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ABSTRACT

Recently, a cascade diffusion theory was developed to unjerstand

cascade-induced fluctuations in point defect flux during irradiation.

Application of the theory revealed that such fluctuations give rise to a

mechanism of cascade-induced creep that is predicted to be of signifi-

cant magnitude. Here we extend the investigation to the formation of

cavities. Specifically, we explore the possible importance of cascade-

induced cavity growth excursions in triggering a transition from the

gas-content-dictated stable radius to the critical radius for bias-

driven growth. Two methods of analysis are employed. The first uses

the variance of fluctuations to assess the average effect of fluc-

tuations. The second is based on the fact that in a large ensemble of

cavities, a small fraction will experience larger than average excur-

sions. This prospect is assessed by estimating upper limits to the pro-

cesses. For the conditions considered, it is concluded that cascade-

induced fluctuations are of minor importance in triggering the onset of

swelling in a population of stable gas-containing cavities.
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1. INTRODUCTION

In a material subject to energetic neutron or heavy-ion irradiation,

knock-on events lead to point defect generation in cascades. Previous

theoretical work by one of us and coworkers [1,2] has demonstrated the

enormous magnitudes of the resulting spatial and temporal fluctuations

in local point defect concentrations and fluxes. Since the formation

and behavior of extended sinks for point defects depends on these

fluxes, it is reasonable to ask whether the overall microstructure, and

the properties to which it gives rise, are influenced by fluctuations.

Subsequently, a new mechanism of irradiation creep, cascade-induced

creep, was revealed by this work and shown to be of large magnitude

[3,4]. On the other hand such fluctuations were shown to have relati-

vely little effect on the growth of large cavities, when compared to the

swelling results predicted by a conventional rate theory picture

where fluctuations are not considered [1]. In related work it was also

shown that an averaged rate theory approach is valid for the growth of

cavities in a periodically varying envirr ^ent that does not include

cas"cade-induced fluctuations, i.e., where the irradiation is pulsed-in

time but spatially uniform [5,6].

In the present paper we address the possible importance of cascade-

induced fluctuations on the early stag-5 of cavity formation. This work

is based on the existence of a critical radius above which cavity growth

is driven by the dislocation-cavity bias. Where gas is present in a

material, the existence of both stable radii (smaller than the critical



radius) and c r i t i ca l radi i have been established theoret ical ly and

experimentally [7—11]. The theory leading to these results is a quasi-

steady state rate theory where point defect generation is modeled as

continuous in time and space; f luctuations are neglected by def in i t ion .

However, i t is obvious in principle that f luctuations in the point

defect flux at a cavity may induce growth or shrinkage excursions. The

question explored here is whether such excursions could be of suf f ic ient

magnitude to be important in transferr ing cavities from the stable to

the c r i t i ca l cavity radius. We thus pre-suppose an exist ing population

of gas-containing cavi t ies.

2. ACHIEVING BIAS-DRIVEN GROWTH

2.1 Stable and Cr i t i ca l Cavity Radii

In continuum rate theory the growth rate of a cavity in a material

undergoing i r radiat ion may be expressed as [9]

drr Q c c c e

~ = — [Z D C - Z.D.C - Z D C ] , (1)
dt r v v v i i i v v vJ ' v

 '

where r and t denote cavity radius and time. The quantity Q is the

atomic volume, the Z c . are capture efficiencies of the cavity for

vacancies and interstitials, and C e is the thermal equilibrium vacancy

concentration at a cavity of radius r . The quantities D

c v, i

[ = D° exp(-E^ ./kT)] are the point defect diffusion coefficients,

where D are pre-exponential constants, E . are the corresponding
v , I V , 1

point defect migration energies, ana «T has its usual meaning. The



C • are the bulk-averaged concentrations of point defects, expressions

for which are given in numerous references in terms of materials param-

eters and irradiation conditions (.ee, for example [9]). The values of

the quantities used in subsequent calculations are given in Table 1.

The strengths of sinks for point defects dictate their con-

centrations. Here the only sinks considered are dislocations and cavi-

ties. The total sink strength is thus S . = SC . + S ., where the

superscripts c and d denote cavities and dislocations. These are

expressed as

and

where N is the cavity concentration, L is the dislocation density and

Z . are the dislocation capture efficiencies for piont defects. Higher
V , I

order sink correct ions [12] are ignored and, for the numerical evalua-

t i o n s , a l l Z's are set to unity except Z . , which is the parameter used

to -embody the d is loca t ion-cav i ty b ias. The concentration Ce is given

by,

Cj; = C° exp[-(Pg - 2T / r c) .n/kT] . (4)

Here

C° = n-1 exp(sJ/k)sxp(-Ej/kT) (5)
V r x y V



is the bulk thermal equilibrium value, and S and E are the entropy and

enthalpy of vacancy formation. The pressure of contained gas in the

cavity is P and the surface free energy is Y* For order-of-magnitude

estimates in the range of interest here, it is sufficient to relate P

to the number of contained gas atoms, n , through the ideal gas law

3 n a kT

V
 (6

»
The effects of more complex equations of state in the evaluation of cri-

tical quantities are treated elsewhere [8,y].

The interpretation of Eq. (1) is quite simple in principle. For a

given set of conditions and contained number of gas atoms, the balance

between the net radiation-induced influx of vacancies and the thermally

emitted outflux of vacancies determines whether or not a cavity of a

given radius will grow. It has been shown that a full interpretation

provides a convincing picture of many aspects of cavity growth [9],

Some examples are the existence of a temperature shift of swelling with

dose rate, a dose interval to the onset of swelling, and the appearance

of bimodal cavity size distributions.

Representative solutions are shown in Fig. 1. For n less than a

critical number n* there are two physically meaningful solutions for

the condition drc/dt = 0. The lower root, rS, is denoted as the stable

radius. It is that radius where, without fluctuations, a cavity would

reside in the steaay state. It is larger than the thermal equilibrium

radius corresponding to n , because of the excess radiation induced



vacancy flux [9]. The larger root, r£, is designated as the critical

radius. It represents the size above which the cavity undergoes

continued growth during irradiation. Also shown are the maxi-

mum critical radius, r°j corresponding to nn = 0, and the minimum criti-
>- 9

cal radius r*, corresponding to n = n*. Where a cavity contains more

than n* gas atoms, no critical radius exists; that cavity grows

inexorably by bias-driven growth. Figure 2 shows that above a certain

temperature range, r* (and correspondingly, n*) increases very rapTdly

with temperature.

Thus a stable cavity ca,T enter the regime of rapid growth by two

qualitatively different processes. The first is by continued accumula-

tion of gas, produced by 'jransmutation or injection, for example, to

achieve n*. Without fluctuations the time to the onset of rapid

swelling is the time to the accumulation of n*. The alternative path

depends upon fluctuations to briny cavities normally residing at r ' and

containing n < n* gas atoms past the size r whereupon they con-

tinue to grow. In any system there are natural fluctuations from

various processes. Here we investigate the possibility of cascade-,

induced cavity growth excursions.

2.2 Bridging the Gap Between rs and rc

As shown in Fig. 1, rs approaches rc as n approaches n*, and the

gap thjt fluctuations must bridge decreases. We first establish the



required number of vacancies corresponding to the difference between

r5 and rc as a function of n and T. This is accomplishea oy solving

Eq. (1). Under the conditions specified it is found that n* = 345 and

r* = 1.42 nm. The results for rs and rc vs n are shown in Fig. 3,

for n near n*. Shown also are the number of vacancies, An, needed for

conversion corresponding to several values of n . For example, with

An = n* - n we obtain: An = 1, An = 69; An = 2, An = 212; An = 1 5 ,

An = 775.

The cavity is only likely to be converted when the magnitude of

cascade-induced fluctuations is significant with respect to An. Figure 4

shows the dependence of An versus temperature on n . Also shown is the

variation of n* with temperature. This curve bounds the variation of An

with temperature, since for n > n* neither rS, rc, nor the gap between

them exists. Thus Fig. 4 also reflects the dependence of An upon An .

It is evident that the vacancy gap per gas atom rises exponentially with

temperature. For examole, calculations at 690°C give n* - 105 and

An - 10 6 for An = 1. Thus we expect that fluctuations are much less

potent at triggering conversions at high temperatures.

3. ACHIEVING CRITICAL RADIUS BY CASCADE-INDUCED FLUCTUATIONS

3.1 Cascade Diffusion Theory

In cascade diffusion theory the point defects generateu in each

cascade are tracked by diffusion equations with discrete source terms.



The Doint defect flux falling on a sink such as a cavity is the super-

position of contributions arising from cascades thac have occurred at

all earlier times in the entire material volume. Thus it is found that

even during a steady irradiation there are extreme fluctuations in the

defect flux f~om one instant to another at a given point and from one

point to another at a given time. The instantaneous current from a

single cascade to a cavity of radius r is [2]

l
c - 2 ( ^ D T 3 ) 1 / 2 R exp[-(R-rc)2/4DT]exp(-DST) . (7)

Here u is the number of point defects of either kind in the cascade, R

is the distance of the cascade center from the cavity center, D is the

point defect diffusion coefficient and T = t - t , where t is the time

of observation and t is the (earlier) time at which the cascade

occurred. S is the sink strengtn given by the sum of Eqs.(2) and (3).

Superposition of solutions of this type for a typical neutron

irradiation of nickel gives the profile of vacancy concentration shown

in Fig. 5, Large fluctuations are evident.

In our subsequent analysis, several additional relationships derived

from Eq. (6) are useful. We denote by n the number of defects

collected over all time by a cavity from a single cascade. 1 his is

given by

n = j— exp[-S1/2(R - r )] . (8)
C K C *

We also nead the total number of defects collected by a sink up to time

t from all cascades, as well as the variance in this quantity. The

necessary expressions are derived in f.ef. [2]. For present purposes



the ratio of the variance to the mean is sufficient. Denoting the

former as a2 and the latter as n . we may write

Sl/2

2(1
DSt » 1 . (9)

The above results are used in the two subsequent sections to assess

the importance of fluctuations. Two kinds of estimates will be used to

make the evaluation.

3.2 Average Fluctuations

When a cavity has grown to size rs, we may identify this with n ,

the average number of vacancies collected up to time t,

4TT
nc = In rIn

iThe additional number of vacancies required to reach r is thus

4TT C 3
An = -o-r r 3 - n

3fi c c

(10)

(11)

From Eqs. (9), (10), and (11) we obtain,

1/2

o

An

_ c
-l

a ) -

(12)

This last equation compares the average size of fluctuations in

point defect accumulation to the size of the gap necessary to convert

stable cavities to growing cavities. The relationship is plotted in
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Figs. 6 and 7. In Fig. 6 the ratio is shown as a function of cavity

radius rs for a range of dislocation densities often encountered in

irradiation experiments. All curves are for a difference, r*c - r^,

of 0.1 nm. We note that the rms fluctuation is equal to or less than

about 3% of the mean number collected. For high dislocation densities a

maximum occurs at about 1 nm. The relative size of fluctuations is thus

vetj small even for radial excursions as small as 0.1 nm. Figure 7

shows the ratio as a function of r£ - r| for the same dislocation den-

sity range and a cavity radius, rs, of 2 nm. Again, the ratio is very

small except for rc - rs « 0.1 nm.K c c

3.3 Upper Limits

As in the previous section, we consider the effects of fluctuations

in vacancy flux only. Ignoring interstitial accumulation tends to maxi-

mize the size of the effect. On average, of course, vacancy accumula-

tion at cavities is only slightly larger than interstitial accumulation

as dictated by continuing gas accumulation and by the bias. If, even in

this approximation, the effect of fluctuations is small then in reality

it must be smaller still.

The analysis can be simplified further by making other assumptions

that maximize the effect. Equation (8) when multiplied by u, the number

of vacancies in a cascade, gives the number of vacancies absorbed by a

cavity from a cascade over all time. For simplicity, assume both that

all these defects are delivered instantly and that u = 1000, a high

value corresponding to a cascade initiated by a fusion reactor
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neutron or to s high energy transfer from an incident ion. If n > An

then a single cascade is capable of triggering a conversion. However,

vacancies from a sequence of n cascades, each delivering n defects, may

be necessary,

y n̂ . _> An . (13)

i

These would occur over a time in terva l t . The physical s ign i f icance of

t is discussed below. In tegrat ion of Eq. ( 8 ) , weighted by R2, over a?1

space shows that neither nearby nor d is ten t cascades cont r ibute many

defects un averoge--the nearby ones because they are so few and the

distant ones because the point defects are absurbed in the intervening

lossy medium. The region of space con t r ibu t ing most l i es at R = S " 1 / 2 .

S impl i fy ing again by assuming that a l l cascades contr ibute as i f at

R = S " 1 / 2 , and keeping in mind that f l uc tua t ions can only be s ign i f i can t

for small cav i t ies (S 1 / 2 r << 1) , we rewr i te Eq. (8) as

u S ^
nc = — ^ (14)

The probability of n or more cascades in volume V in time interval t

is [2]

A cascade of such largo size would probably form in several sub-

cascades. However, they would be correlated in time and for a distant

sink would appear i<̂  their delivery of point defects much like a single

cascade.
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pn(t) = J P(m,Xt) ,
m=n

based on the Poisson probability for exactly m events

P(m,Xt) = ' |' exp(-Xt) . (16)

Here X is the mean rate of cascade occurrence in the volume V, given by

X = GV/u , (17)

where G is the point defect production rate in physical units. Since it

has been shown that more than 90% of the defects arise from cascades

occurring within s oi.,L3nce of 5S" 1/ 2 of the sink [2], we again simplify

by taking V as the volume of that radius. Eqs. (14) - (16) can be used

to evaluate the probability that a specified number of vacancies could

be supplied within a time interval t.

Figure S shows the An required as a function of An . The probabi-

lity of achieving An in a time interval t can be obtained from p (t) the

probability of n or more cascades, by translating the number of cascades

n to the number of defects collected through Eq. (13) and (14). This is

shown as a function of An in Figs. 9 and 10. Figure 9 is for short

time intervals, t U s, and An _< 20, while Fig. 10 goes up to 21 and

1400, respectively.

Relevant time intervals are appreciated as follows. If the prob-

ability were 10-6/s, then to be certain of a transfer of that stable

cavity one would have to wait for 1 dpa at a typical reactor dose rate

of 10"6 dpa/s. However, in this same time interval a cavity in a

typical microstructure would accumulate -100 additional helium
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atoms at a generation rate of 5 appm/dpa. Thus, referring to Figs. 8

and 10, we see that the additional vacancy accumulation necessitated in

response to the gas atom accumulation would be larger than the vacancy

contribution in a maximized fluctuation caused by a sequence of

cascades.

Figure 11 shows, in an alternative way to Fig. 4, the number

of gas atoms that can be deficient, An , together with n* as a function

of temperature. If the An is above the line shown, then it is not

possible to prociuc° a conversion even by a sequence of cascades. It

is seen, for example, that at 900 K the cavity must have accumulated all

but -0.2% of n*, the number of gas atoms required for spontaneous con-

version, in order to be within range for conversion by cascade-induced

fluctuations.

To connect these estimates to a more easily measurable quantity

during an experiment, we have made approximate calculations of the time

to the onset of swelling with and without fluctuations. As an upper

limit estimate, we assume that fluctuations can trigger swelling as

soon as enough gas is accumulated to bring An to the values shown in

Fig. 11. Here for simplicity we assume that all the gas is trapped at

cavities. The cavity density is taken to be temperature dependent. The

values used are those reported by Farrell [13]. Figure 12 shows

both the relative and absolute values of the reduction in dose. Above

893 K the two doses are essentially identical. However, below 1 dpa any

difference in the dose required would probably be unimportant. Thus any

effect could only be discernible over a very small temperature range and

even then it is smal1.
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4. DISCUSSION

Cavity growth above the critical size is observed experimentally.

In view of the above results indicating small effects of fluctuations,

we conclude that the achievement of critical cavity size is driven by

gas accumulation.

Cascades may also influence the formation of cavities by the

enhanced production of three-dimensional clusters. This is certainly a

process by which, in the presence of gas, the initial cavity embryos

could be formed. It has been shown previously (see for example [14])

that the nucleation rate depends on the square of the vacancy con-

centration. Duriny fluctuations Cj* may increase enormously above the

average (Fig. 5). With contained gas, the clusters will not be

destroyed by the corresponding interstitial fluctuations. There will

also be enhancement because of the direct generation of three-

dimensional vacancy clusters in cascades. Inclusion of such a mechanism

in a rate theory picture using discrete clustering equations [15] is

possible and would allow us to explore the significance of such events.

Thus, we expect that the existence of cascades also affects the number

densities of cavities.

Based on previous work where we found that cascades lead to an

important new mechanism of irradiation creep [3], and on the present

work where the effect on cavity transitions was found to be minimal,
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criteria can be discerned regarding where cascades may be important in

ion beam or neutron irradiation processes. These are that the

triggering event must depend on point defect fluxes from not more than a

few cascades and that the triggered process must be irreversible so that

fluxes of the opposite point defect type do not cause a negating back

reaction.

Mechanisms involving phase changes during irradiation, for example,

should be examined in this connection.

5. SUMMARY

The influence of cascade-induced fluctuations in point defect flux

on swelling, through an effect on cavity formation, has been investi-

gated. Concepts of stable and critical cavity radii established in

earlier theoretical and experimental work are applied. The stable

radius is that at which a cavity containing a given number of gas atoms

resides. It does not grow on the average. For each contained number of

gas atoms below a critical number, there also exists a critical radius

larger than the stable radius. When a cavity either achieves the

critical radius or absorbs the critical number of gas ators, it will

grow inexorably. As the number of gas atoms approaches the critical

number from smaller values, the gap between the stable and critical

radii rar:ows.

In the investigation reported here we examined the possibility that

a cavity may make excursions from the stable to the critical radius
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through cascade-induced fluctuations in point defect flux. Two methods

were used. Both are based on cascade diffusion theory, an approach deve-

loped recently wherein the discrete production of point defects in

cascades is accounted for. The first method is based on a derived

expression for variance in the number of point defects collected at a

cavity. This reflects an average behavior of the cavity population. It

is found tnat the variance is generally small with respect to the number

of vacancies needed to produce an experimentally significant excursion

from stable to critical radius. The second method is a very approximate

evaluation of upper limits and corresponds to the largest excursions

that a very few cavities in the population may experience. Here again

it is found that cascade-induced growth excursions produce differences

that are experimentally insignificant with respect to the case where

fluctuations are ignored. It is therefore concluded that the main

mechanism underlying the achievement of bias driven cavity growth is gas

accumulation.

Criteria are suggested by which it may be judged whether cascade-

induced fluctuations ma^ be important in ion beam or neutron

irradiations.
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Table 1 . Parameter values used in the calcu lat ions

fi(m3) Dj(m2 /s) E^(eV) D°(m3/s) E^oVj r r(m) Y(J/m2) L(m/m3) Z^ E^(eV) G(dpa/s)

1.095 x 10-2 9 1 x 10-6 1 > 4 1 x 1 0 - t , o,15 4 x lO"1 0 1 5.1014 1.05 1.6 10"6



FIGUR: CAPTIONS

1. Schematic of cavi'.y growth rate as a function of cavi ty radius for

typ ica l reactor ;iose rates and temperatures. Quantit ies describing

cavity radius ar-'d contained number of gas atoms are defined in the

tex t .

2. Behavior of th>j c r i t i c a l radius as a function of temperature. Solid

curve show; thji gas-free c r i t i c a l radius and dashed curve shows the

minimum c r i t i i a l radius where the cavi ty contains the (temperature

dependent) cr t i c a l numbe1" of gas atoms.

3. Variat ion of ;he stable and c r i t i c a l rad i i as a function of the con-

tained number of gas atoms showing the range near n* and r*.

4. Variat ion of An with temperature for several values of n . Also

shown is the var iat ion of n* with temperature. This curve bounds

the solut iors for An, since for n > n* no c r i t i c a l radius exists.

g g

5. Vacancy con;entration as a function of time as calculated by cascade

diffusion theory.

6. The ratio j/An as a function of stable cavity radius for several

different dislocation densities. Calculations for bridging a gap

r - r of 0.1 nm.

7. The ratio of a/An as a function of the difference rc - rS for two

c c

dislocation densities and an assumed cavity radius, rs, of 2 nm.

8. The required number of vacancies An as a unction of the deficiency

in gas atoms contained in a cavity, An = n* - n .



9. Probability that a sequence of cascades provides An or more vacan-

L as to a cavity as a function of An for various time intervals.

The stepwise reduction arises because the condition An or more

vacancies can be satisfied by unit numbers of cascades for a range

of An.

10. As for Fig. 9 but for larger An and t. Stepwise variations at

small values have been smoothed out.

11. Plot of An for which an arb^ inly chosen maximum value of An

(1400) is sufficient to enable the cavity radius to increase from

r "•• r oy fluctuations. Also shown is n* as a function of

temperature.

12. Fractional change in dose to the onset of bias-driven swelling due

to cascade-induced fluctuations, as a function of temperature. The

two curves compare calculations where fluctuations are included and

exeluded.



ORNL-DWG 85-15532

LLJ

Q:

X

o
cc

<
or

CAVITY RADIUS



ORNL-DWG 85-15533

CO

<

o U

CJ

NEUTRON
IRRADIATION

ION
IRRADIATION

TEMPERATURE



00
<NJ
IT)
IT)

i

in
CD

o

O

in
ro
ro

s
ro

in
<M
ro

ro

A1IAV0

OJ



( x 103)

16 -

12 -

8 -

0

An = 0
IN THIS REGION

ORNL-DWG 85-15527

200

853 873 893 913

TEMPERATURE (K)

933

160

120

80

40



ORNL-DWG 8 0 - ^ 8 8 9

uo
22

)

to
i

<
\-
2:
LJJ

O
u

100

TIME (s)

150 200



o
rO
in
10

If)

oo
o

a

o

o

O

_ J co

e
c

o>

o
d

ro
O
d

o
o

1

OJ

o
d

o

u v/-o



0.10

0.08 h

c 0.06
<3

0.04 h-

0.02

0

ORNL-DWG 85-15531

r

o 0.1 0.2 0.3

RADIAL INCREMENT, r c - rc "c

0.4
s (nm)

0.5



ORNL-DWG 85-15526

( X 1O2)

16 -

12 \-

8 h-

0
0 8 12 16 20

An,



oo

en

PROBABILITY OF ACHIEVING An IN TIME t

q o 5 o9
ro

o
o

-P*

CD

ro

_•
CD

ro
O

1
—

II

p

(In

- • •

o

—
—

-
i l

0.01

B
C/jC

A
D

E
S

t =
 0.1

 s
i

5
 

-

1

C
A

S
C

A
D

E
S

1
i i
i t

o
1w

o
3>
CO
O
>

o
m

ro o)U
F
F
I

C
A

S

o o

OJ m fj

2 w -
o ^
>
o >
m
CO

i i

M

in

!

—

—

o
JO

o

o
CD

en

en
ro



ORNL-DWG 85-15523

10-1

10-2
 h-

QQ
<
OD
O

CL

1GT* h-

200 400 600 800

An

^000 1200 1400



28

24

20

16

12

8

4

0

CANNOT BE CONVERTED FROM

rc
c BY FLUCTUATIONS

'CAN BE CONVERTED

\- FROM rc
s - »

BY FLUCTUATIONS

ORNL-DWG 85-15524

( X I03)

12

10

8

C

863 873 883 893 903 913 923



o
L_

o

Q
LJ
CC

_J

g
i—
o
<

1.0

0.8

0.6

0.4

0.2

n

0RNL-DWG

I ! I ( I / I
FRACTIONAL /

__ REDUCTION /

i /

"~ 1 /
— \ /

\ /
\0LD INCUBATION /

— \ \ ^

\ ^y^UVN INCUBATION

~~ ^ ^ x ^ D 0 S E

85

—_

—

-15522

R
O

4

3

2

1

n

a
a.
•o

(̂
O
Q

g

<
GQ
23
O

863 873 883 893 903
TEMPERATURE (K)

913


