ J~ 

digit memory ••• digit memory n 
::r' ... 

digits 

3 22 24 

rT 
3 

J 'eo , , ( 
digits .... 

~ 
n .... 

80 = ., 
~ 

~ 6 ... 
cll data mgmt cll 

J 6 .... digits 
J 6 ... 

IoopO spOI addr spOr ..... , spOI (16) spOr 

-: 6:-
1oop1 

;6: 
sp11 sp1r ". 6 " sp11 spH 

...... 2' 
.... , 

.... 2' 

1oop2 dblc dllli 2 
dblc dllli 

J4 
(vddlgndIVss) 

J 4 
(vddlgndNsS) 

4 
1oop3 mlc mil mlc 

Arlth-Chlp 
mil 

...... 2 Control Chip ..... 
:2 011 ". 2 

ole 011 Ioop4 olc -
".2 ... 

(138 pins) 
2 

(144 pins) 
2 

1oop5 idp iNdp iNdp 

6 
spOl 

digits 6 
••• (16) spOr 

~ 

••• 
6 

sp11 sp1r 6 ., 
~ 

••• 
2 

dblc dllli 
2 ~ 

4 
(vdd/gndNsS) 

4 
••• mle 

Arlth-Chlp 
mil c..... 

2 2 
~ 

••• ole 011 t:l 

(144 pins) ~ 
2 2 ~ ••• iNdp idp 

~ 
req 
ack 

---_ ..... Instr ~ msd/lsd Instr 
msg clock rst zero strobe mpd rst zero strobe mpd 

.... 20' 

t10 

'I' 
, J 

10 

I:.J 
~ C 

rat ...... 
~ 
00 
~ 

10 

••• 
••• 
••• 
••• 

00 



Cascade Arithmetic Architecture - Draft: January 30, 1989 9 

80 

~ 
(288) (288) (96) (96) (96) (96) (16) $e 

sO 51 + S - mpd rdp 
6 aplO .. ...... ............... .. .. .. .. .. .. .. .. .... ..................... .prO 6 

\' """""'---- --------~ , , 

,~- i r+--o!---------~----_ ~ ~, 

2~----~-~~-~-~--~-~ 
2 

10 

- - - - - - - -, Distribution , 
Box , 

2 dblo 2 

4 mlo 4 

2 010 ..0,1,-1 Isd oIi 2 

Figure 2: Cascade's Arithmetic Chip 



Cascade Arithmetic Architecture - Draft: January 30, 1989 

multiplier digit 

quotient digit 

root digit 

doubler transfer out 

Single/Double----f---t 

addend 

subtrahend 

multiplicand 

dividend 

root 

<20.10> ... ------, 

addend 

addend 

partial product 

partial remainder 

partial radicand 

doubler transfer in 

L........,...--------:-~"T""------.....l adder transfer in 

sum 

difference 

partial product 

partial remainder 

partial radicand 

Figure 3: Cascade's Digit Slice 

10 



Cascade Arithmetic Architecture - Draft: January 30, 1989 11 

D 

LSW Pointer 

Handle Pointer 

Number of Digits 

MSW Pointer 

Handle 

of Free Di 

Figure 4: Cascade's Memory Organization 



Cascade Arithmetic Architecture - Draft: January 30, 1989 12 

Table 1: Summary of Message Protocols 

REQUESTS, Results, [Repeated Message Cycle] 

CREATE MS 16-BITS LS 16-BITS Handle 

DESTROY Handle 

RESTORE NTRANSFERS [4 DIGITS] Handle 

SAVE HANDLE Ntransfers f4 Digits} 

ASSIM HANDLE NTransfers [2's Comp} 

NEGCI HANDLE Handle 

ADDe HANDLE-ADD HANDLE-ADD Handle-sum 

SUBe HANDLE-ADD HANDLE-SUB Handle-diff 

MUU HANDLE-MPY HANDLE-MCD Handle-prod 

DIve HANDLE-HUM HANDLE-DEN Handle-quot 

SQRTCl HANDLE-RAD Handle-root 

REM Handle-rem 

COMPARE«l HANDLE-ADD Handle-sub Comparison 

SIGN HANDLE Sign-ind 

DIGITS HANDLE MS ndigits LS ndigits 

SETREG BIT-PATTERN 

GETREG Bit-pattern 

GC 

Table 2: Propagation Delays 

Memory Cycle tm 25 ns 

Arithmetic Operators ta 2 ns 

Input Pad ti 2 ns 

Output Pad to 10 ns 

Register tr 5 ns 

S hift- Righ t t< ti + to + tr - 17 ns -
Shift-Left t> ti + to + tr - 17 ns -
Operand Fetch tj tm + t· + tr - 32 ns t -
Result Save ts tm + to - 35 ns -

Add (N digit) t+ 2tj + 15ta + ts - 127 ns -
Sub (N digit) L 2tj + 15ta + is - 127 ns -

M ul (per digit) tx t> + 23ta + tr - 68 ns -
Mul (N by 1 digit) t* 2tj + tx + 2ts - 202 ns -

Div (recursion) td t< + 23ta + ir - 68 ns -
Sqrt (recursion) tt t< + 35ia + ir - 92 ns -


