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Abstract— Estimating the 3D facial landmarks from a 2D
image remains a challenging problem. Even though state-of-
the-art 2D alignment methods are able to predict accurate
landmarks for semi-frontal faces, the majority of them fail to
provide semantically consistent landmarks for profile faces. A
de facto solution to this problem is through 3D face alignment
that preserves correspondence across different poses. In this
paper, we proposed a Cascade Multi-view Hourglass Model for
3D face alignment, where the first Hourglass model is explored
to jointly predict semi-frontal and profile 2D facial landmarks,
after removing spatial transformations, another Hourglass
model is employed to estimate the 3D facial shapes. To improve
the capacity without sacrificing the computational complexity,
the original residual bottleneck block in the Hourglass model
is replaced by a parallel, multi-scale inception-resnet block.
Extensive experiments on two challenging 3D face alignment
datasets, AFLW2000-3D and Menpo-3D, show the robustness
of the proposed method under continuous pose changes.

I. INTRODUCTION

Facial landmark localisation [14], [25], [26], [18], [1], [3]

and tracking [2], [12], [37], [27] under the unconstrained en-

vironment have recently received considerable attention due

to the wide applications such as human-computer interaction,

video surveillance and entertainment.

The current state-of-the-art 2D face alignment bench-

marks [41] revolves around Deep Convolutional Neural Net-

works(DCNNs) [22], [31], [33], [16] equipped with resolu-

tion preserved structure, alleged Hourglass architecture [29],

[9], [8], [38], [15]. Even though the performance of 2D face

alignment is almost saturated on the public benchmarks [9],

2D facial landmark annotations are not always semantically

consistent and hardly preserve the 3D structure of the human

face. This is particularly evident for the landmarks on the

facial contour under large pose variations. By contrast, 3D

annotations preserve correspondence across poses. In this

paper, the 3D annotations refer to the 2D projections of the

3D facial landmarks. In [9], 3D facial landmarks projections

are extended to full 3D facial landmarks by adding an extra

regression network to predict the depth.

3D Face alignment under unconstrained conditions is very

challenging as facial appearance can change dramatically

due to extreme pose, camera defocus, low resolution and

occlusion. Besides, self-occlusion caused by the large pose

variations makes the boundary features unreliable. To keep

correspondence with the 3D structure of the human face,

one might only predict the occluded landmarks by contextual

information.

Fig. 1. Cascade Multi-view Hourglass Model for 3D face alignment.

In this paper, we propose a Cascade Multi-view Hourglass

Model (CMHM) for 3D face alignment. As illustrated in

Fig. 1, two Hourglass models are cascaded with supervision

signals from 2D and 3D facial landmarks. We address this

alignment problem with the goal of improving the accuracy

under large pose variations. More specifically, we have made

three contributions:

1) We replace the residual bottleneck block in the Hour-

glass model by a parallel and multi-scale inception-

resnet block, which improves the capacity and keeps

the computational complexity of the Hourglass model.

2) We capitalise on the correspondences between the

frontal and profile facial shapes and formulate a novel

Multi-view Hourglass Model (MHM) which jointly

estimates both semi-frontal and profile 2D facial land-

marks.

3) We employ a cascade strategy where Multi-view Hour-

glass Model is first applied to find the 2D facial land-

marks. After removing the similarity transformation,

another Hourglass model is performed to estimate the

3D facial landmarks.

Based on these improvements, the proposed method

achieves state-of-the-art performances on the latest 3D

benchmarks, AFLW2000-3D [45] and Menpo-3D [40].

II. RELATED WORKS

To better understand the problem of 2D and 3D face

alignment, we review some related deep learning based

methods.

In [32], [44], [24], DCNNs were employed in 2D face

alignment, and the resolution loss within the pooling step

was compensated by the image enlargement in a global to

local way. Zhang et al. [42] adopted the similar coarse-to-fine

framework with auto-encoder networks. Ranjan et al. [30]

combined outputs of multi-resolution convolutional layers to

predict the landmark locations.978-1-5386-2335-0/18/$31.00 c©2018 IEEE



After the presence of the fully-convolutional network

(FCN) [24], direct landmark coordinate prediction changed

to the landmark response map prediction. Lai et al. [23],

Xiao et al. [34] and Bulat et al. [6] employed the convolu-

tional and de-convolutional network to generate the response

map for each facial landmark, and added a refinement step

by utilising a network that performs regression.

In the area of articulated human pose estimation, Ale-

jandro et al. [29] proposed a novel stacked hourglass

model, which repeated bottom-up and top-down processing

in conjunction with intermediate supervision and obtained

state-of-the-art results. Yang et al. [38] won the Menpo

Challenge by improving initialisation and stacking multiple

Hourglass models. Deng et al. [15] proposed a joint multi-

view Hourglass model for 2D face alignment under large

pose variation. Bulat et al. [8] further explored binarized

Hourglass-like convolutional network for face alignment with

limited resources.

To solve the problem of large pose face alignment, 3D

face fitting methodologies have been considered [19], [20],

[45], which aims to fit a 3D morphable model (3DMM) [4]

to a 2D image. [19] aligned faces of arbitrary poses with

the assist of a sparse 3D point distribution model. The

model parameter and projection matrix are estimated by the

cascaded linear or nonlinear regressors. [20] extended [19]

by fitting a dense 3D morphable model, employing the CNN

regressor with 3D-enabled features, and estimating contour

landmarks. [45] fitted a dense 3D face model to the image

via CNN and synthesised large-scale training samples in

profile views to solve the problem of data labelling. 3D face

alignment methods model the 3D face shape with a linear

subspace and achieve fitting by minimising the difference

between image and model appearance.

Although 3D alignment methods can cover arbitrary poses,

the accuracy of alignment is bounded by the linear parametric

3D model, and the invisible landmarks are predicted based on

3DMM fitting results on the visible appearance. By contrast,

Bulat et al. [9], [7] directly utilised stacked Hourglass model

trained on large-scale data to predict 3D facial landmarks and

obtained state-of-the-art results.

III. CASCADE MULTI-VIEW HOURGLASS MODEL

A. Inception-Resnet Hourglass

Hourglass [29] is a symmetric top-down and bottom-up

fully convolutional network. The input signals are branched

out before each down-sampling step and combined together

before each up-sampling step to maintain the resolution

information. n scale Hourglass is able to extract features

from the original scale to 1/2n scale without resolution

loss throughout the whole network. The increasing depth of

network design helps to increase contextual region, which

incorporates global shape inference and increases robustness

when local observation is blurred.

Hourglass [29] is constructed based on Residual

blocks [16] (Fig. 2(a)), and could be represented as follows:

xn+1 = H(xn)+F(xn,Wn), (1)

where xn and xn+1 are the input and output of the n-th unit,

H(xn) is the identity mapping, Wn is the weight, and F

is the stacked convolution, batch normalisation, and ReLU

non-linearity. To improve the model capacity and compress

the computational complexity of the Hourglass model, we

replace the bottleneck block with a parallel and multi-scale

inception block, and construct the inception-resnet block [28]

as shown in Fig. 2(b).

(a) Resnet block (b) Inception-Resnet block

Fig. 2. Resnet and Inception-Resnet blocks to construct Hourglass model.

B. Multi-view 2D Alignment

Based on the Hourglass model [29], we formulate the

Multi-view Hourglass Model (MHM) which tries to jointly

estimate both semi-frontal (68 landmarks) and profile (39

landmarks) face shapes. Unlike other methods which employ

distinct models, we try to capitalise on the correspondences

between the profile and frontal facial shapes. As shown in

Fig. 3, for each landmark on the profile face, the nearest

landmark on the frontal face is regarded as its corresponding

landmark in the union set, thus we can form the union

landmark set with 68 landmarks. During the training, we use

the view status to select the corresponding response maps for

the loss computation.

L =
1

N

N

∑
n=1

(v∗n ∑
i j

‖mn(i, j)−m∗
n(i, j)‖2

2), (2)

where mn(i, j) and m∗
n(i, j) represent the estimated and the

ground truth response maps at pixel location (i, j) for the n-th

landmark correspondingly, and vn ∈ {0,1} is the indicator to

select the corresponding response map to calculate the loss.

Fig. 3. Correspondence between the profile (39 landmarks) and frontal (68
landmarks) facial shapes. We define a union landmark set with 68 landmarks
for Multi-view Hourglass Model.

C. Cascade 2D and 3D Alignment

Our prior knowledge shows that the variance of the

regression target and capacity of the regression model are the

two main factors affecting the performance of the regression



Fig. 4. 2D alignment acts as spatial transform network for 3D alignment.

task. As our 3D alignment task is formulated as a heatmap

regression problem, we adopt a cascade framework to predict

3D landmarks with gradually reduced variance. As shown in

Fig. 4, we first utilise the 2D multi-view Hourglass model

to supervise the removal of the spatial transformation (i.e.

translation, scale and rotation). We apply Procrustes analysis

between the 2D alignment results and the mean 2D shapes

to remove the difference of rigid face transformation. Then,

we employ another Hourglass network to predict the 3D

facial landmarks. The 3D alignment network only focuses

on the non-rigid face transformation, thus the variance of

the regression target is decreased. During training, instead of

implementing back-propagation on the affine transformation

step, we simply stop the gradient from 3D network to 2D

network in our implementation.

IV. EXPERIMENTS

A. Experiment Setting

1) Training Data: Menpo Benchmark dataset [41] con-

sists of 5658 semi-frontal and 1906 profile face images,

which are selected from FDDB [17] and ALFW [21]. These

annotated face images are collected from completely uncon-

strained conditions, which exhibit large variations in pose,

expression, illumination, etc. In this dataset, semi-frontal

faces and profile faces are annotated with 68 and 39 2D

landmarks respectively. In order to evaluate our method in

different 3D datasets, we use two 3D annotation schemes

(68-point markup and 84-point markup) for training. In [9],

3D annotations with 68 landmarks are generated by stacking

Hourglass model based on the ground-truth 2D landmarks.

In [40], 3D annotations with 84 landmarks are generated by

applying the state-of-the-art 3DMM fitting algorithm of [5]

driven by the ground-truth 2D landmarks.

2) Testing data: Evaluations of 3D face alignment and

tracking are performed in two in-the-wild databases.

AFLW2000-3D dataset [45] contains 2,000 static face

images captured in the wild with large pose variations, severe

occlusions and extreme illuminations, with each annotated

with 68 3D landmarks. To evaluate the alignment perfor-

mance under different poses, AFLW2000-3D is divided into

three subsets: 1306 samples from 0◦ to 30◦, 462 samples

from 30◦ to 60◦, and 232 samples in [60◦, 90◦].

Menpo-3D Tracking dataset [40] consists of 35 videos

(∼35k frames in total), captured in the wild with large pose

variations. Each face from these videos is annotated with 84

3D landmarks.

3) Training Setting: The training of the proposed method

follows a similar design as the Hourglass Model in [29].

According to the centre and size of bounding box provided

by the face detector [43], each face region is cropped and

scaled to 256 × 256. To improve the robustness of our

method, we increase the number of training examples by

randomly perturbing the ground truth image with a different

combination of rotation (+/- 45 degrees), scaling (0.75 -

1.25), and translation (+/- 20 pixels).

The full network starts with a 7× 7 convolutional layer

with stride 2, followed by a residual module and a round

of max pooling to bring the resolution down from 256

to 64, as it could reduce GPU memory usage while pre-

serving alignment accuracy. The network is trained using

Tensorflow with an initial learning rate of 10−4, batch size

of 8, and 100k learning steps. We drop the learning rate

to 10−5 after 20 epochs. The Mean Squared Error (MSE)

loss is applied to compare the predicted heatmaps to the

ground-truth heatmaps. Each training step takes 1.02s on one

NVIDIA GTX Titan X (Pascal). During testing, face regions

are cropped and resized to 256×256, and it takes 20.76ms

to generate the response maps. By contrast, the baseline

method, two stack Hourglass model [29], takes 24.42ms to

generate the response maps.

B. 3D Face Alignment on Images

We firstly present ablation experiment results on the

AFLW2000-3D dataset [45]. The alignment accuracy is eval-

uated by the Normalised Mean Error (NME), which is the

average of landmark errors normalised by the bounding box

size [45], [8]. We use the two-stack Hourglass model [29]

as the baseline, upon which we incrementally add inception-

resnet blocks, joint multi-view 2D supervision, and spatial

transformation, and evaluate their performances. We observe

from Table IV-B that the overall NME decreases as more

modules are incorporated, and eventually drops to 3.08 from

3.78 (equals to a performance gain of 18.5%). The same

NME changes clearly hold across different pose ranges,

which suggests that our method could improve alignment

accuracy for all poses.

TABLE I

3D ALIGNMENT RESULTS ON THE AFLW2000-3D DATASET.

Method [0◦,30◦] [30◦,60◦] [60◦,90◦] Overall

Baseline 2.68 3.34 5.32 3.78
++ Inception-Resnet 2.41 3.15 4.73 3.43
++ 2D Multi-view 2.38 3.08 4.35 3.27

++ Spatial Transform 2.36 2.80 4.08 3.08

RCPR [10] 4.26 5.96 13.18 7.80
ESR [11] 4.60 6.70 12.67 7.99
SDM [36] 3.67 4.94 9.76 6.12

3DDFA [45] 3.78 4.54 7.93 5.42
3DDFA+SDM [45] 3.43 4.24 7.17 4.94

Bulat et al. [8] 2.47 3.01 4.31 3.26

We compare the proposed CMHM with several 3D face

alignment methods, particularly, including two recently pro-

posed 3DDFA [45] and Binarised CNN [8] that exhibit state-

of-the-art performance. Our method outperforms 3DDFA by

a large margin, decreasing the NME by 37.65%. Compared

to the method proposed by Bulat et al. [8], we improve



Fig. 5. Example results of the proposed method on the AFLW2000-3D
dataset.

the performance by 5.52%. In Fig. 5, we give some exem-

plary alignment results, which demonstrate very clear and

unambiguous responses even under extreme poses, exagger-

ate expressions or occlusions. This might well explain the

superior performance of our model over other state-of-the-

art methods.

C. 3D Face Alignment on Videos

We utilise the test set of the Menpo-3D tracking chal-

lenge [40] to evaluate 3D face tracking on videos. We

perform a frame-by-frame tracking on the video, specifically,

we always initialise the next frame by the previous facial

bounding box unless there is a fitting failure, in which case,

a face detector [43] would be called to initialise. The fitting

failure is judged by the third face region classifier of the face

detector in [43]. We follow the same protocol of the Menpo-

3D challenge, compare our method with its participants:

Xiong et al. [35], Zadeh et al. [39], and Crispell et al. [13].

Fig. 6. CED curves on the Menpo-3D tracking test set.

Fig. 6 reports the Cumulative Error Distribution (CED)

curves, and Table IV-C reports the Area Under the Curve

(AUC) and Failure Rate (FR). The RMS point-to-point

error is normalised by the diagonal length of ground truth

bounding box [40]. We could observe from the Table IV-C

TABLE II

3D ALIGNMENT RESULTS ON THE MENPO-3D TRACKING TEST SET.

Method AUC FR (%)

Our method 0.7977 1.68
Baseline 0.7605 2.35

Xiong et al. 0.7935 3.38
Zadeh et al. 0.7187 1.83

Crispell et al. 0.7617 1.61

Fig. 7. Example results of our method on the Menpo-3D tracking test set.

that CMHM obtains a clear improvement (3.72% in AUC)

over the baseline two-stack Hourglass model [29], and it also

achieves the best performance (AUC=0.7977, FR=1.68%),

which is slightly better than the challenge winner [35], con-

sidering that they combined the local heatmap regression and

global shape regression. We believe such good performance

comes from the robustness of our response maps under large

pose variations. This could be proved in Fig. 7, where we

select some frames from the Menpo-3D tracking test set

and plot their corresponding response maps as well as 3D

alignment results. We could easily see that the responses

remain clear and evident across different poses.

V. CONCLUSION

In this paper, we proposed a Cascade Multi-view Hour-

glass Model (CMHM) for 3D face alignment, in which the

first Hourglass model is used to jointly predict semi-frontal

and profile 2D facial landmarks, after removing similarity

transformations, another Hourglass model is used to esti-

mate an accurate 3D facial shape. To improve the capacity

without increasing computational complexity of Hourglass

model, original residual bottleneck blocks are replaced by

a multi-scale and parallel inception-resnet blocks. Extensive

experiments on two challenging 3D face alignment datasets,

AFLW2000-3D and Menpo-3D, show the accuracy and

robustness of the proposed method under continuous pose

changes.
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