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CASCADE SEMIGROUPS AND THEIR CHARACTERIZATION
By Tetsvo FujMAGARI AND MiNORU MoToo

Introduction.

A mathematical theory of cascade processes with infinite cross section has
been developed by Harris in his book ([3], Chap. VII).? By a cascade process
with infinite cross section, we mean a process in which each particle splits in-
finitely often in any finite time interval. In our paper, we will treat a model
which satisfies “ Approximation A” in Harris’ book. Our model is less general
than Harris’ one in the sense that it consists of only one type of particles such
as electrons. On the other hand, it includes the case where the particle may split
into infinitely many new particles simultaneously and may lose its energy con-
tinuously.? Inspired by recent developments of the theory of continuous state
branching processes ([7], [8], [9], [13], [14], [15]), we shall define a cascade process
as a branching Markov process satisfying a condition of homogeneity on a certain
space of discrete measures. Fach measure in the space represents a configuration
of a system of countably many particles. Moreover we shall specify the process
by its characteristic quantities.

In §1, we investigate fundamental properties of a space M, of measures.
Any element p in M, (0<p<co) has a form 33, 2z, 0<z:=1, N2, 2:=p) or 0,
where 95, is a unit measure concentrated at ;. A measure p=}; 20z, corresponds
to a configuration of a system of particles, with energy x; (=1, 2, ---). The total
mass ||g||=2;.2; of p represents the total energy of the system. Endowed with
weak*-topology, the space M, is considered as a compact metrizable space. In
§2, we first define a cascade semigroup on the space of continuous functions on
M,. It has the branching property and certain property of homogeneity in addi-
tion to usual ones of conservative Markov semigroups. Then, we define a cascade
process () corresponding to the cascade semigroup, where g, is considered to
specify the state of the system at time £ In §3, we derive an underlying process
(z;) on [0, 1] where x; may be considered as the energy of each specific particle
at time ¢. It is shown that (—log x;) is an increasing additive process. In §4, a
branching measure /T on M;—{d,} is introduced. The measure represents the law
of splitting of each particle. It has a close connection with the Levy measure of
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1) Historical notes and physical meanings of the theory are also seen in the book
(Chap. VII, §1 1n [3]).

2) Even in this case it is different from “ Approximation B” in §2 of [3].
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CASCADE SEMIGROUPS AND THEIR CHARACTERIZATION 403

the underlying process (z) (see (4.15)).» The underlying process is uniquely
determined by a branching measure /7 and a nonnegative constant z. The con-
stant m represents a rate of continuous loss of energy of each particle. In §5,
using the underlying process and the branching measure, we derive a system of
(Sg)-equations. They are fundamental integral equations, and their unique bounded
solution is given by the cascade semigroup. The system of (Sg)-equations is an
analogue of the equation given by Skorohod [12] (see, also, [5]). In §6, we show
that for a given cascade semigroup the underlying process and the branching
measure are uniquely determined through (Sg)-equations. The result is used in
§8. In §7, we have the expression of the generator of the cascade semigroup.
A non-linear evolution equation for the cascade semigroup is derived by using the
branching measure I/ and the nonnegative constant m. The equation corresponds
to that given by Harris (Theorem 11.1 of Chap. VII in [3]). In §8, we start
with a process (x;) on [0, 1] and a measure I7 on M,—{d;} satisfying centain con-
ditions which are known to be necessary for an underlying process and a branch-
ing measure. By solving (Sg)-equations constructed by (z;) and 17, we obtain a
cascade semigroup. Moreover, it is shown that (z;) and /7 are the underlying
process and the branching measure of the cascade semigroup. Finally, we have
the following result: There is a one-to-one correspondence between cascade
processes and pairs (m, II), where m is a nonnegative constant and /7 is a meas-
ure on M;—{5} such that [a,_py (L—M()I1{dp)<+oo where M(p)=max, z; for
p=X.z:0s,€ M. Il is the branching measure and = is the constant mentioned
in §4.

Main results of the paper were published in [2] without detailed proofs. We
would like to express our thanks to Professores N. Ikeda, M. Nagasawa, and S.
Watanabe for their valuable opinions and encouragement.

§1. Preliminaries.

In this section we shall present several notions which will be necessary to

formulate cascade processes.
First of all, to define the state space, let S be an interval (0, 1], and set

M,={y; p is a measure on S such that =0 or
}t=21 xiﬁxi (szS) and []/,zH:Zszép}

for each p (0<p<co), where x,0,, is a measure which is concentrated at a point
z; and has a mass x; at the point, 3], denotes a finite or countably infinite sum,
and ||yl is the total mass of a measure p. Setting p=1, M; will be the state
space of cascade processes.

For introducing a topology on the space M, let C, be the set of all con-

3) II 1s o-finite, but not necessarily finite. If /7 is finite, the process has a finite
cross section,
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tinuous functions on S vanishing in a neighborhood of 0, then there exists a
countable family {f.} of functions in C, such that 0=f,=1 for all =1 and the
linear hull _£{f,} is dense in C, with the uniform topology.

Given such an {f,}, set

ol 9)= 5o 1 1= (o )

n=1

for each p, ve M,, where (f, p) is defined as

) )= sz(xm(dx)

for any Borel function f on S and any measure ¢ on S. By the definition, it is
clear that p(y, v)=2p for all p, ve M.
Then, we have the following

ProrosiTiON 1. 1. (M), p) is a compact metric space and the convergence with
respect to p is equivalent to the weak*-convergence, i.e. for {usC My, peMp, pn—p
in p if and only if (f, p)— (S, p) for all feC.

Proof. (M, p) is obviously a metric space and the equivalence of convergence
in p and weak*-convergence is also easily shown. Hence, we have only to show
the compactness of (M,, p). To begin with, it should be noticed that a bounded
closed set in the dual space C, of C, is compact with respect to the weak*-
topology and the space M, can be considered as a set in C; in the usual way.
Therefore, as the boundedness of M,cC; is clear, it is sufficient to verify the
closedness of M, in Ci.

Let {¢.} be a sequence in M, converging to some continuous linear functional
leC;, then [ may be identified with a measure p on S which satisfies [|y||=p. If
infinitely many g, are equal to 0, then obviously p=0eM,. Hence it is sufficient
to consider the case o= 210 X027 for all ». If we denote the restricted measure
on [, 1] (0<e<1) of a measure x4 on S by pl., then pu,|, converges weakly to p|. as
n—oo, if p({e})=0. Let pyl,= Q’;ﬁx’;ax?, then N.=(fo, ptx]) for a continuous func-
tion fo(2)=z"1 on [¢ 1] and this converges to (fo, #l)=N if p({)=0. From this,
N,=N for all sufficiently large » and so we can choose a subsequence {zn;} of {n}
such that N,,=N and z7* converges to some x; as k—oo for all i (I1=i{=N).
Thus pn,l, converges to Y, x4, and we have p|.= XY, x:0», if p({e})=0. There-
fore, taking a sequence ¢, |0 such as p({e,})=0, we can conclude p=3; z:0s, ie.
LEM,.

We remark that the topology of M, does not depend on the choice of {f,}
because it is equivalent to the weak*-topology by proposition 1. 1.

Next we define a function f which will play a fundamental role in formulat-
ing the branching Markov process. For this, set
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B¥={f; f is a Borel function on S
such that 0=f=1 and f=1 in some neighborhood of 0}

and
C¥={e" ¢eCy and o=0}CB}.

Then we define f(y) for any feB¥ and any peM, by

(L. 1) Fr=exp({ < 1og ftoyaa),

where log 0=—c0 and ¢~~=0. It follows by the definition that 1=1, F is a Borel
function on M, 0=f=1 and f(0)=1, and if feC¥, then 7>0.

We will consider f for feC¥ almost all time, partly because of the following
proposition.

PrOPOSITION 1. 2. The linear hull _r{f; feC¥) is dense in the space C(My,) of
all continuous functions on M, with the uniform topology.

Proof. If feC¥, then x log f(x)eC, and so feC(M,) by the definition. Thus
Proposition 1.2 follows from the theorem of Stone and Weierstrass.

We shall state some of properties of f.

. LEMM:’& 1'}‘ O If f,9eB¥, J?(#)@(ﬂ)=f/'?l(ﬂ) Jor any peM, (i) If f€{33",
Fletv)=F () f) for any p,veM, suck as p+veM, also. (iii) If feB¥, f(w
=1L flx:) for any p=73: x:id02,€ Myp.

Proof. () Fitr=exp( | log fapae)exp ([ log atoran)
=exp({ - log staarutan) =Fat-

e 2 1

@) Fut) =exp( | log fla)u+ae)

=exp({ % tog Aoyt Jexp( | tog rtantao)

=F (@i w).
(iii) Since feB¥, flx)=1 on (0, ¢) for some ¢>0 and so

F=esp (| + tog floyaa) =eXp<Scs,u% log 7))

=.1:I.§[sf($l) - ];'.I f(ah)
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when p=3%, 10z,
We now define a multiplication of geS and peM, by

Y atides, i p=3 Tibsy
k2 1

1.2) a-p=

0 if =0,
and set
1.3 0uS(x)=1(ax)

for any Borel function f on S. Clearly a-peM,, 0.5¢B¥ for feB¥ and 0,feC¥
for feCH.

LeMMa 1.2. () For any acS, a-p is a continuous mapping of p on My (ii)
- A
If aeS and feB¥, fla-p)=0.f(p) for every pe M.

Proof. (i) Let {y} be a sequence in M, which converges to g Since
() @ pn)= Sso(x)a-ﬂn(dx) = Saso(ax)#n(dx)
and ap(ax)eC, for any ¢eC,, (¢, @-pun) converges to
Saso(ax)ﬂ(dx)=(so, a-p

Thus a-pp—a-p as n—co.
(i) When p=73] 204, it follows from Lemma 1.1 (iii) that

Fla-w=F(% azides)= 11 flaz:)
and
A\
Oaf(/«‘) :1;1 0af(xi)21}f(dxi),
so that we have the lemma.
We define a function M(y) on M, by

max x; if p=X 2:lay
2 k3

1. 4 M=
0 if p=0,

which will play an important role to characterize a cascade process.
LemMma 1.3. M(y) is a continuous function of p on M,.

Proof. Let {u,} be a sequence which converges to . When p=0, choose a
function feC, such that fz0 and f=1 on [, 1] for 0<e<l. Since (f, u,) con-
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verges to (f, 1)=0, (f, un)<e and so M(us)<e for all sufficiently large ». This
implies M(p.)—0=M(y) as n—co.

As for the case p=x0, put a=M(x)>0 and choose a function f,€C, such that
£1=0 and
1 if e=x=1,

fl(x)‘—:‘{ .
0 if O<zx=a—¢

for each sufficiently small ¢>0. Since the limit of (fi, ) is (fu, w=a>0,
(f1, pta)>0 for all sufficiently large » and so M(un)>ae—e Similarly, choosing a
nonnegative function fy€C, which satisfies
1 if ate=sx=l,
f2<x)={ _
LO if 0<.Z‘§d,

we have M(u,)<a-+te for all sufficiently large ». Therefore we have M(pn)—M(y)
as #—oo.

Finally we shall introduce some more notations which are of technical use in

sections 4, 6, and 8.
For any d (2/3<d<l), set Su=((1—d)/d, 1] and

Mg={us; p is a measure on Sy such that z=0
or p=3; Zibz,(#:€Ss) and ||pl|=<p}.

Then, introducing weak*-topology on M$ as in the case of M, M% is also a
compact metrizable space. For peM,, denote the restriction of x on S; by ¢a(z)
=pls, then ¢s maps M, onto M7. Set

B*={f; 1 is a Borel function on S such that
0=7=1 and f=1 on S—S4}

and denote the Borel fields on M, and Mg by B, and B¢, respectively. Then we
have the following lemma.

LevmMa 1.4, (1) ¢4 is a continwous mapping from M, onto M$. (ii)
0 (BHC B, and if 2/3<d<d’'<1, i (BPCe(BF). (i) Vi1 93(BF)=Bp.
(iv) If feB%, f is a ¢z (BE)-measurable function.

Proof. (i) Denote Co(S;) the set of all continuous functions with compact
support on Sy and define FeCy(S) for feCo(Ss) by

_ {f on Sg,
0 on S—S;

Let {u:} be a sequence which converges to g in M, then for each feCy(Ss),
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o, godmn)):SS fdsod(pn>=gsfdm=(f, o).
d

Thus letting #—oco, we have @q(pun)—pe(p) in Mg, (i) It is clear from (i) that
9 (BHC By It BeB, ¢aHpalpz(B))=¢z(B) and in addition ¢u(pz'(B)eB§
since it 1s shown in the same way as (i) that a mapping Mg spu—p|s,eM$ is con-
tinuous, and pls,=¢@apa!(y)). Thus we have (ii). (i) V.e'(BF)C B, is obvious
from (ii) above, and so, noting the fact that 3, is equal to the minimal ¢-field on
M, with respect to which all continuous functions on M, are measurable, in order
to prove (iv) it is sufficient to show that all continuous functions on M, are
V 4 pg{(BE)-measurable.

For each nonnegative function ¢geCy(S), there exists such a d (2/3<d<1) that
g=0 on S—Ss; Then, if d<d’'<1, (g, =(gls,, 0a(p) for any peM, Since
9lsy €Co(Sar), (glsy, v) is a continuous function of v on Mg and so (g, p) is ¢ BE)-
measurable. It follows from this that f is V4 ¢7{(B8)-measurable for any feC¥.
Therefore, from Proposition 1.2, all continuous functions on M, are V, ¢;{B%)-
measurable. (iv) If feB%,

Fa=exp({ - tog flaan)

:exp(SSd -31? log fi (x)ﬁﬁd(#)(dx))

for all peM,, and the right hand side of this equality is a @Bg-measurable func-
tion of @a(p), so that f is ¢z'(Bg)-measurable.

Furthermore, we shall state the following extension theorem.

LemMma 1.5. Let {4z 2/3<d<]}) be a family of measures such that each Ag
is a finite measure on (M, ¢z B%)) and if 2[3<d<d' <1, Ag is the restriction of
Ay on 07 (BE). Then, there exists a unique measure A on (My, Bp) such that As
is the restriction of A on ¢;'(BE).

Proof. Set A*(A)=A4(A) for Acpz(BE). Then A* is well defined on V4 03 (BE)
and a finitely additive set function on it. Let A be any set in Vg4 ¢z($B%), then
A=¢3'(A) for some d and ﬁe@g. Since Ag(+)=44p3'(+)) is a finite Borel measure
on the compact metrizable space M$, there exists for any ¢>0 a compact set K
such that Kc A and

Aao ()= A Ry= Ao A)— o= Ao( A)—e.

Since ¢q is continuous and M, is compact, go;‘(f(/ ) is a compact subset of A and
in pz(p$). It follows from this fact that A* is countably additive in V4 ¢z'(BE).
Thus A* can be extended uniquely to a measure 4 on Vg (Bg)=P, This 4
is a required one and the uniqueness of A is obvious.
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§2. Formulation.
We now define a cascade semigroup and a cascade process.

DerFINITION 2. 1. {T}; t=0} is said to be a cascade semigroup when it satisfies

@) {7, t=0} is a strongly continuous and contraction semigroup of nonnegative

linear operators on C(M;) and 7, 1=1 for ¢=0, (b) T.f(p+v)=Tf(WT.f(») for any
A

FeC¥, if p,v and p+veM,, and (c) T.f(ad.)=Th.f(6,) for any feC¥, if aeS.

By the general theory of Markov processes (see, for example, [1]), there exists
a strong Markov process {W, m, J1;, P,.; €My} on the state space M; with right con-
tinuous sample paths with left limit at each /=0 such that T,F(p)=E.[F(u)l,
where W is the space of sample paths and w(w)=w(#) for weW, Ji; is a o-field of
subsets of W generated by the sets {w; p(w)eA} for Ae B(M,) and sel0, £, and
E,[-] denotes the expectation by the probability measure P, on (W, J1..) in which
1. is the smallest o¢-field including 97, for all =0. We shall call the Markov
process (p:) a cascade process. The property (b) in Definition 2.1 will be called
a branching property of the semigroup (or of the process (g)) which is an
abstruction of the independence of each particle of the cascade process (cf. Ikeda,
Nagasawa, and Watanabe [5]), where we interprete a state p=3, 2:0,,€M; as the
existence of particles with energy (or mass etc.) x;, i=1,2,---. The property (c)
in the definition is an analogue of the “Approximation A” of Harris’ book [3]
(p. 167) representing a homogeneity of a medium in some sense. This will
become clear in later sections.

In the following, we shall study some general properties of a cascade semi-
group {7;} (or of a cascade process (m)).

LemMa 2.1, Let (T.f)ls be the restriction on S of T.f defined by (T.f)|s(x)
=T,f(xds) for feC¥. Then, (T.f)s€C¥ and

A N
@1 Tof (py=(Te ))s(2)
Sfor all peM..
Proof. Put ple=2s,z. 20z for any p=3}, 2i0;,€ My, then pl—p as ¢ | 0 and

L () =lim 7./ (4.

by T.feC(M,). Since the branching property (b) implies
Tf(ul)= 1 Tif (@idey),

we have -
2.2) T.j (=11 Tf (@)

On the other hand, there exists 0<e¢<1 for each feC¥ such that f(x)=1 for
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0<zr<e. Since
. AN
Tif (x0z)=T\01(01)

— En[027 ()]
= exp({ L tog stevyutan) |

it follows T;f(x6,)=1 if 0<z<e Therefore (T:f)|seC¥ follows from the con-
tinuity of the mapping x—xzd;. Thus, (2. 1) follows from (2. 2) and

A
(TA)ls(e)= H (TiP)lsw)= 1} Ty f(2idz;)
by Lemma 1.1 (iii).

It is shown that the total mass in a cascade process does not exceed the
initial one.

ProrositioN 2.1. For any peM,,
2.3) Pl =gl Sor all t=0)=1.
Proof. Take a sequence {pn}CC, such as ¢,=0 and ¢, {1 for #—oco, and put
Faliw)=eronc,
Then, since f,eC¥ if 2=0, it holds

thn(ﬂ+y): thn(#) thn(“)
and

T w(@0e)=Tiba)u(:)

for any 2=0. Moreover, since 7;f,(y) turns out to be an analytic function of 2
in the whole complex plane from the expression:

thn(#) = E,,[exp(gs Zgon(x)pt(dx)> :I =F,[e¥onm)],
the above two equations hold for all real . Thus we have

T fap)=TI Tolnsfal6)

for any p=3, z:i0s,e M: and any real 2 because f,eC(M;) implies 7,f.eC(M,).
Since

N\
Oafn(p)=€XP (aZS son(ax)ﬂ(dx)) =erallall
S
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for 1>0,
I Ty o0 =11 B [0, ST femsto]
=11 E; [e%i?] = g*Timi= g2l el
2

for 1>0. On the other hand,

Tif )= Eleiowm] | E,fet o]
as #—oo for 2>0. Therefore we have

E,ferliml]gdlisll,

or

E,[extali=11a] =1
for all 2>0. Thus, letting 2—oo, we have
P(lpell =11zl >0)=0,

or
Pl =llplh)=1

for all £=0. Moreover, by the right continuity of p{w), we have
Plpll=llpl] for all £z0)=1.

The branching property may be extended in Proposition 2.2 below, but for
this it needs the following

Lemma 2. 2. For any integer n=1l, fi, fa, -+, fa€C¥, and 024 == --=¢1,< 00,
.4 Bl 1170 [=B 11 7 |- B 11 70 |

if pv and ptveM,.

Proof. (2.4) is reduced to the branching property for n=1. Since, by the
Markov property at time Z,-1,

Byl 117400 |= B T 0B, Ftmsn )|

In—1

where by Lemma 2.1

T T —

By Uitttymty N=Topmty o F ottty =Tty )5ttt

and
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| f(/x)]=E[H f(y)f(ﬂ)(T/\f)ls(#)J

= ,,+»|:1:IjjJ?i(ﬂti)fn—a—zn\_lf'n)ls(#zn_l)],

we have, if we assume (2. 4) for #n—1,

T —

By 117400 [ =B Tl A oo Boet s Pl |

[ wale ]

<B| Tl F o TPt )]

Thus the proof is completed by induction.

We now define w=w,+w.e W for wi, w.e W by plw)=p{wi)+ puw,), £=0 if it
belongs to M; for all ¢=0.
Then we have the following

ProproSITION 2. 2. For any bounded Jl..-measuvable function G,
(2. 5) E, [Gu))=EPQ EP[G(w: +ws)]

if pr,v and pt+veM,, where PP=P,, PP=P, and EPQFEP denotes the expecta-
tion by the product measure PP QPX.

Proof. For fi, /s, -, f€C¥ and 0=4H =6 = ={,<oo, we have, by Lemma 2. 2,

Ey [ 1(,)) ++ F e o))}
=E® ® EL[F 1(p1,w01)) Falpto 1)) F s (w))-+ Ful 1, (002))]
=EP Q@ EPLf 1t (w1)+ s, s)) -+ F n gt (1) + pre, (w0))]
=E® Q@ EPLF1(pte,(w1+ws)) -+ f nlpten(ews+ws))],

where we note that witw,eW, PP®PP-a.s. because [jmlw)]=]yl and
llpwa)l|=lv]] by Proposition 2.1, and hence ||u(wy)+ o)l =4+ |vil=]lz+v]| =1
PP®P®-a s for all =0 since p+veM,.

Therefore, by Proposition 1.2, (2.5) holds for the function G(w)
=F1(pe, ) Fopre, () -+ Fro(pue, () Where Iy, Fy, «oo, FeC(My). Thus we have (2.5)
for any bounded J7.-measurable function G by the standard argument.

From this proposition, we can see the probabilistic meaning of the branching
property which is originally defined by means of a semigroup {7:}: there are no
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interactions between particles in a cascade process and they move independently
each other and obey the same probability law.

The notion of homogeneity can also be expressed by (2.7) in the same way
as Proposition 2.2, We first show the following

LEMMA 2. 3. For any integer n=1, f1, fo, -, f2€C¥, and 0=t == =f,<oo.

@ 6) B [T i) ] [n Fia))|

if aeS and peM.
Proof. Since, by Lemma 1.2 (ii) and Lemma 2. 1,

4 A - i
Eo l f1(ue))=Ti fola ) =(T, f )lsla- ) =0T, F 1)ls(p)
and

0T fo)\ () =(To, F)s(a@) = T, Fr(awdas) = T unfs(3s)

TN N\ N\
= nlﬁzeafl(al) = ﬂlgafl(xax):(Elﬁafl)[s(x)’
PR
~ N\ Ve
Eaoul f 1 N=(T2,001) | s(p) = T2, 00 S ()

N\ N
=Eu[0af1(#t1)] ZE#[fl(a' /ltl)]-

Thus (2. 6) holds for n=1. Then (2.6) is verified by induction for all z=1 as
follows. Assume (2.6) for n—1. Then

B 117400 | =] Tl 70 B _ Pl |

||:]1

Buo| T Fiued s T F st )]
T —
]

=B\ T 7 o Tty s P15 1)

rn—1 .
=] Tl A nn_tnglfnw-mn_l)]

=F, ﬂ z(a P‘%)Fp [fn(a'/“n—ln—l)]_l

I
gj
||::]‘|

J?z(a’ lltz)fn(d' #tn)—!;

and the proof is completed,
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Define a-weW for aeS and we W by mla-w)=a- m(w), then we have
ProrosITION 2. 3. For any bounded Jl..-measurable function G,
2.7 Eu [Gw)l=E,[G(a-w)]
if aeS and peM,.

Proof of Proposition 2. 3 is completed in the same way as that of Proposition
2. 2 making use of Lemma 2. 3.

This proposition suggests a homogeneity property of a cascade process.

Put M,=M(y;) where M(p) is defined by (1.4). Then M, is right continuous
and has left limit at each #=0 because of Lemma 1.3. We shall denote Po=PFus,
and Ey=~Fy,,, a€S, from now on.

ProrosiTioN 2. 4. For all peM,,
2. 8) PM, is non-increasing for all 1=0)=1.

Proof. When p=ad,, Polmll=e)=1 by (2.3) and hence P M,=M)=1.
When p=ad.+bd, we have, by Proposition 2. 2,

PMy=Mo)=Pasgroa(Mi=(aV 0)) = PP Q PP (Mw:i+wz) =(a\/ b))
=P QPP(M(w)=(aVb), Mw:)=(a\b))
= Po(M; =(aV D) Py(M;=(aV b)) = Po(M; =a) Py (M, =b)
and hence
P(M,=My)=1.

In the same way, P.(M,=M,)=1 holds for u=37., x:0s;. For any peM;, take £>0
such that p((0, e])=M(y), then we can write as p= )]z Zi02;+ o Where || ]| = M(p).
Since, then,

P (M =My)=P,(M,=Mp)=Proz, o0y (M= M) Pp(My=M(p))

2ibx;

=P, (M= M(p) = Pu(Mi=llpol) Z Pyl = |10l D=1,

we have P.(M,=M,)=1 for any peM..
Now, by the Markov property,

PF(M%M)ZE#[P#S(MO_Z_M—S)]:1» 0=s=i<oo
and hence we have
P(M;=M, 0=s=i<co)=1

by the right continuity of M,.
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Put W’={weW; MJw) is non-increasing for all #=0}, then W'eJ., and hence,
by Proposition 2.4, we can restrict the sample space W to W'. Thus we take
W' as our sample space from now on, writing it again W.

We now define a Markov time z4 which will play an important role in study-
ing a cascade process.

Let d be 2/3<d<1, and define

. Mi(w)

inf {s; ———— =,
@.9) i) = Mifa) ]

+oo if {}=6.
Since

M,
{re=t}= {—]\f éd‘ € Jl.,
7 is an J1,-Markov time. Moreover it satisfies rq(a-w)=14w) for any aeS. For
any 0=e¢=1, define
inf {s; Mw)=e},
2. 10) ne(w)={
+oo if {-}=¢,

then o, is also an J7,-Markov time and the following will be usefull later:

My(w)
Mi(w)

=ttogm(wy), qlw)= Myw)d,

rdw)=t+Tpaum@y), pw)= d,

@.11)

if t<ralw)<oo, where d=pw)<1.
We can assume tg is finite except a trivial case. To see this, we first show
the following

LeMMA 2. 4. If Pirq=00)>0 for all d (2/3<d<1), then each peM, is a trap,
ie. Pu=p for all t=0)=1.

Proof. Put a=Pi(rq=0c0). Then
a=P(M;>d for all s=0)
=Pi(Ms;>d for all s=0)
=FEi\[M;>d; P,(M;>d for all s=0)]
for any ¢#=0. Putting p=M0x,+’, we have
P, (M>d for all s=0)
=PP Q PP (Mw:+w,)>d for all s=0)



416 TETSUO FUJIMAGARI AND MINORU MOTOO
=P§ ® PO(Myw:)>d for all s=0)
=Py (M;>d for all s=0)
since M(w)=M(p')<1—d<d. Moreover,
P,(M;>d for all s=0)
=P(Mfa-w)>d for all s=0)
= Pi(aMy(w)>d for all s=0)
=P(M,>d for all s=0)=a
for any e€S. Thus we have
a=EM:>d; Py (M:>d for all sz0)]<aP(M,>d).

Therefore, a>0 for all d (2/3<d<1) implies Pi(M,>d)=1 for all d (2/3<d<:
and hence Pi(M,=1)=1. Since

Po(pu=0aba)=FPo(M,=0a)=P(M,=1)=1,

we have T:f(ad.)=1(a) for all feC¥, and, by the branching property,

A
T (=(T:NHls()=F(p)
for all peM,. Therefore T,=1 (identity), which concludes the proof.

PrROPOSITION 2.5. It holds PJrg<oo)=1 for any d (2/3<d<1l) and a
neM,—1{0}, except the case where each peM, is a trap.

Proof. If any peM,—{0} is not a trap, there exists d, (2/3<d,<1) such th
Pi(rgy<c0)=1, by Lemma 2.4. Since r4=1q, for d=ds, Pi(rg<c0)=1 for a
d (dy=<d<1). Clearly Py(rg<oo)=Pi(rg<c0)=1 for aeS, and

Pisyrva,(ta<<00)= P @ PP (ra(w:i+ws) < o)
Z PP Q PP (ra(wr)<oo, tews)<oo)
= Pyra<00) Py(rg< o0)=1,

Thus, by the same argument it holds P.(rg<o0)=1 for p=}7., x:idz. For a
peM,—1{0}, we write p=73] x:0s,=pqs+ ' where pa= X z;2m0e bz, and M(p") < My
Then

Pr4<00)=Plomyra<o0)= P& PE(0malw:)V ou a(ws) < o0)
=P, y(0r e <0)Pu(0aya< 00)= Ppy(ra< 00)=1
for any d (do=d<1).
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Since rpw)Ecdw)trawd) i p, 0, and rpw)=rt4w) if zsw)<oco and
F‘rd(W) (1/0) = 0:

P(rpp<oo)=P(fw; tolw)+ralwly) <ooh)+ Pura<oo, pry=0)
=E,[ra<oo, 1o, 00 Py, (ra<00)l+Plra< o0, p1ey=0).
Therefore, if d,=d<1, we have
P (r2<0)ZP(rg <0, pt:y¥0)+ Pulra< o0, p1,,=0)
=P, (rg<c0)=1

for any peM;—{0}. Thus we have PJr;n<co)=1 for any d (dy=d<1) and any
pe€M—{0}, and hence P.(zq<oco)=1 for any d (2/3<d<1) and peM,~{0}.

By Proposition 2.5, we assume P.(ry<oo)=1 for any d (2/3<d<1) and any
p€M,—{0} from now on. We remark that it follows from the last part of the
proof of Proposition 2.5 that M, decreases to zero and hence p, converges to zero
almost surely when # tends to infinity.

Since M, is right continuous, it is obvious that P,(rs>0)=1 and hence it can
be made P.(rq=#)<1, taking #>0 to be sufficiently small. Moreover we have
the following

LemMA 2.5. Set
{41(f)=Px(Td§t),
GnsO=FEolgn(t—za); t=7g], nz=l.

@.12)

Then q.(t) does not depend on x€S and for any t>0 it holds g.(6)<1 for suffi-
ciently large n.

Proof. By Proposition 2.3 and r4la-w)=z4w), it is clear that g¢,(f) does not
depend on x. By definition g,(¢) is non-decreasing in #=0 and non-increasing in
n=1. Take #,>0 such as ¢(t,)<1. Then we show g.(n#)<1 for all =1 by
induction as follows. Since

Znis((n+1Dto)=Exlgu((n+Dto—ca); (n+1)te=74]
=Eulg(n+Dto—74q); to<za=(n-+1)t]
+ Eagn((n+1D)to—1a); ta=t0)
Z@n(n to) Palle <ta =+ 1)t0) + Pulra=ts),
we have, by assuming ¢.(#n ) <1,
Gnii(n+1)lo) = Po(ra=1)<1
when Pu(to<ta=n+1)t)=0,
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and
qn+1((n+1)to)<Px(to<7d§(”’+1)to)+Pz(Td§to)
=Py(ra=(n+1))=1

when Py(ta<te=(n+1)t;)>0, and hence gn.((+1)t)<1.
Therefore, for a given £>0, taking # large enough to satisfy ¢=#1?, we have

Zn(l) =gqn(n t)<1.
LeMMA 2. 6. The nonnegative bounded function u(t) which satisfies:
(2.13) w)=Efu(t—za); t=7d], 0=t<T
is mecessarily zevo for any fixed T>0.
Proof. Put ||ul|=supog:<r |#@)]. Then
u@)=llul|Potzca)=lullq:®),  0=¢t=T.
Now, assume |u(@®)| =||#||q.(t), 0=t=T. Then
[ =|el| Eolgn(t —74); t=74]
=wllgn(®), 0=t=T.

Thus we have |ju||=||ullg(T) for all #=1 and hence #=0 since ¢.(7)<1 for
sufficiently large # by Lemma 2. 5.

§ 3. Underlying process.

The process (M;) which is obtained by tracing out a particle with the maxi-
mum energy (or mass, etc.) of a given cascade process (x;) iS not generally a
Markov process. However, we can obtain a nice Markov process (x;) on S=I[0,1]
which is equivalent to the process (M) till the time r;,. We shall call the Markov
process (x;) the underlying process of a given cascade process (y), because it can
be considered to represent the mode of movement of each particle of which the
cascade process consists.

In this section we shall construct the Markov process (x;) and prove some
properties of it, especially the relation between the processes (z:) and (M).

We will fix d (2/3<d<1) and put zz=r in what follows. Set B(S) the set of
all bounded Borel functions on S and B*(S) the set of all nonnegative functions
in B(S).

For feB+(§), we define #,(¢, z; ) (=0, 1, 2, .--) successively by

MO(tJ Z; f):()y
3.1 {

thnilty @ )=Eol M) 1<)+ Eglunlt—1, M; £): t27]
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for n=0. Then it is plain to see

0=un=ttn:1=|f| for »n=0,
where || f||=supzes | f(x)], and the limit

ut, z; £)=lim u.(t, z; f)
is a solution of the following equation:
3.2 u(t, x5 )=E[f(Me): t<cl+Ealult—z, M f): t=z].
We now define an operator 7'¢ on B(S) by

Tif(@)=ult, z; fH)—ult, z; [,

where f*(z)=max(f(x), 0) and f~(z)=max(—f(z), 0). Then we have the following

Lemma 3.1. T{f(») is a unique bounded solution of (3.2) for all feB(g),
and each of T¢ is a nomnmegative contraction linear operator on B(S) such that
Te¢=1I and T¢1=1.

Proof. The uniqueness of a solution of (3. 2) is as follows. For feB(s), let
u(t, x) and @(t, ) be two bounded solutions of (3.2). Then

u(t, x)—1i(t, )= Elu(t—7, M) —d(t—rz, M.): t=7].
Set v(#)=sup.es |#(t, x)—alt, x)], we have
lu(t, x)—d{, )| = E[vt—7) t=7],
and, since the right-hand side is independent of z,
v =Efv(t—1): t=1).

Thus, by Lemma 2. 6, we have v(#)=0, and hence u(¢, x)=4#(, x).
Therefore T¢f(x) is a unique bounded solution of (3.2), and the rest of the
lemma is obvious from the definition of T'Z.

Now, let C, be the set of all continuous functions on S such that f(z)=0 for
0=x=(1—d)/d. Then C,cCqs if d=d'.

LemMA 3.2. (i) For feB(S) and a€S,
3.3) 0.TEf (@)= T¢0f(x), €S,
(1) T¢ maps C(S) into C(S), especially it maps Ca into Ca.

Proof. (i) Since T¢f(0)=5(0), (3.3) is clear for a=0. Let ¢>0, then from
the homogeneity of the cascade process,
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Tif(ax)=Eus AM): t<t]l+Eaal TESM): t27]
=Eo[f(Ma-w)): t<t(a-w)l+Es[ T oS (Mawr(a-w)): t=(a-w)]
=Ey[flaMy): t<z]+EL[TE flaM.): t=r].
Thus we have
0.TEf(2)=Ex0a fAMy): t <]+ Eel0aTE. M) t=1],

and hence 0o T¢f(x)=T¢0.f(x), by the uniqueness of a solution of (3. 2).
() If B(S)af» 10, T¢f, |0 because we have from (3. 2),

lim T x)=E;lim T&. fo(M): t=1]
and leln—mo Tifo(x)=0 by Lemma 2.6, Since, moreover, T'¢ is a linear operator

on B(S), there exists a system of probability measures {P@(x, dy)} such that
T¢f(x) can be expressed by

Té’f(x)=S§f(y)P?(x, &),  feBS).
Since, by (3. 3),

Tif(@)=T{0. /)= S 0: )P, dy)= S Say)PIA, dy),

we have T¢feC(S) if feC(S).
For the case feC;, we have T¢feC; by the definition because M, is non-
increasing.

Lemma 3. 3. When 2/3<d=d' <1,
3.4 T =T
Jor all feCa.

Proof. Put r4=r and vy =<’. Since a solution of (3.2) is unique, it is suffi-
cient to show that T'¢f(x) for f=0 is a solution of the following equation:

(*) ult, ¥)=E[f(M): t<<'|+Eslu(t—7', Mo): t=7'].
To begin with, we recall that T¢f(x)=liMn-w #,(f, ), Where
Unii(t, 2)=Eo[f(M): t<7]+Eolutn(t—7, M) t=1].
Since '=~,
I=E[f(M): t<z]l=E[fAM): ¢ <71+ Ealf(M): o' =t<z].

Since (w)=1'(w)+ozaw?) when /(w)<c(w), we have, by a strong Markov pro-
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perty of s,

Es[fIMy): o' <t <z|=ELWE [ f(Mi-s): t—5<0oa)s=rt T/ =t o/ <1],

where, if we put p.=M.0y, +p’, then M(p")<x(1—d), and hence

E, A fIM—s): t—5<0zd]
B Q E P (Me-swi+ws)): £—5<oza(ww1+w,)]
ER, Q ER[fM-s(w)\V My-ows)): t—5<(00a(w1)V oza(ws))]
=ES, QEPLf(Mo-s(w): t—5<0sa(w1)]

=Ey [ f(Me-s): t~5<02d]-

Thus we have

1= B fM): t <1+ Epl B LA(M): 7< Tp]riz;l;:” ) =t <]

T

We next consider the second term.
N=E,[u(t—7, M,): t=7]

=FElu{t—7, M) t=c, iz, e >/ 1+ Elut

The first term of the above can be written as

E.‘L‘[Ep'_’ [Mn(f—' Ordy

—t, M) t=z, v=1').

M,, ). ¥Z0zalr=i— t27/, ©>7].

As in the case of I, the integrand is equal to

El(’tlf):’ ® E(Z) [un(i’—om(wl -+ wz),

s pacuptwy) (W1t W) ¥Z0za(ws +ws)]
=EQ Q EP[tta(r—0za(ww1),

M, cop@n)): M, () >x(1—d), ¥=0z4wn)]

ER QEPlunr—owdw); Mgy W)V Mgy @2)): Moygep@:)

éx(]- - d)v 7’;0&6(1(‘”1)]7

where the second term is zero because u,(t, x)=0 for 0=x=(1—d)/d, and so
=By [t0n(r— 020, M, ) M,y >5(1—d), =024

ZEM,-' [un(f— Oxds Mﬂxd): rgo'a:d]'

Thus we have

II:EE[EMr/[un(T—Tp, Mp): réfp]'r:t—d;jw iz, o> Eylun—7t ML) t=e=7"],
p=xd/M’

and hence
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(*%) Unii(t, ©)= Es[ f(My): $ <21+ Eolunlt—7', Mo): t=r=1']
+ E{Ey (M) v<zp)]
+Eu (v —1p, M. ). rzrp]}gzém{r’: tz7', v>7'].
If we assume
#n(t, B) = E[f(M): t<' 1+ Eslttn(t—7', Me). t=7']
for all d’(=d), then, since p=d in the last term of (**¥), we have
Unii(t, 2)Z EG[ (M), <14 Ealun(t—7', Me): t=e=1']
+ Exltin(r, MoYp=i—oit 227, ©2>7']
=E[f(M): t<' 14 Eslun(t—7', M) t=7'].
Going back to (**) and using this inequality,
Unialt, R)ZES(My): ¢<' ]+ Eglun(t—1", Mo): tz7=1"]
+ EglttniiE—1', M) t=7", t>7')
SB[ fAM): ¢ <’} Egltbnn(t—7', Mo): tzr=1']
+ Eplthn(t—7', M) t=7, ©>7']
= Eal f(My): 1 <2’} + Ealtbnsst—7', M) t=7'].
Therefore we have, by induction,
wn(t, ) S L[ fM): t<' 1+ Esltn(t—7', Mo): t=1']
for all #=0, because it is obvious for »=0. We also have
Unii(t, )2 E[ M), t <21+ Eslua(t—1', Mo): t=1']
for all #=0. Letting # to infinity in the above two inequalities, we have
Ti2)=Exlf(M): ¢ <N+ Eol T (M) t27],
and complete the proof.
LEmMA 3.4. For feCy,
(3. 5) TETH=T¢sS, ¢ s=0.
Proof. By the definition,
Tt ()= Eol f(Mys5): t+s<7l+Ea T f(M): t+s=7],

where r=zq. Since TET¢f(x)=T¢g,f(x) is obvious for =0, we assume x€S.
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I= Ex[f(MH) t+s<1]
= Ex[Eyt[f(Ms): s<0’xd]: < T]’

423

where, if we put p,=Mdu,+4’, then M,>zd and M(p')<x(1—d) because t<r, and

hence the integrand is equal to
E5, Q@ ERf(Mswi+w2): s <oza(wi+ws)
=ER,QEP[f(Msws)): s<oza(w1)]
=Eu [ (M), s<044].
Thus we have
I=FE [ En [ AM:): s<tplp=zamy: t<zl.
N=EolTEs-f(Mo): t45217]
=Eal T o JIM): 222+ Eo Ts- (ML) t<v=t+s]
=Eo[ Tl (M) 1271+ Eo[ B, [TE,, (M, 0)0 SZoaal: t<z].
As in the case of I, the integrand of the second term is equal to
ER,QEPTE . ywivwp Mo ygwprwp@r4ws)): SZawa(ws+ws)]
=ERQEPITE sy M, gcp@DV M, oy @) sZ62a(01)]
=EQQEPITE pgwp S Mazyeop): Moyycwps)>a(l—d), sZoga(wy)]

+ Egl)z &® Eiz')[Tél-am(wnf(Mvm (wy) VM”xd(wﬁ(wZ)): Mﬂzd(wl)(wl) =x(1—d), s=aza(wy)]

where the second term is equal to zero because TZfeCy, and hence we can con-

tinue as
Eu T8y (Mop): Mopy>2(l—d), $Z0sal =Eu[TE 0 f (M) $Z0zdl.

Thus we have

U= Eo[ T8 fOM): tZ7)+ElEx [TE f(M.): sZtplpmsamy 1<1],
and hence

T4 f(@)=E[{E,[f(M): s<tpl+Ey[Té, f(M.,): sgrp]}gzﬂ/m; t<7]

+Eo[Ths- f(M.): t=x).

Making use of Lemma 3. 3 for the first term of the right-hand side, we have

Tt () =Eol T (M) <]+ Eol T SIM): t21].

Now, consider the above equality as an equation for a function of a variable (¢, )
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where s is fixed, then we have

T (2)=T¢TH(w)
from the uniqueness of a solution of (3. 2).

Now we shall extend the semigroup {T¢} on C,; to a semigroup {779 on
Co={/eC(S): limeof(z)=0}. By Lemma 3.3, we can define 7°f for all feC,
=Usp<ac1Cq as T f=T¢f if feCy Since, then, T? is a bounded linear operator
on C,, T¢ can be uniquely extended to an operator on C,. Then we have the
following theorem.

TueoreEM 3. 1. {T% is a strongly continuwous contraction semigroup of non-
negative linear operators on C,. Moreover it satisfies

(3. 6) 0T =T0uf
for feCy and aeS.

Proof. In the equation (3.2), we have lim,ou(t, z; /)=/f(z) from the right
continuity of M, and hence

*) 1}{? Tif(x)=1(=)

for feCy. By the limiting procedure, we have (¥) for all feC, and hence the
strong continuity of {77} follows.® (3.6) follows from (3. 3) and the remainder of
the theorem follows by the limiting procedure from the argument on Cg.

By Theorem 3. 1, there exists a strong Markov process {W°, &, {° 1%, P%: z€S}
on S such that TYf(x)=FE%[f(x)] for feC,, where W° is the set of all right con-
tinuous functions % [0, {%(w))—S with left limit and x,(w®)=w’(), 1 is a ¢-field
generated by the sets {x;eL}, 0=s=¢, Fe PB(S), and P% is a probability measure
on JL=Viso J1! and E% denotes the expectation by P9%. We shall call the
Markov process (z;) the wunderlying process of a given cascade process (u).

In what follows, we shall study some properties of the underlying process,
particularly its relation to the process (M. We remark that the process (x;) can
be considered as the strong Markov process on S where 0 is a trap and z(w®)=0
for £=L°w®).

LEMMA 3.5. For xe€S,
3.7) P (xy is non-increasing for all t=0)=1.

Proof. Take feC, such that f(y)=0 for y=zx. Since f is a function in C4 for
such d as (1—d)/d=z, T)f=T¢feCqy and hence Tif(y)=0 for y=(1-d)/d==.
Thus, P%(x,>x+e,)=0 for any sequence ¢, | 0, and we have

4) See, e.g., p. 233 of Yosida [17].
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Polx>xy=Hm Pyl >z +en)=0,
&0

or P4(z:=x)=1. From this, it follows
Piwsza)y=EY Pt (o= m-9)] =1
for any 0=s<¢<oo. Since x; is right continuous, we have
Pi(zs=x, for all 0=s<i<oo)=1.

Put Wo={w'e W () is non-increasing for all ¢=0}. Then, by Lemma 3.5,
we can take W° as a sample space of the underlying process (x;) and so we shall
denote it again by W?° in the following.

We define 7% and o of the underlying process (x;) in the same way as in the
case of the process (M)

{inf {t: 2 éd',
3. 8) = Zo
inf {#: x,=¢},
3.9 03‘—:{
+ o0, if {}=¢.

Then, % and ¢ are also 7-Markov times.
For w'eW?° and aeS, let a-w® be a sample path in W° such that x,(a-w®)
=ax(w®), 1=0. It should be noted that (@ w")=<% ().

Lemma 3.6. For any bounded J1%-measuvable function F and a€S, it holds
(3.10) B[P =E%F(a-w”l, x€S.

Proof. When Fu®)=f(xw®), reCo, (3, 10) reduces to (3.6). (3.10) is verified
as usual by induction for F@®)=si(w, ") ol@e,@®) falz:, @) where nzl,
Fi Jor o fn€Co, and 0=t =t,=---=t,. Hence (3.10) holds for any hounded 972-
measurable function F by the standard argument.

Lemma 3.7. For any feB(S),
(3. 11) E{f(My): t<zcad=E%flm) t<h]l, €S
Proof. 1t is sufficient to show (3. 11) for f=0, feC,, and z=1. For, since
E (M), t<za=Ef(M(z-w)): t<zalz-u))=E[0: /(M) t<z4),
and
Bl f(we): t<Q=EM0 1 (xe): 1<2y],

(3. 11) is equivalent to
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E\l0:f(My: 1<l =E0:f@): 1< 4],

Let g.€C, be a sequence such that 0=g¢,=1 and g.(z) ] L@ n(x) as #—co.
Then f,=f-¢g,€Cy and T¢fn(x)=0 for 2=d. Hence we have

/(D)=L (Me): <zl Ea[ T g fu(Mey): $Zval=Eilfu(M): ¢<zd],
that is,
Bl (@l =E3 fz)gn(xn] = Es[fMo)gn(Ms): £<zd].
Letting # to infinity, we have
Edfla): w>dl=EfM). M,>d, t<zq.
Since x;>d is equivalent to ¢<7% and M;>d to t<74, we have
EjlSf(we): t<zol=ErlfML): i<zd].

We remark that, by putting f=1 in (3. 11), we have Py(i<zs)=P%(#<1Yy), or
Pu(ze=H=PL% =),

LeMmMA 3.8. For any feCy and geC([0, o)), it holds
(3.12) E (M. po(a): rdéi]=ESc[f(xrg)g(r?1)! ty=t], xeS.

Proof. Put =174 and °=<%. As in the proof of Lemma 3.7, it is sufficient
to show (3.12) for =1 and #>0.
Putting #=(k/n)t, k=0,1,2, .-, we define =, and <% by

=1k if fa<c=th,
h ="l if -1 <<=t

Then it is clear 7, | r and 7% | 2 as #—co.
Now we calculate the following :

EXf(w)g(an): =2

2

. Eif e o) te1<z'=t]

k

il
M=

k=1 n

1l

t
g(taE?[Ez,, [f(xtmx = —] : tk_1<fo]
k-1 p=a/z,, |

M=

_ g(;,c)El[E;’%_l[f(xun>: e —2—]

=d/H,
p=d/. tp_1

. tlc—1<7]:

k=1

where we made use of Lemma 3.7 in the last step. On the other hand, we have



CASCADE SEMIGROUPS AND THEIR CHARACTERIZATION 427

Bl Sy 4= |=Ttsn)- £l ey 4>
=B ) - <oy [+ B) TonepfOL: <= 2 |
~ By o > L

t
- Ey[T‘;/n_,p A op= ;]

and hence

B f(z0)g(zh): t=1°]

o t

= BB Bu,, | Thopf L) 25 | i<l
k=1 n p:d/Mtk—l
< 0 . t .

= ; Q(tk)El[ #5k—1[Tt/n—fpf(pr)‘ Tp= ;]p=d/Mtk L hea<lal,

where, by putting g, =M, 15Mzk +p/, we used the branching property. Apply-
ing Markov property of (y) at time t_ 1, We have

B3 Azg)g(zn) 1=7"]

[g(tk)Ttk— JIM): ta<r=t]

I
TTMS

= Eyg(cn) T2, . (M) t=1],
and hence, by letting n—oo,
Efl2,0)g(z®): L= =Ef(M)g(c): t=¢].

We remark that it can be shown by Lemma 3.7 and Lemma 3. 8 that the
two processes (x;, P%, 1=r%) and (M, Py, i=r,) are equivalent, that is, they obey
the same probability law.

It is seen by Theorem 3.1 and Lemma 3.5 that the process (—log x;, P3) is a
nondecreasing additive process on [0,c0] with oo as a trap. Then it is well-
known that the Laplace transform of —log x; is represented in the form:®

Eg[e—a(—log Iz)] _—_e—tsﬁ(n)’ o >(),

(3.13)

Ha)=ma +S (A —e~)/(du),
(0, ]

5) See, e.g., Ito-Mckean [6], pp. 31-32.
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where m is a nonnegative constant and /(d») is a measure on (0, oo} such that

u
Yooy T 100 e

In addition, it is known that

3. 14) Eg[ T —log 2., ~log xs)]zE%[Spds g@,m] F(—1log s, —log xs+u)l(du):|6)

0

for any Markov time p and for any feB([0, co]X[0, o]) such that f=0 and
flz, £)=0 for xz€[0, co]. From the discussion on the additive process (—log z;, P%),
we have the following statements on the underlying process (xz:, PY%).

ProposITION 3. 1. There exists uniquely a measuve k(da) on [0,1) and a con-
stant m such that

S (1— @)k(da)< +oo,
{0,1)

(3.15)
m=0,
and
(3.16) Af(z)= —muxf’ (x)+ S[o 5 k(da) flza)—F(z),>  weS

Jor all feC0, 1] where A® is an infinitesimal gemervator of the underlying process.
The set C0,1] is a core of A° on C[0,1]. Moveover, it holds

(3.17) B oo, ) |24 ['as Sm oz, azk(da) |

s=p

for_any Markov time o and for any 96 BSxS) such that ¢=0 and 9z, )=0 for
zeS.

REMARK 1. The measures / and & satisfy the following relation:

(3. 18) k(A):S ), Acao, D,

{u: e "¢

RemMARK 2. The measure £ and the constant m determine the underlying
process.

§4. Branching measure.

In the preceding section we constructed a strong Markov process called

6) See, Ikeda-Watanabe [4] and Watanabe [16] (cf. Motoo [10]).
7) This 1s easily obtained from the expression of a generator of an additive process
for which it 1s refered to Sato [11], Chap. 3.
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underlying process, describing the hehavior of each particle of which a cascade

process consists, while the purpose of this section is to construct a measure

II(dy)—this will be called a branching measure—on M;—{3;} which gives the law

according to which new particles are born when a parent particle has splitted.
For ¢ (0<e<1/2), set

B'={F: F is a nonnegative bounded Borel function on M, and
satisfies F(p)=0 if M(y)>1—¢.

Taking FeB*, we concern with the quantity

£y 3 ()|

for z€S, where =174 (2/3<d<1) and r,=tAf. Then we have

1 T 1
—-M;"H/Jsl}éﬁ—g<2, Py—a.s.

=
M,
Moreover, since F((1/M;-)-p1s)=0 if M(Q/M;2)- p)=M/M,.>1—¢, the number N of s
such that s=¢ and F((1/M;-)-15)=0 has a bound:

log d
<Kt = =2
N=Ky= Tog (1—3) +1.

Thus it follows

% P () = ZF (5 ) SKuF

SSry SSr

with ||F||=supues|F()]. In addition, we have by the homogeneity of the cascade
process ()

o 5 r Gz ) oL e )|

=5 2730}

which means the left-hand term does not depend on z€S.
We now define u,(8), n=0, 1, 2, .-- successively by

uo(£)=0,
4. 1) {

o <t)=E[z:F(7W1—— ) [ Bl 129, w0

It is easy to see that u,(f) does not depend on zeS and 0=u,(H)=w,..() for all
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n=0. Therefore, imyu e #,({)=+co exists and we denote it by A4(#; F). Then,
by the definition, A4(#; F) is a solution of the following equation:

4. 2) u(t):Ex[ 57 F(% : /zs):l-l-Ez[u(t—T); t=1].

Preh
Moreover, it is plain to see that wu,(f) is non-decreasing in #
4. 3) Un(S) = un(l) for 0=s<i<oo
and we have as a limit

(4. 4) q(s; FY= Ayt ) for 0=s<i<co.

LemMma 4. 1. For any 0<T<oo, Ay(t; F) is bounded in tel0, T] and right
continuous in t.

Proof. Each of wu,(f) is obviously bounded, or more precisely |#.(f)|
=K4||Fil(L+n). Moreover, since EilXYs<. F((1/M;-)-ps)] is right continuous in ¢,
we can see by induction that u,(f) is right continuous in ¢ for all .

Since

Uns1(8) — tn(t) = Eslten(t— ) = thn1(t—2); t27],

we have
(*) an(O) = Esltn(t—1); t27]
where a,(f)=SUpogs<i |#n+1(s)—2,(s)|. Using notations in Lemma 2. 5,

(D) = an-1Oq:(2),
and hence by the inequality (*), we have

()= Eslan-o(t—1)gi(t—1); t=7]
Zano(DENq:(E—7); t=r]=an+()g:(0).

Thus, we have by induction

@n(l) = n-m()qm(t)

for 1=m=n.
By Lemma 2.5, there exists a positive integer n, for any fixed 7>0 such
that ¢, (7)<1. Since

dmn0+k(T)§a(m—l)n0+k( T)an(T)é e =a( T)an(T)m

for any m=1 and 0=<k<n,, it follows
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£ aT)="8 3 tmnyed D)= 5, 3% aDhn(T)"

n=ngy

ng—1 o
— ,;0 ak(T) Z_]].Qno(T)m< +OO.
Therefore, w#.(f) converges uniformly in 0=¢{=<7T, and A4 F)=liMye u,(t) is
bounded in ¢€[0, 71 and right continuous in £

By Lemma 2.6, it is easily seen that the bounded solution on [0, 7] of the
equation (4.2) is unique for any T>>0. Thus, Ay(#; F) is a unique solution of
(4. 2) in this sense, and especially we have

(4. 5) Wty F+G)=Ayt; F)+Aut; G),  Ault aF)=ady(t; F)
for F, GeB* and a=0.
LemMA 4.2, If {F.CB® satisfies Fulp) |0 as n—oco, then Ayt; Fo) |0 as

Nn—>CO.

Proof. Since Ay, F)=0 for FeB®, (4.5) implies A4(#; F,) is non-increasing
in #, so that lima_.. A5 Fu)=A() exists and A(#) satisfies the equation:

AR =E[A@¢~7); t=1],
because EulY sz, Ful(1/Ms ) 1)1 1 0 as n—oo. Hence A(f)=0 by Lemma 2. 6.
Now, we set
s={FeB F is ¢7'(B¢)-measurable},

where ¢ is defined in §1. FeBj; means that F(p) depends only on ¢u(y), or
F()=F) it oalp)=pa(p).

LemMma 4. 3. For 2/3<d=d' <],
Aty F)=Ayt F)
if FeBy.

Proof. Put r4=r and rqo=7’. Since the equation (4. 2) has a unique solution,
St Fy=Ay.(4 ) follows if we show that Asy(4; F) satisfies

At F)=Ez[2 F( Mls_ -ﬂs>]+Ex[A;<t—f'; P 1201,

s<e!
=t

For later use in §5, we shall show the above equation for any Markov time
o which satisfies p<r (obviously, ¢/ <xz).

Let A4t F)=limu e #,(¢), where u,(¢f) is defined by (4.1). Putting B@)
=Eo[Dsp F (M) ps)], We rewrite u,,1(f) as follows:
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unﬂ(t):Ex[ 5 F(ML '/,ls)]+Ex[un(t~—T); r=1]

§=7g
1 1
=Eac[ Z F<M_“‘_‘ . ﬂs)]‘i“Ea:I: Z F<_ * ﬂs>]+Ez[un(t_T), l‘ér]
S=pt §= pt<SStg $—

=B(t)+Ez[ M F(th—_—-m); t=p, 2'>p]

p<$=rg
+Elun(t—1); t=r, ©>pl+Elunt—1); t=r=p]
=I+II+III+1V, say.

1
I=E{ 5| P )| tze e
e r<s§(§%d)/\t Ms—r- # r=p P TP

1
=F;| E, [ F( . s)] s 1=p, ]
[ ke sgaxdzl\:(t—r) M— # r=p P T>p

Putting p,=M,0u,+ ¢’ where M(y')<xz(l—d), and making use of the branching
property, the integrand is equal to

ERREP - k) |

F (o
Ls_s.vxa(wﬁv‘z'vgw\(z—r) M (w1 +w,

1
—FORQED 3 (s X
EMP@E# LsSopg(wDAE—7) F< M;-(w1) (puloon) 1 (w2)>]

K 1
— @ F (.___. . >]
EMP ® E,, _séaxd(u%:/\(c—r) ]Ws—(wl) ﬂS(WI)

1
=), 2, P59
e séqxgx:@_r) M a

because FeBg and

< 1 > My(w.) x(1—d) _ 1-d )

Mi_(wy) “ps(we) )= Mo (o)~ zd d

Thus, we have

II:Ex[EM,,[ 5 F(Lg)] 5 t=p, T>p],
r=p

sSepA(t—7) s— b/,
l= EolE, Jun(t—v—0z0); E—1Z020)=p; EZp, >p],
where again putting p,=M,6x,+ " and using the branching property, we have

Ml=Eol Ex [ttn(t—7—1p); t—1Z7plr=, 5 tZp, ©>p].
p=zd/Mp



CASCADE SEMIGROUPS AND THEIR CHARACTERIZATION 433
Therefore #,..(f) is expressed as

Un1(8)=B{)+ Eslu.t—p); t=v=p]
e [o] 7, #(5h=))

+ Eyfetn(r—1p); rgrp]} i =4 z'>p].
;ZQE}’M,,
y=Mg

Now, if we assume
(*¥*) Un(D) = B(t)+ Eslunlt—0); t=p]
for any Markov time p=r, then it follows from (¥)
s Uns:(O)Z Bl)+ Eslun(t— 0); tzr=p]+ Ezlu,t—p); tzp, >0l
e =B(t)+ Ealun(t—0); tzp],
and again applying this to (¥), we have
Uni1(D) = B+ Exfunt—p); t=r=p]+Eslttn:(t—p); t=p, 7>0]
=B(B)+ Esltna(t~p); t2p].

Since (**) is obvious for n=0, (**) is verified by induction for all #=0 and (***)
also. Thus, letting n—oo, liMue #,(8)=A4(#; F) satisfies

Aty F)=Bt)+E[Ayt—p; F); t=p].
LEmmA 4. 4. For FeBy,
G(+s; F)=Ay@; F)+Ays; F), 0=t, s<co.

Proof. This is shown in a similar way as in the proof of the semigroup

property of {T%}.
Putting A(H)=As@t; F) and B{)=E[Yss, F(1/M;-)-us)], we have

AQ@+s)=Bt+s)+ E[AG¢+s—1); t+s=7)

=B(t)+E;,[ 5 F( 1 )]+Ex[A(z+s—T); t+sz]

—_— #u
T <USTy 40 Mu—

1
M B ¢ ‘Llu>; t<T:|

FEJNAG+s—1); 1<, szl +EfAG+s—1); t=1]

=B(z‘)+Ex[ ¥ F<

t<uSr 4y

=I4+II4T114+1V, say.
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o) T
t<ustppattd  \ Ma-n-

1
=E[E[SZ‘}MF< e -#uﬂ; t<f].

If we put p=Mds,+ ' where M(p")<x(1—d), we have by the branching property
that the integrand is equal to

B 1
_ugaxd(u§:+wz)/\s ( My (w1 +ws)
B 1

_uéwz(me(W o)+ i) |

EQ.QE -pu<w1+wz>)]

=EY,QFY

1
=FW E® F<_—_ u ):l
Mt® # L’II«SaIdZ(:wl)/\s Mu—(wl) H (WI)

1
=EMt[u§.§i/\sF<.Mu— . #u)]

since FeBy and

1 _ MJw) _ a(l—d) _1-d
M ( Mau_(wy) '”“(“’2)>' M) ~ 2d —d

Thus, we have

1
I=E [E [ F( : u)] 4 ]
“ M u§§\1p Mu— # p=xd/M; <T

Applying the same argument as above, we have
I =EL[E, [A(S~02a); $Z01a]; 1<7]
=Euo[Ew [A(s—7p); SZtplp=aaruy; t<7].
Therefore, we have
A(t+5)=B@t)+ Eo[At+s—1); t=7]
+Ex[{E,,[ > P ) [+ BlAG—5; szfp]}yzm ; 1<)

uSs/\rp
p=xd/My

Since the integrand of the third term is equal to A(s) by Lemma 4. 3 because
p=d, we have

Alt+5)=BO)+EJA{t+s—1); t=cl+Eo[A(s); 1<7],

or
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Al+s)— A —AGS)=EAt+s—7)— Alt—1)— A(s); t=7].

Now, if we fix s and put «()=|AF+s)—A{)—~A(s)], then u(¥) satisfies the in-
equality:

uw(t) S E {u(t—1); t=c].
By Lemma 2. 6, #(¢) is identically zero and this verifies
A(t+38)=A@)+ A(s).

By Lemma 4.1 and Lemma 4.4, A4(¢; F) is a linear function of ¢ and hence
can be written as

4. 6) a(t; F)=tLy(F)

for all FeBy. It follows from (4.4), (4.5), and Lemma 4.2 that Ly(F) has the
following properties:

(1) Ly(F)=0 for all FeBy,
(ii) LyF+G)=Ly(Fy+LyG) for all F, GebBy,
@D (ili) for any sequence {F,} in B% such that
Fa(p) | 0 as n—o0, L4y(F,) |0 as n—oo.

Moreover, we have by Lemma 4. 3 and by the definition of Bj,

(iv) Ly(F)=Ly.(F) for FeBy, if d=d,
“s (V) Ly(F)=Ly(F) for FeBy, if ¢'=e.
By (4. 7), there exists a finite measure 17§ on (M, pz'(B$)) such that
(- N My, )=115(-),

(4. 9)
:,<F>=SM F()IT4(dp)

for all FeBy, where M, .=MN{y M(u)=1—¢}. By the property (iv) of Ly(F),
¢ is a restriction of /74, on ¢7'(B¢) if d<d’. Therefore, we see by Lemma 1.5
that there exists a unique measure I7° on B, such that

(- N Mz, )=11°-),
4. 10)

=1l agy
Since (v) of (4. 8) implies
4.11) I(H=1"¢-nM..)
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if e/<e, I (-)=limi€o II*(-) is a o-finite measure on (M,, B.) which is concentrated
on the Borel set Mo=M,N{p: M{p)<1}. Moreover, we have

4. 12) (= Peman=  roman=\_ remd

Mz.e 2,8

for all FeBy.
Now, since Ay(t; F)=¢t Ly(F) is a solution of the equation (4.2) for FeBj,
we have

tL‘d(F)zEx[ 5 F(-]Wl:— : ,us)]-i-Ez[(t—z')Li,(F); t=1]

S=rg

and hence

@1y B[ g F(g ) B =B Faman

sty
for all FeUocic12 By. Let By(M.) be the set of all nonnegative, bounded and
¢3'(PE)-measurable function F on M, such that F(p)=0 if M(¢)=1. Then, (4.13)
is valid for all FeBy(My).

NFinally we shall show that the support of I7 is on Mi—{5:}. Set Eq4
=M, N{peM; |lpa()]|>1}, then Ea€pz'(BE), Xp € B M2)® and Ysge, Xr(1/M-)- p1s)=0
a.s. (P,) because for s=zq

1

1
wd( M,_ ‘/JS> M, S(x(l—d),u

Therefore, by putting F=Xz, in (4 13), we have II(EF;)=0 because FEi(z;)>0
for ¢>0. Thus, it follows JI(limgs; Fe) =0, where limgti Eq= Uspsca<i Ea
:ﬁz/\{yeMZ; llulf>1}. Therefore, the measure II is concentrated on the set
Ml—{ﬁl}:ﬁim{,ueMg; llel|=1}, or we can consider /7 as a DBorel measure on
M, —{6:}.

<

us(dr)=1 a.s. (Py).

THEOREM 4. 1. There exists a Borel greasure II(dp) on M,—1{6:} such that

(4. 14) E’”L%f( ]V} — ,us>]=Ex(fd/\t)SMl_”1) F)T(dp)

for all FeByM,) and for d (2/3<d<1). In addition, for any nonnegalive function
g€ B(S) satisfying ¢(1)=0,

(4.15) | sotyian={  somda),

or k(&)= [ucyeaa H(dy), where k(da) is the measure on [0,1) defined in Proposition

8) Xz(y) is an indicator function of a set E, ie. Xp(p)=1 if peE, =0 if p¢F,
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3. 1. Moreover,
4. 16) S (L= M) (dp) < +co.
M—151}

Proof. The first statement (4.14) is already proved. Since the condition
(4.16) follows directly from (4.15) and (3. 15), we shall show (4. 15) only. First
of all, we choose a nonnegative function geB(S) such that g(x)=0 for 1—e<z=1
and g(x) is a constant for 0=2=(1—d)/d. Then, ¢(M(p))e By M) and (4. 14) implies

B e gl s, sonornn

On the other hand, we have

2 o) [ 2]

and Eu(r;)=FE%}) since the two processes (x;, PY%, =<%) and (M, Py, t=74) are
equivalent as seen in §3. Moreover, since (3. 17) implies

B (3

we have (4.15). Finally, since (4.15) does not depend explicitly on d and e, we
have (4.15), by letting 411 and then ¢ |0, for all nonnegative functions geB(S)
satisfying ¢(1)=0.

)]=Ea<rz>8m’l)g<a>k<da>,

I is in general ¢-finite and uniquely determined by (4. 14). We shall call I/
a branching measure of the cascade process (u).

§5. Fundamental equation for a cascade semigroup.

In the preceding sections we have constructed the underlying process (z;) and
the branching measure I/ of a given cascade semigroup {7;}. We intend here to
obtain a system of integral equations which are satisfied by 7.f in terms of (z)
and I1.

It has been proved in the proof of Lemma 4.3 that Ay(t; F)=¢Ly(F) satisfies
the equation:

s =B 3 F(5— ) |+ Bldat—0; P t20l

SZpNE

for FeB and for any Markov time o such as p=c;. Hence we have

E[ 5 F< A} -ys)]=Ex<pAt>H<F>

SZpAE
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for such p and FeByM;), where

H<F>=L3<F>=S | P,

M-

Thus, by letting t—oo, we have

5.1) Ex[ z F(—l_— : ﬂﬂ = Eo)I(F).
LEMMA 5.1. For FeByM,) and geB(S),
5.2 E[ZF(—L o) | =B { " omas |

Proof. 1t is sufficient to show (5.2) for FeBy and geC(S), g=0. We define
for any ¢>0 a sequence {p,}nzo of Markov times by

po=0,

inf {s: |g(M;)—g(Mo)| =e}
p‘={+oo, it (}=¢,
Pns(W)=pa(w) +p:7,) for n=1,

where w; means wy (O)=w(pn+1) for ¢=0. Since g(M,) has a left limit at each
s=0, we have p,—co as n—oo. Now, we decompose the left-hand side of (5. 2)

into the sum:

while

[ 1
L=Efa,) % F(M— y)]
L. fpl\pn<3§tt/\pn+1 §—

B 1

P<SErphe, g

1
oM, ) E,, [ b F( 7 -;z;)] ; pn<n]
| " Ls=(redADA @Hod)—p 8= p=pp

q=xd/M,,

=k

8

since (w)=pa(w)+ 4wy ), ¢=xd/M,, if pa(w)<tfw). Since we can replace E, on in
the above integrand by Eu,, because FeB«(M;) and since we have ((p+z)AD
A(Pp+p)—p=r4=rq, if follows from (5. 1) that

Li=Ealg(M,,)En, [(D+ ) AODA(p+01) = Plp=s, -TI(F); pu<zi].

q:xd/Mpn
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Now, replacing Ey,, by E,, again and using a Markov property at time p,,

In = Ex[g(Mpn)(anrl/\Tt—'pn) H(F); Pn<Tt]
op e
= Exl:g g(M,,n)ds] JI(F).
entL
Since we have in addition
> E[S g(Mads] H<F>=Ex[g" g(Mods]-H(F),
n=0 optt 0

we can carry out the following estimation:

[.SZF(—— )ot) |- § " owwtoas -1
2 LA G D |

tEefoon, 2, (e e {sna e

S ) lo M=o, ) |

F(
r;/\pn<s§ft/\pn+1 §—

+ 3 E{S""“A” lg(M,,n)—g(JVIs)lds] JI(F)

n=0 Tt

o 41T
ST I = 0 T
n=0 n/\pn<s$rtApn+l M-— 0 ppATe

—eE,[ 5 F( o )]+5Ez(rt)-H(F)

83t

=2eEx(c)[I(F)
=e(2II(F)).
Since ¢ is arbitrary, we have (5. 2).

Define a mapping ¢ on M¢ into M, such that ea(¢(v))=v and ¢@)(S—Ss)=0
for ve M¢.

LEMMA 5. 2. The mapping ¢: (M2, BE)—(Ms, Bs) is measurable.
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Proof. Put J={Bep: ¢ (BB}, then  is a sub o-field of B To
show the measurability of ¢, it is sufficient to show DB, For feC¥ and

veMg,

Fo = exp( |~ g fapoyas))

= eXP(Ssd % log f(x)v(dx)),

and hence f(g/;(u)) is a @Bg-measurable function of v. Thus, it follows from Pro-
position 1.2 that Fo¢g is H¢-measurable for all FeC(M,). Since ¢ F-YE))
=(Fod){(E)e B¢ for Ee B(RY), we have F-Y(E)e ] and hence FeC(M,) is always
J-measurable, and this implies B,c .

By Lemma 5.2, @ga=¢ops is a measurable mapping of (M, ¢z'(B¢)) into
(ML, B»). Therefore, By(Ms,) is coincident with the totality of nonnegative bounded
Borel measurable functions # on M. which satisfy the relation F=Fo@s and

F(p)=0 if M(z)=1.

LeMMA 5. 3.
5.3) Ex[sérzdmﬁ‘@d( 11;_ : ps>,Ms_, s)]zEz[S;desSMl_wH(dy)F(gbd(y), M, s)]

Jor any nonnegative bounded measuvable function F(u, y,s) on the product meas-
urable space MyXSx[0, co] which satisfies F(y, y, $)=0 if M(p)=1.

Proof. Since FopseBy(M,) is valid for a nonnegative bounded Borel meas-
urable function F' on M, which satisfies F(;)=0 if M(g)=1, we have the equality
(5. 3) if we show the following:

1 7
(*) £ 5 F (g m)ations) | = V" oayncsras e
SSvg §— 0
for FeBs, geB(S), ¢=0, and %eC([0, co)), 4=0.
Take 6>0 for a given ¢>0 such that |A(s;)—A(ss)|<e whenever |s;—s.]<3d.
Then, we divide the time axis into O=f<H<tr< - <fp<-—oco such that
tnii—1, <6 for all =0, and decompose the both sides of (*) as

s=rg

rtAtn 41

]| o) ds |1 (F)= papat o(MY(s)ds | (P

ttA\tp

Since, by the equality (5. 2),
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1
E[ 5 F(—M : ps)g(m_m(inﬂ)]
g Aty <8StiAbn+1 §—

tgAin+1 2
0

=h(z‘n+l>[Ex[S otas i) (" ovaas [

0

T NEn41 -\

-2 | ot |11CP),
Tt ALy

we can estimate the following:

B 2 P (51— we)ations) |~ £ " sapioas ||

$Sty §—

+ iE[zF(Z—Wl— o0t | B (" oticsas )

> 1
S I (- A AT O R ]
n=0 Tt N <3Z1tAlp 41 -

+ 3 B " a0 e - las ey

n=0 ALy
T AL

n+1
g<Ms>ds]H<F>

TNty

oo

TNt <sSrgAln41 ( §—

=e zoi‘ Ew[
n=_0

- eEx[ 5 F(—]\%t— : ﬂs)g(jws—)]‘FEEx[S: g(Ms)ds]H(F)

sSrg

- &E[So g(Ms)ds]H(F)

= «2H|gllI(F)),
where |lgl|=supigzs: |9(x)| < +oco. Since ¢>0 is arbitrary, we have the equality (¥).

COROLLARY.

B T G, M<ad =M, |

sSrgAl

(5. 4) cone
=E[S dsg (GG My 1), S)X(MM(#)<xd)]
0 M-8}

for any nonnegative bounded measuvable function G on the product measurable
space My X [0, co].
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Proof. Putting F(g, y, 8)=G(Ga(y- 1), UMy - p)<xzd=y) in (5.3) and noting
that @u(y-p)=¢u(y @a(p) and X(My-p)<zd)=UMy gp)<zd), (5.4) is easily
shown.

THEOREM 5. 1. For feB¥, ufzx)=T.f(xdz) is a solution of the following (Sq)-
equation:

@)= B3 f(ae); t<eyl+ Byl (xe); 2 =2d, 4=1]
(Sa) ¢
+ E%[Sodsgm_m 1(d )X (aes M 1) < 22 < 5)0he (s m]-
Proof. Put rg=7 and ="
T.f (x02)=EsL f (1))
=Ea[ f(p); t<tl+Eolf(m); t2=7]
=I+1II, say.
From feB%,
I=Eo[ f(Midu,); t<tl=E[f(M); t<7]
=L f(w); 1<2]
by Lemma 3. 7.
U=FolE, [ f (pe-s)lsers t21]
=Eo[ Ti-of (s #27)
=Eul T f(p); Mi=ad, v=0+ Eo T f(11); M.<2d, v=f]
=1I;+1I,, say.

N
Since (Tif)|seB% and T.f=(T:f)|s for feB%, we have by Lemma 3.8

IL=E T f(Mdn); M.=xd, t=t]
=B Timeo f (@ebo); we=d, T°=1].
Finally, we begin with rewriting the term II:

o= Eol Tie f (1) M., <d)

:Ez[ ST (ﬂs)X(M<xd)].

sSry

Since Tifo@a=T:f,
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HZ_EZ[; T PGl )M < 2d = M, >]

and hence applying (5. 4) for G(y, $)=Ti-sf (&),

nz-Ez[ dsS TG #))X(MsM(ﬂ)<xd)]

\s
~ef{" dsS wH(dmn_sﬂMs-p>x<MsM<m<xd>]

-2

by Lemma 3. 7.
Since #(p)=T.f(y) for wu(x)=T,f(xd,), it follows from the above arguments
that #,(x) satisfies the (Sy)-equation.

SO dSSMrm 1) Toesf o 1 MG) <) |
e,

dsS o, T Tocsf o y>x<x3M<m<xd<xs>]

By putting f=1 in Theorem 5.1, we have

(6.5) P(za=ud, r‘iiét)—l—E‘;[S:dsS H(d,u)%(st(‘u)<xd<xs)_J=P‘;(r?1§[).

M-8}

Put CE¥={feC¥; flz)=1 for 0<ax=(1—d)/d}, then C¥cB¥ and U C}=C}.

2/3<d<1

THEOREM b. 2. Two cascade semigroups {T$"} and {TP} coincide, ie. TP=T@
for all t=0, if the underlying processes and the brvanching measures arve both coin-
cident, respectively.

Proof. Let (a, P%) and Il be the underlying process and the branching
measure, respectively. By putting % =< it follows from Theorem 5.1 that

| T f(wbs)— T2 f (62|
éE?t[] T(l)rof(l'rbaz o)_ (Z)f"f(wroax o)] x,o—xd To<t]

+Ez[$‘dsg n<dp>1Tsesf<xs-m—T&ﬂxs-mmwswm<xd<xs>]
0 Mi—{3;}

for any feC¥%. Since Ga(p)=Y s, 20z, for p=3 zids,€M; and the number of
s In Sg is not greater than d/(1—d), and since in general

(17— Tl =nllr—ol

for any f and ¢ such as ||f{|=1 and |g]|=1, we have
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4 4 d
sup !Tt(L)Sf(xs'#)—' Tt(z—)sf(-z's'/l)’ = 1—d Qg
HEM1 -
S=Ststo
where
@, = SUD | T f(wds)— T2 f (@)
z€

0<tsty
Therefore, we have by (5. 5)
d

Ay = —1_—ddt0’P3c(T°§l‘o),
and in addition a;,=0 for a sufficiently small #>0 because limy,, o P%(z°=#)=0.
Thus, it holds T'® f(x6,)= T f(x4), and hence

N DN R
TOf=(TPP)ls=(TPNs=TPF

for all ¢ such as 0=¢=t, where #, depends only on d. Since both {T'®} and
(T} are branching semigroups (i.e. semigroups with branching property) and
(T9 HlseC¥ (=1, 2) if feC%, the equality T@f=T¢F holds for all 0=t<co and
feC%. Moreover, it holds TPF=T®F for all FeC(M,) and 0=¢<oco by Proposi-

tion 1.2 and the fact C¥= U C%
2/3<d<1

§6. TUniqueness of the underlying process and the branching measure.

We shall show in this section that the underlying process and the branching
measure of a given cascade semigroup are uniquely determined by the system
of (Sg)-equations. The meaning of the assertion is formulated in the following
(Theorem 6. 1).

Let /1(dy) be a measure on M,—{3;} such that

6. 1) (1= M(eNII(dp) < +oo

SM1—(51)

and 77 a nonnegative constant. Then, define a Markov process (&, B.) on §=10, 1]
whose infinitesimal generator A cn C[0, 1] has a core C'[0, 1] and is given by

6.2) Af(a)=— iaf () + Sw  Flda)(stza)=1(o)
for all feC0, 1], where
6.3) 5(da) :S dp).

{m M(p)edal

Note that the underlying process and the branching measure satisfy all of the
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above conditions (see Proposition 3.1, (4.15) and (4.16)). Moreover we remark
two relations:

(6. 4) Eo AZN=Esl flad)]
for aeS and feB(S), and

6.5) Ex[ To@, azs)]:E"x[S:dssmg@, afs)é(da)]

for a Markov time p and geB([0, 1] x [0, 1]) such as ¢=0 and g¢(z, 2)=0.
Set

§d(x$ t; f) u):Em[f(jt); t<%d]+E~$[ut—?d<‘i?d); E?d:xd? %dét]

(6. 6
~ t A~
+E[S dsS T (F M) < 2d < B3t - /1)],
0 Mi—{a}
where
®6.7) fa=inf {s1 &s/To=d}, =400 if {---}=6.

THEOREM 6. 1. Let (&1, Pr), H(dp)} be a pair of a Markov process on S and
a measure on M.—{0,} which satisfy (6.1), (6.2), and (6.3), and T, be a cascade
semigroup. Then, (X, IN’x) is the underlying process and II(dy) is the branching
measure of the cascade semigrvoup T, if, for any d (2/3<d<1) and for any feC¥%,
wxy F="T.f(2dy) is a solution of the equation:

(6. 8) uz; 1)=Salz, ; 1, ).

In view of Proposition 3.1, Theorem 4.1, and Theorem 5.1, it is sufficient
for the proof of Theorem 6.1 to show: Let {(&, P®), I®(dw)} (i=1,2) be two
pairs satisfying (6.1), (6.2), and (6.3). Then (x®, PP)=(a, PP) and L¥(dp)
=1I"(dy) if, for any d (2/3<d<1) and for any feC}, wuilx; ) =Tf(xd,) satisfies
two equations: w(z; /)=SP(x, ; f,u) (i=1,2) where T, is a given cascade semi-
group.

We need several lemmas for the proof.

LeMMA 6.1, PQGEP=H=P2EP=t) for all t=0, where <’s ave defined by
(6. 7) for z’s.

Proof. Put {P=7%® (;=1,2) for a fixed d (2/3<d<1). Since ®(a-w®)
=tW(®) by the definition, PP(zP=¢) does not depend on zeS by (6.4). Hence,
it suffices to prove the lemma for x=1. Taking a sequence {f,}<C¥ such that

1, 0<z=d,

Ju(x) lf(x)={
0, d<z=1,
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we have

EPLfa; 1<9] | EP[Aw®) 1<9]=0.
Since (@, fn)="Tifn(@ds)=1 for x=d, we have

E@hu-o@f; f; ofy=d, <0 =fl= PPy =d, <951

and
t /\
E;“[S as| IO M) <d <o)l Tt o)

0 My~{61}

_ E}”[St dsS Tt (P M) <d < xé“)]
0 My—{81}

= ng[gt dsS EO(da (2P a< d< o f>)]
0 i0,1)
DAL )

= Ei“[s dsg k‘”(da)x(x‘“a<d§x§”)]
0 0,1

:E;w[ 5 X(x§i><d§x§i_))]

s<e(DAL
-*P(”(xﬁ%i) D =f).
Therefore, the relation SP(1, ¢ fr, #)=SP, £, fn, u) for all » implies
PP@y=d, P=H+PPEh<d, V=1
=PP(a%=d, tP=H+PP%<d, P=p),
ie. PO =6)=PP(®=f).
LEMMA 6. 2. For any d (2/3<d<1),
(z®, PP, 1<P; 2eS)=(a®, PP, t<:®; xel).
Proof. When feC¥ satisfies f(x)=1 for x=d, we have by (6. 8)
T./(0)=E®[f(z"); t<t®]+PP(cD =t)
for i=1, 2, and hence by Lemma 6.1
EP[flx); t<eP]=EP[f(z?); t<zP].
This is easily shown to be valid for all feB(S). Moreover, Since

EQ[fnf?); 1<) = BP0 (af); 1<),



CASCADE SEMIGROUPS AND THEIR CHARACTERIZATION 447
we have
EQ[f(z); t<cP1=EP[f(2f); t<P]

for any d (2/3<d<1), any zeS, and for any feB(S).
Now, it is shown by induction

EPU (@) folwiy) - Salzi); tn<7d]
i =BPLAGE)fof)fuaf2); ta<c
for all n=1, 0=t,<t; <+ <tn, and fkeB(g) (k=1, 2, -, n), since, if we assume (*),
we have for another f,.,€B(S) and tp1>¢n
ERL(@D) - Salali) fari(@i ) tna<zd

=EP[ (), n(x&’)E;’til)[f w1 (@imta)y Inia— <] 003 tn <7
n n

= BYLfa) S @G Fusr(austa)s tas—ta <o), g 07 ta<ed
n n

=E§§)[f1(x§§))- . 'fn(x§2)E$§2)[fn+l(x§2n)+1—tn); tpri— < ré?’]p:m/xgz); tn <TEL2)]
n n

=EPU1@0) - Sul@i)) frer(@f,); tann <zPl

LeMMA 6. 3. For any feC%,

OOApUM(m) <d) f (1) = S | T@dpM(p)<d) f(12)-

SMr—(h) M-8

Proof. Put =P, t®=c®, and P"'= (i=1,2) for 2/3<d"’"<d<d <.
We have by (6. 8) for feC¥

T.F(0)=EP[faf); t<cP}+EP[Tieco f(doa); aBy=d, tP=1]
t A .
+ E{“[S dsS Tt M) < A< 2$) Th o f (250 ,1)]
0 Mi—{3:} -
~1® IO+, say.

O =E®[Ty o f(doe); xBh=d, tP=l, D<),
t

III(“=E§“[S dsSH“’(dp,)X(xéi’M(p) <A<d’ <a®) Tomof (- p):l
0

£ a
+ 59|  as{moaunao sy <a<ap = o 1o |
]

=III» +11I{», say.
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me =] | as\mroapnaeni) <a<o) T |

=E§”|:E.(Z()1;) [S dsSH(Z)(dﬂ)x(x(z)M(p)<d<x(z)) Tu_sf(w(z) :l ; T(i)’ét’ z.(i)’<z.(i)].
=(2)’

=t—e(2)’

Putting y=29), and p=d/s%¥), (=d) in the last term, the integrand is equal to
[ { as{ moaanaemi) <up <o) et |

On the other hand, we have by (6. 8)

T.f 8) =EPLf@P); u<ciPl+EP[Tu-epf Whoyp); ,m—yp, o =u]

+ ] { as{ modntor My <up< ) Tuesflotp -1 |

Therefore,
ngi):Ef“[]L,(i)’f(xi@),ézgz),); W =g, 9L W)
_El(i)[Em [f(x<”) U< um e O Zf, D D]
= d/-l' NOY

_‘E(l)[E(Z(,,) [Tu—r(’b)f(dﬁd), x:(g) =d T% Su]u e’} (i)l -él‘, z_(i)’ <T(i)]
p= d/‘”((z)r

— E(i)[TL—r(i)'f(x((z) 6'”58),)’ T(i)' ét, T(i)' < T(i)] — Ef'l)[f(xgz)); T(i)’ =< T(i)]

—E®[To o f(dog); #8=d, 1P =¢, 1@ <O L0,

Thus, it follows from Lemma 6.2 that IV =I®, II®O=11® and IIIP=I11¢, and
hence III®=III®, Moreover, we have

11;n—111<t>~SH<Z><dy>x<M<y><d>f<m
tlo
by the right continuity of z{* in ¢ and by the inequalities:

@O M) <d<d' <o To-of 0 5 M) < -5 <1
and

gﬂ")(d/z)?C(M(/l) < ) < +o0.

Therefore,
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Sn<l><dmx<M<m<d>f<m=SH<2><dmx<M<m<d>f<m.

LemMA 6.4. Two finite measures Qi and Q, on (M, 7' (BE) are coincident,
if they satisfy

| fauan=\ e
M M
Jfor all feC¥.
Proof. Let Q¢ be the induced measure on (M, $B%) of @; by the mapping
¢q (i=1,2). By putting fe=f|s, for feC},
| fwean=\ Fuetmaan=\ 70
My M My
for i=1, 2, because f(u)=faulpdy)) for any peM;. Thus, we have

. Faean={  fasa).
M M

Moreover, since we can prove as Proposition 1.2 that _{fs feC¥} is dense in
C(M¢), we have

SM(I F)Qi(dv)= SMgF(v)Qg (@)

for all FeC(M§), and this implies Q¢=Q¢. Hence, ©,=), is obvious.
LemMA 6.5, ITD(dp)=I1{(dy).
Proof. By Lemma 6.3 and Lemma 6. 4, we have
IV oy @quy=M P pagey on {peMy; M(p)<d},

because {peMy; M(p)<diepz(BE). Since {peM; M(p)<dic{ueMy; M(p)<d'} for
d<d’, we have

TPy gpy=I P |y gey o0 {neMy; M(y)<d}
for any d’ (d=d’<1), and hence, by Lemma 1. 4,
OO=0® on {peM; M(p)<d.
Thus, we have by letting d 11
HO=[0® on M —{5}.

LeMma 6.6. (x, PP)=(zP, PP).
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Proof. Let T{® be the semigroup of the process (x{”) (i=1,2). Putting
P =1 and for feB(S),

T f(w)=EPLf()]
=E[fal); t<c®)+EP[flaP); 2]
=[®+JI®, say.

9=EP[TE0 fzf); t2:9]
=EP[T@.0 f(@f); afh=ad, t2]
+EPIT L0 faly); oy <wd, 1257]

=IO +IIP, say.

me=Ey| ¥ T A <ad=a?) |

sse(At

FOIN
=Egz>[S dsS EO(da) T2, f(xgi>a)x<xgt>a<xd§x§i>)]
[o,1)

0

:E‘;’[Stdss KO (da) T, f(x§i’a)x(:v§"a<xd<x§“)].
0 i)

00,
By Lemma 6. 2, we have I®=I® and
IP=EPITE.0 f(zd); z@,=xd, =]

Moreover, since k& (da)=k®(da) by Lemma 6.5, we have

t
II§”=E§?[S dsg EO(da) TE, flaPa(aPa< 2d < 2 ]
0 £0,1>

Thus,
TP flx)— TP flw)
— BO[T2.0 f(ad)— T flad); aty=ad, <0=1]
t
+ E;)[g dsg FOdat(@Pa < 2d < o) TE, floPa)— Ty f(xf,"a))]
0 [0,1) _
and

|79 1(e)— TP1)| S Ar PE(ah =2d, <050
+A¢,E§;>[Stdsg EOdat(a®a< zd< 20 ]
0 [0,1)

=A, PPV =t)



CASCADE SEMIGROUPS AND THEIR CHARACTERIZATION 451
for t=#, where
Ap= sup | TP f(z)~ TPS()
z€S
0st=tr

Hence, Ay <A, PP(®=¢). Now, taking # >0 such that PP(z®=¢)<1, we have
Ap=0, and hence TOf=T@f for any ¢t=¢#. Since both {7T®} and {T{¥} are semi-
groups and #’ depends only on &, we have T®=T® for all ¢£>0, and this implies
(o2, PO)=(f, PY)

The proof of Theorem 6.1 is completed by Lemma 6.5 and Lemma 6. 6.

§7. Generator of the cascade semigroup.

Let {Ti} be a given cascade semigroup and A° the infinitesimal generator of
its underlying process (z:, P%). Then, by Proposition 3.1, C'0, 11c 9(A%) (the
domain of A%, and for feC'[0, 1],

A ()= —mzf'(x)+ Sm Dk(daXf(xa) —f(x)),
where m is a nonnegative constant and k(de) is a measure on [0, 1) such that
Kda)=\ 1(dy)

{p: M(p)€da}

with the branching measure I1(dy) (see (4. 15)).
This section is devoted to the infinitesimal generator of the cascade semi-
group {73}

LemMA 7.1, P(ze=0=0@) as t ] 0.

Proof. The formula (3. 16) gives
1
lim Bfel=| wdasa)
£10 [0,1)
for any feCY0,1] such that f(1)=s’(1)=0. Take a sequence {f,} in C'0, 1] such
that £,(1)=sr»(1)=0 and
1, r=d,
Salz) | Uz)=
0, d<zx=1l

then we have

i Bl = lim B = Hdo s
tl0 tlo [o,n
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for all . Hence, by letting n—co,

s waora={ kao<too.
tlo ¢ £0,1) [0,d]

Since ENX(x)]=P¥z:=d)=P%(ra<t) for x€S, we have the result.
LEMMA 7.2. For feC¥nD(A"), (Tif)ls—F)t converges weakly to Bf in
C[0, 11, where

@.1) Bf<x>=A°f<x>+SM

—

. H(dp)(f (- 1) — FlaM(w)).
Proof. Suppose feCi¥n DA%, take d’ such that d<d’<1, and put <% =<’
Then, by Theorem 5. 1,
T f(2dz)=E%[ (@) t<t'1+ES Tieo flad 800); wo=2d', v/ <t]

+ E&[Sz dsSMl_m TH(dpit(esM(p) < 2" < 2) Tovsf (- ,1)].

0
Moreover, we have
T (2)=ES[f(xe); $<c+ES [T flwe); t2=7']
=E%[flw); t< T+ BT flad’); x=2d’, ' 1]

t
+E;[S dsg Hdama<ad <e) Tt f(xsa):l,
0 [0,1

since, in the last term,

E?T[T‘t)—f'f(xf'); xr’<xd,) T’ét]

B 3 TLfeta<ad'se,) ]

SST/AL

- E"z[grwdss HaTL, f(msa)x(:csa<xd’§xs)]

0 ro.
by the formula (3.17). Hence, we have

T f(265)—fx) _ Tifx)—fl=)
¢

7 +I+11,

where
11 . -
1= Eg[so dsSH(dp)X(ng(/;)<xd < 1) (F (e 1) — FlaM()))

and
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=L BTy f @ bea)— Tioe flad); =0, </ =1

+ %E‘;[S:dsgﬂ(dp)x(xs]m#) <ad' <)

X A(Teesf o )= F e )= (T e Flab)~f o MG |
Since f(z-p)=f(eM(y)) if M(p)=d, and since
X(xsM(p) <xd <xd’ < xs) =X<M(/1) < %)X(ng(y) <zd<zd' <zs),
we have

tim L= tim 7 B3] (' as{ (o< )

140 tlo

« X(st(,u)<xd<xd'<-7b‘s)(f($s'#)—f(st(.u)))]
=Sﬂ(d#)x(M(/~‘)<d)(f(x'#) — feM()

- Sn(d#)( F@ ) —f@M())),

where the convergence is easily seen to be weak in C[0, 1]. By the formula (5. 5),
we have

1 A A
[IIlé-t—P%(r’ét){ sup | T3 — Fll+ sup 1T f—11|
0=ss=<t 0<s<t

and hence, by Lemma 7.1 and the strong continuity of 7; and 7%, II is shown to
converge weakly to zero when ¢ tends to zero. Finally, the proof is completed by
the weak convergence of (T%f—f)/t to A°f for fe P(A).

LEMMA 7.3. Let A and D(A) be the infinitesimal generator and its domain
of {Ti}. If FeC¥n DAY, then feD(A) and

(7. 2) Af(#): A::: W .f(#)

for p=73; xidz,e My, and AF(0)=0.

Proof. Assume feC¥nD(A%). For p=3 x:id,,€ M, we pick up x;’s such that
x;>(1—d))d and rewrite them as i, &a -+, 2, Where n=d/(1—d) is obvious.
Since (7:f)|s€C%,
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T — ()= T.f (leax,) (z x5>

k3

= 1:1 f(xza:q)_ nf(mz)

(T:f (#:02;) — f(3)) Hf(xj) ﬂ th(xkﬁx,c)

fl
i

if =2, and hence, by Lemma 7. 2,

lim L= 1) _ i‘Bf(xi)I;[f(xj) if nz2
1=1 ix

40 ¢
= Bf(x:) if n=1

0 if n=0,

or

T f) _ Bf(xz)
ltlln(f)l 7 f(a:) Fl,

where the sum in the right-hand side is taken over all z; in p=X x,, because
Bf(x)=0 if z;=(1—d)/d. Since

177l =|[] ef oy [l

= 7= T s~ 1)

we have by Lemma 7. 2 the boundedness of (T; F— f)/t as £| 0. Moreover, since

BIw) . (BA2)
5Tk F =\ ) £

3

is continuous in pxeM; because Bf/feC,, (T.f— At converges weakly, and hence
FeD(A) (see Dynkin [1]) and

. B .
479={ 220 ) 1)

By putting p=xd, in the above, we have Af(xzds)=DBf(»), and this completes the
proof since Af(0)=0 is obvious.

By Lemma 7.2 and Lemma 7. 3,
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7.3) Af (w5) = Af()+ SM

-

N H(@p)(f (z- 1) — fl@M(p))

for feC¥nN P(A®). In addition, if feC*[0, 1], A%(x) is given by the formula (3. 16),
and hence we have the formula:

7. 4) Af(:c5z)=—mxf’(x)+g RUCRTCIES D)

1—1{6

for feCFnCYo, 1].
Since feD(A) for feC¥n D(A), we have
(7.5) . _ary

in the strong sense of derivative. Therefore, u(z)=(T.f)|s(x) satisfies the
equation:

(7. 6) Sudz) = A (235).
ot
LemMMA 7.4, wu=(T.f)|seCFNCHO, 1] if feCFNCHO, 1].

Proof. Since
4 A AN
wi(x) =T, f (20z)= 110 (1) = Er[0 1 (:)]

=E{exp<8% log f(xy)w(dy))],

#,€C¥ is clear and that w,(x) is continuously differentiable in x follows from the
expression;

a—ua‘gf)— = E,[exp(S% log flzy) ,u;(dy))S '7;:((;6;)) #t(dy)]-

Let D be the linear hull of all f’s such that feC¥NCY0, 1], then Lemma 7.4
implies that D is 7,-invariant. Since D is obviously dense in C(M,), Watanabe's
lemma (see [14]) assures that D is a core of the closed operator A.

Let us complete the above arguments by the statement:

THEOREM 7. 1. The infinitesimal generator A of a cascade semigvoup {T3}
has a cove D=_r{f; feC¥NCY0, 11}, and if feC¥nNCY0, 11, then

AfG)=3 A—’}gj%i)ﬂm

Sfor p= Y %i6z,€ M, where
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Af(:ch)=—mxf'(w)+S RUCRGERETEN

1—{3
and AF0)=0.

By putting w,=(T,f)|s, feCF¥NCO,1] implies weC*NCY0, 1] and in addition
u(x) is a solution of the nonlinear equation:

i) _ o) .
@.7 T ™ +SM1-<5,}H(d“ Wl ) =24l

tho+(2)=f(x).

ReMARk. Theorem 5.2 can be immediately seen from the first half of
Theorem 7. 1.

§8. Construction of the cascade semigroup.

Let {(x:, P%), II{dy)} be any pair defined in the beginning of §6 which satisfies
(6. 1), (6.2), and (6.3). Then, all of this section are intended to construct the
cascade semigroup {73} with (=, P%) and II{dy) as its underlying process and
branching measure.

In view of Theorem 6.1, the problem is reduced to solving the system of
fundamental (Sg)-equations (2/3<d<1):

%5(&’}; f)=sd(x; L fr %)
(Sa) =R fr); t<ead + ES[th-cy(xd; [); 2oy=2d, Ta=1]

13 S
+E3,[S dsg T (Ao M(p) < 2d <) sy o -3 F) (- /,z):l
Y Mi—1{51}

for all feC¥%, and to construction of the cascade semigroup {73} such that #(z; f)
=T, f(xd;). This problem will be answered in Theorem 8.1 at the end of this
section. But for this we need many lemmas.

To begin with, it should be remarked that the process (a:, P%) corresponds to
a nondecreasing additive process (y;, P?) by the transformation y,=—log x; whose
Laplace transform has the form exp(—¢¢(a)), where

gb(a):ma-l—g (l—e9idw) for a>0

0,00]

and

l(du)-—-s k(da).

{a; —log acdu}
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LemMA 8.1, (i) PYUa>0)=1,
(i)  E%alf(x)]=E%[flax)] for feBl0, 1],
(iii) P%(x; is non-increasing in t=0)=1, and

; -
(iV) Ph(east)=Pi(z.,=ad, z'dgz‘)—i—EB,[S dsS k(da)x(xsa<xd<xs)J.
0 [0,1)
Proof. (i) is obvious by the right continuity of the sample path, and (ii) and
(iii) are seen from the above remark. Finally, (iv) is shown by the formula (6. 5)
as follows:

P(za=t)— PY(x.y=2d, t4=t)

=P (z.,<ad, Tét):Eg,[ 5 X(ws<xd§xs_)J

sSrg At

T 13
=E;[S desS k(da)x(xsa<xd§xs)]:E°x[S dsS k(da)%(xsa<xd<xs)].
0 00,1 0 0,1
By Lemma 8.1 (iv), the (Sg)-equation has always a solution #,=1 for f=1.
The independence of P%(r¢=¢) on x is seen from Lemma 8.1 (ii) and the defini-
tion of r4. For simplicity, we denote % by 74 or ¢ in this section.
For feB%, we define {u?(x); n=0} by

{u‘:(x)sl,

8.1)
urt (x)=Syx, t; 1, u") for n=0.

LeMMA 8.2. O0=ul"=ul=1 for all nz=0, and the limit ul(z; H=ul(x)
=limy ... wXx) is @ solution of the (Sa)-equation such that uleB¥.

Proof. The first half of the lemma is easily shown by induction. Since the
process (x:) is nonincreasing, it can be proved #?eB¥ for all »=0, and hence
ude B¥%. Since

at)=it( 3 wde)= J1 )

z3>(1—~d)/d x,>(1—d)/d

is a product of finite number (=d/(1—d)) of factors for any v=3 w.d,,e M, uf is
shown to satisfy the (Sg)-equation by letting z—oo in (8. 1).

By Lemma 8.1 (i), there is a constant #d)>0 for each d (2/3<d<1) such
that (d/(1—d))P%(ra=t(d))<1.

LemMA 8.3. The (Sp)-equation has a unique solution in BY for t=d) and
for feB%. In particular, the unique solution ul(-; f) is in C¥ for t=t(d) and for
feC¥.
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Proof. We first remark the following. Since the number of s such that
2;>(1—d)/d is less than df(1—d) for any p= 3, 20,6 M, we have

F@-dl=| T fed= 11 o) Torlials

z;>(A—d)/d x;>(1—-d)/d

for f, ge B¥, and hence

1l = 7 1= als

Now, let #; and »; be two solutions in B¥ of the (S;)-equation for feB¥.
Then,

() —vi(m)| 2 ESl|ttr-(wd) — v (2d)]; x.=2d, r=1]

i

+E;[S ds| o @M< 2 <)oo y)—zs,-s<xs-#>1]
0 Mi—(3;

=FE%w—c—vi-.]; z.=2d, v=£]

¢ d

vef Casl e <aa<a) 74 fuei—odl]
0 M—{51} -

where r=174 Therefore, by putting A=sup.=. ||tts—2:||, Wwe have

(d)
ASAPY(r.=ed, c=Hd)+ 7oy AR [St dsS k(da)x(xsa<xd<x3)]
0 o,

EA —— Pi(r=Hd)),

d
1-d
and this implies A=0, i.e. u,=v, for t=#d). Thus, the uniqueness assertion has

been proved.
Now, we shall prove u?eC% for all » if feC§. In fact, since

up™x)y=Salx, t; f, u")
=Eflx- 2oy, t <71+ Elu-(2d); x.=d, t=t]

+E?[S‘dss I dwmn(e:M(p) <d< %)ﬁ?_s(xxs-p)]
o Jan-o)

and 4% (xxse p) is continuous in x if #FeC¥, u?(x) is continuous in x and #}*'>0,
and hence #?"eC% if u?eC% because u7t'eB%. Thus, we see u?eC§ for all n by

induction.
Since
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o7 T (x) — u(x)| £ ESl{ul (xd) —ui=Had)]; x.=xd, =i]

t
+ E[S dsS (@)U M) < wd < )| Ao (- 1) — B2 Ha 1) |]
0 Mi—{o1}

d 5
=A, .- T Py(r=Hd))

for t=H(d), where A,—1=sUDigia) |7 —u?7"|, we have

d

An§An—-1 ¢ l_d

Py(z=t(d)).

Thus, >, A, is convergent and it follows that #? converges uniformly in
x as m—oo for t=#d), and hence #¢ is a continuous function for ¢=#d) if
feC%.  Moreover, since #feB% and af(x)=E%[f(w); t<7]>0 for t=i#(d) because
P(z>Hd))>0, we have ufeC% for t=#(d) and feC}.

LeMmMA 8. 4. If u; is a solution in B% of (Se)-equation for feB¥, then u, is
also a solution of (Sg)-equation for f and t=Hd), where d' is any number such
that d<d'<1.

Proof. Put tg=<t, r¢-=7', and
o, z, d")=ux)—Sa(x, £; 1, u).
Moreover, if we put

p=  sup ot z, d")},

0=st<t(d), 0<x=1
d=d’ <1

to show p=0 is to verify the lemma.
Now, since #; is a solution of (Sy)-equation, we put

u(x)=Sa(, t; 1, %)
ZE?z[f(l't); t<T]+E?t[ut—r(xd): xr:xdy T§t]

+E‘;[S:dsgﬂ(dy)x(st(p)<xd<xs)m_s(x3- ,u)]

=I+I14-1I1.
I=E% flwe); t<c' 1+ LS fze); o/ =8, 1<7]
=I+I,, say.

Since /(w)<z(w) in the second term I, it holds r(w)=1'(w)+rp(wt) where p(w)
=xd|z.(w)=d, and we have
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L=E%[E% [flx); 1’<rp],=tzl,, DS U<
p=xd/x;’
N=E%ur-(xd); z;=2d, t=1"={]
+ E% [ty (xd); x.=xd, o' <c=f]
=II;+II,, say.

o=FE%[E% [ttr-c(2d); 2. p=2d, z-pér]mzﬁ/ ;U= <
p=xd/ T’

HIEE;[S:dsSH(d#)X(st(y)<xd<xd'<xs) zz,_,,(xs-p)]

t
+E‘;[S dsSﬂ(dp)X(st(p)<xd<xs§xd')ﬁt_s(xs- ;1)]
0
= IIIl + IIIz, Say.

1112=E3,[E;r,[grdsgH(d,,z)x(st(y)<xd<xs)ﬁr_s(xs-y)] ;o' =t, r'<f].
0

r=t—1’

Hence,
T+ 1,11,
=Ez[{Ez[f<xr>; r <ol Eyltteo(ub); 2oy=1bs cp=1]
+E%[Srdsgﬂ(dy)x(st(p)<yp<xs)127_s(:cs- ﬂ)]} s =t z"<r]
0 r=t—rz’
et P
=E%[te (@) — pt—7', 20, xd]z); o' £t ' <2)
Moreover,

IIII—E%[S;dsgll(dp)x(st(p)<xd’<xs)zit_s(xs- ,,)]

-]

-]

- LST Mdsgk(da)x(xdgxsa<xd’<xs)ut_s(xsa)]
0

dsSH(dy)X(xdést(/z)<xd’<xs)ﬁt-s(xs'#)—l

ds\H(dpx(zd =xM(p)<axd’ < zs) ut-s(st(#))]

t
0
t
0
’

——m| 3 x<xd§xs<xd'<xs_>m_s<xs>]

sStiAL
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=—ELM@d =0 7 <2d )ty piY(Ter 1))
=—E% (), o/ =, o' <7]
+ E% [ty (2d"); o' <7, /=8, xo=2d']
—E%[u—(2d); o' =v=t, x.=xd<xd’].
Therefore,
o, , d')=E%[ths-o () — 08 =7, 20y 2d]0); o' S8, o' <7]
— B i)y o' =8, o' <1]
+ E%[#s o (xd’); /<7y ' =H, mo=2d’]
— Bty (xd”); mor=2d’, o' =i]
=—FE%[o@t—7', z., 2djz.); 'S¢, o <7,
and if t=id),
Ip(t, ®, d)|=pPi(c'=t, o' <7).
Applying this inequality to the above equality, we have for ¢=#(d)

lo(¢, x, dl)léEgc[AoP?t,’(Tﬂ§7’) Tp<f)r=t—-r’ ; =t o' <]

p=cdjz,!
§pE%[P%,/(rp§r);zéd_;;r,; ' =t, /<]
=pP%(r=t, v'<7)
=pPL(z=Hd)),
and hence
P=pP(x=Hd)).
Since P%(r=¥d))<1, we have p=0.

LeMmMA 8.5. Let ux;, f) be a solution in B% of the (Si)-equation for fe B
If a positive number v is such that the (Sy)-equation for any feB% has always a
unique solution in B% for t=r, then it holds

ters(r; ) =wu(x; us(+; 1))

Sor t=v and s=Hd).

Proof. Since w,(x)=ulx; f) is a solution of the (Sy)-equation, we have
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tevs(%)=So(x, t+S; [, u)
=FE%[ fx4e); t+5<7]+ES[ur4s-(2d); r.=xd, t=t+s5]

el ("l mato i <ad<odin-on s |

=]+II+111,

where r=rqs Using a Markov property at time #, we develop the terms in the
right-hand side as follows.

I=ES[ES [ f(#5s); s<tplp=zass,; t<7].
=E% w5 (2d); z.=2d, 1]
+ EY[usys—xd); z.=xd, t<c=t+5]
=II,+1I,, say.

Mo=EYE% [ts—cp(2d); xe,=2d, tp=Slp=sa/z; t<7].
t t+s
IIIEE‘},[S duSH(d/,e)--']-!—E‘;[S duSH(d‘u)m]
0 t
= IIIl + IIIz, Say.

L=y { dul 1@ M) < 22 <o i sanee )|
0

:E‘;[E?Et[Ssdugﬂ(dp)x(xuM(y)<xd<xu)ﬁs_u(xu- p)]; t<f].
(i}
Thus,

[+11,+ 111,

=E%UE;°/[f(xs); § <ol EYtee U 7oy =h, 7p=5]

+E%[S:dugﬂ(dy)1(xuM(p)<yp<xu)ﬁs_u(xu-p)]}th ; t<r]

p=xd/$l

= E%[us(xy); t<7]

for s=#d), where we applied Lemma 8.4 because p=xd/x:=d. Therefore, for
Sét(d),

tees(x) = E%[us(); ¢ <ol 4+ ES[thses—.(xd); x.=2d, T=¢]

+ o] § et <oa<adiuitonr |
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When we fix feB} and s<#d) in the above equation and regard #,x) as a
function of variables # and %, we have

ut+s($; f)EuHs(x):”t(x; Ms(, f))
for #=r by the assumption of the lemma.

LEmmMA 8.6. (i) The (Sp)-equation for feBf has always a unique solulion
ulz; ) in B for all t=0, and (ii) the solution satisfies the iteration property

(8.2 wors(x; ) =ulow; us(+; 1))
Sfor all s,t=0. Moreover, (iii) if feC%, then u(-; £)eC% also for all t=0.
Proof. (1) Let wux; f) and vz, f) be two solutions in B% of the (Sg)-

equation for feB% (such a solution exists by Lemma 8.2). Then, by Lemma 8.3
and Lemma 8. 5,

wres(z; L)=wilz; wus(+; )

and
vess(z; 1) =vilz; vs(+; 1))

for s=#d) and t=#(d). However, since the right-hand sides of the above equalities
are the same by Lemma 8. 3, we have u,(x; f)=uviz; f) for +=2#d). Thus, repeat-
ing the same argument, we have w(z; f)=wv,(z; f) for all =0 because #(d)>0.

(i) By Lemma 8.5 and (i) above, (8. 2) holds for s=#d) and any ¢=0.
Therefore, if s, #=#{d) and =0, then

Usrseu(Zy L) =0ss(2; uu(+; 1))
=u(x; us(+; uu(*; 1))
=, tsrul*; )

which shows (8.2) for s=2#(d) and #=0. Repeating again the same argument,
we have (8. 2) for all s, ¢=0.

(iii) I feC%, then wu(-; fH=ul(-; £)eC} for i=Hd) by Lemma 8. 3. Using
the iteration property (8.2) for ¢, s=#d), we have wu(-; [)eC} for t=2{(d), and
hence by applying the result to (8.2) again and again, we have wu-; f)eCf for
all ¢=0.

LemMma 8. 7. If feB% and d<d’'<1, then
(8. 3) ul(z; H=ul (x; 1) for all t=0.

Proof. First, note that B¥c B¥ if d<d’'<1l. By Lemma 8.4, u(x; ) satisfies
the (Sg)-equation for f when ¢=i#(d), and hence, by the uniqueness property of
Lemma 8.6 (i), we have (8.3) for t=#d) and any feB}. Therefore, using the
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iteration property (8.2) for s, t=#d),
utys(@; [)=ui(@ ud(-; N)=ui(z; ui'(-; )
=ul'(z ud'(+; ) =uls(z 1),

which shows (8. 3) for ¢=2i(d). Thus, the equality (8. 3) for all =0 follows from
the same procedure.

The following lemma was first given by Ikeda, Nagasawa, and Watanabe [5],
however for later use, we need some more detailed statement.

LEMMA 8.8. For any positive integer n and 0<pi, s oy Do <00, let
Qp(i=1,2, -, n) be a given finite Bovel measure on My, Then, there is a unique
Sinite Borvel measure Qpyr.ip, 00 My 1..rp, Such that

Qs =T1§  )Qnd)

SMP1+"'+pn 1=1J M

8.4
Sfor all feC¥. Moreover, if we write

Qprtet 2, =0p, KW, X - RQp, = le &K Qs

then

Qpl ® ng = ng ® Qp1
and
(8- 5) ll;[l ®Qpi = 1D1 HQpiH;

where ||Q,l| means the total mass of a measure Q.

Proof. Let us consider the case #=2. We show the existence of the measure
@p,+p, Such that

S F@)QM@@:S Qm(dmg Qpuldv) )
MP1+172 Mpl Ml’z

for all FeC(Mp,.p,) (the uniqueness of such @pp, is immediate from Proposition
1. 2). However, the existence is obvious from the fact that the right-hand side of
the above equality is a continuous linear functional of FeC{(Mp,.p,).

The lemma can be shown similarly for the case #=3 and the second half of
the lemma is obvious.

Lemma 8. 9. Fm‘: {u(x; f); n=0} defined by~(8. 1), there exists a sequence of
probability measures Q%4(t, x, dv) on M, such that Q3 z, M;)=1,
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8. 6) Mmﬂ=gf@%@aw
My

for all feC%, and Q%(@, », E) is measurable in (t, z) for E€ B, fixed.

Proof. For n=0, take OY(¢ x, dv)=0,(dv) the unit mass concentrated at
0eM,. Thus, the proof is done by induction as follows. Put #?(x; f)=u}(z) and
assume the statement of the lemma for ». Then, we put

i (@)= ES[fxe); <)+ ESw(ad); x.=2d, v={]
+ B3| | as{mamnetg <ad <o o) |
=I+II+111,
where r=r5. By putting
IP(t, @, dv)=E% 0y, )(dv); 1<7]

for the first term I, we have
1=\ o9, a)
My

for all feC¥, where X9 x, dv) is a measure in dv for fixed (¢, x) satisfying
P, z, Mi— M,)=0 and is measurable in (¢, x) for dv fixed. For the second term
II, since

H:Eg{S F0 =z, 2., dv); 2.=2d, réz‘]

for feC%, we have, by putting

9@, &, dv)=E%[0%(t—1, ., dv); z.=ad, t=1],
II:S F)ZD(E, @, dv)
M

for feC¥, where X9 is also a measure with desired property. Finally, for the
last term III, let us first define Q%(¥, pa(p), dv) by

Qut, pa(p), d)=G3(t, z1, )R - R4ty Ty dv)

for oa(p)= X0 2ids, Then, HO oap), dv) is a probability measure on M, for
(¢, pa(p)) fixed, satisfying Q34 pa(p), M,,.)=1 and is measurable in (¢ y) for dv
fixed, It follows from the assumption that, if feC%,
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aw= [ we= I SM FOFa, 21, )

xy>(1—d)/d zi>(1—-d)/d
{60t e, a0,
Mijul
where p=7} x0,€M, and hence
t A ~
III=E‘;[Sodsgﬂ(dy)x(st(y)<xd<xs)g F)03—s, palzsr ), dy)].
My
Thus, by putting
L ~
59, 1, du):E“,[S dsSH(dy)x(:csM(/,e)<xd<xs)Q$(t—s, oulzse 1), dv)],
0

we have

ng FO)Z9(, @, dv)

M

for feC¥, where Y§ is a measure with the desired property.
Therefore, the sum

Qui(t, x, dv)=3P(, @, dv)+IQ(t, x, dv)+IP(, z, dv)

is a measure in dv for fixed (¢, ») satisfying 074 #, M;—M,)=0 and is meas-
urable in (¢, z) for fixed dv, and it satisfies

() = SM 700, 7, dv)

for all feC%. Moreover, 0% (¢, z, Mz)=1, since u*(z; 1)=1.

LemMA 8.10. Let wux; f) be the solution of the (Si)-equation for feC%.
Then, there exists a probability measure Q4t, p, dv) on My for any pe M, such that

N “ ~
6.7 s D))= SM FO0ult, 1 @)

Sor all feC§.

Proof. By Lemma 8.9 and the weak*-compactness of a set of probability
measures on M, there exists a probability measure Q42 x, dv) such that

0 f)=SM F00ult, v, dv)

for all feCk Moreover, the existence of §a(t, ¢ dv) for any peM; and (8.7)
follow from Lemma 8. 8,
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Lemma 8.11. (i) There exists a wunique probability measure Qu(t, p, dv) on
(M, 75 (BE) for t=0 and pye M, such that

o~ .
s F) ()= SM FORU, 1 )

Sor all feC¥%, and (ii), if d<d’'<1,
Qa (2, s dV)|¢;‘(_ﬂB{i):Qd(t’ s dy).

Proof. (i) Since f is measurable with respect to ¢;!(@%) for feC% (Lemma
1. 4 (iv)), we can take Qu(t, 1, dv)=Q(t, p, dv)l,zi(ep) in (8.7) instead of Qut, p, dv).
The uniqueness of such a measure is immediate from Lemma 6. 4.

(il) From Lemma 8. 7, it follows that

S F0)Qult 1 dv>=g FOQuts m dv)
M M

for all feC* (cC%), and hence, by Lemma 6. 4,
Qd'(t’ My dV)'tp:{l(_‘B{i):Qd(t’ Us dl)).
LeMmMmA 8.12. There exists a unique probability measure P, p, dv) on (M, B1)
for t=0 and pe My which satisfies

o~ .
8. 9) - 1) ()= SM FOIP, > dv)

for all feC¥*.

Proof. It follows from Lemma 8.11 and Lemma 1.5 that there exists a
unique probability measure P, p, dv) on (M, ) for fixed ¢=0 and peM, such
that P(t, g, dv)|s71a)=Qul?, 1, dv). Moreover, the equality (8.8) is obvious for
feUq CE=C¥ from Lemma 8.11 and the construction of P(t, p, dv).

LeMmMA 8. 13. Define a family of operators {Ty; t=0} by
(8.9) 1=\ PP ),
My
then T, is a nonnegative linear opervator on C(M,) such that T,1=1 and ||T:|=1,
and T,=1 (identity).

Proof. Since T,feCM,) for all feC¥ by Lemma 8.12 and Lemma 8. 6 (iii),
it follows from Proposition 1.2 that 7.FeC(M,) for all FeC(M,). The remainders
of the lemma are obvious.

Lemma 8. 14. For feC¥ and t=0,
(8.10) T.f(u+v)=Tif () T.F )
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Jor p, ve My such that p+veM; also.
Proof. By Lemma 8. 12, we have
Tof (ut) =i s F)pt)

S~ ~ R R
=u(-; SN w5 FY0)=Tf () T.f (v).
LemmaA 8. 15. For FeC(M,) and t, s=0,
8.11) T..sF=T,T,F.

Proof. 1t is enough to show (8.11) for functions F=f, feC¥.
p=xd8,€ M, we have

N N
Tirsf(2dz)=ter (-5 f)wdz)
=uers(z; £)=udz; us(+; 1))

TN 4
= Ttus(-; f)(xﬁ;)Z Tthf($5x)

When

by the iteration property (8.2). Therefore, for any p=3, .M, since

Tt+szGC(M1)’

THsf(fl): hfn ﬁ+sf< Z xi53i>
§10

xTi>e

and, by Lemma 8, 14,

. . NN
Tt+3f< 2 xiax,;> =[] Tivsf(2iz)= I].—L Tius(-; 1) (2:0z,)

Ti>e xTi>e

_ Ttux(/.ﬁc)( 5 xiazi) =TT, f( M xiax,.),

xi>e Xj>e

we have

Tof )= lim mnf( = xiari) =TT/ (.

xTi>e

Lemma 8.16. For FeC(M) and for pe My,

®.12) lim Z.F ()= F (.

Proof. Let feC%. Since w(z; f)=T.f(26s) is a solution of the (S)-equation

for f, we put
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wdz, £y=ESLf ) t<e1+ Eoluevad; £); w=ad, t<f]
t N
+E°”[S dsS T (asM(p) < 3d <z o -5 f) (@s- m]
0 Mi—1{81}

=14+1I+111,
where r=74. By the right continuity of x, we have
I-f(x) as t|0,
and
I+HI=Pi(z=£)—-0 as £|0.

Hence,

ulx; f)—f(x) as t|0.
Therefore, for any p=73] xb.,€ M, noting u,(-; f)eC%,

a N S
Tf (= w5 )=wml-; f) (W UZ:‘ o xi%\)

= [1  wdaes )~ [ Ffe)=Ff@ as ¢]0
> A=d)/d

x> (1-d)/d x

since the number of 7’s such that z;>(1—d)/d is less than d/(1—d). Thus, we
have

lim T:f ()= F ()

for all feC¥ and peM,. Moreover, since 7; is a bounded linear operator, we have
(8. 12) for all FeC(M,).

LeMMA 8.17. For feC¥ and acS,

s A\
(8.13) Tif(ada)= T:045(0:).
Proof. Let feC% and put z4=r.
wlax, £)=Ey[fxe); t<2l+ES[us—(axd; [); v.=axd, t={]

t N
+E&”[SO“S” (M) < awd <2y, (-5 1) (s -M]
=E%[flax); t <)+ ES[u-(axd; [ w.=2d, t={]

+E&[S:dsgﬂ(dp)x(x3M(#) <xd < xs) ut_f(?f) (axs- ,u)]
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by the property (ii) of Lemma 8. 1. Therefore,

Outi-; F)3)=ESl0af(@); t<e1+ESBatter(-; [)ad); w.=ad, r=t]
t T —
+E%[Sodsgﬁ(d/z)x(st(y) <wd<2) et s (-3 F) (s -m],

and hence G.u,(-; f)x) is a solution of the (Sg)-equation for §,feC% such that
Outt(-; £)eC% By the uniqueness of the solution, we have

Outt)(+; Y x)=ulz; 0a1),
or
ulax; [)=uwlx, 0uf).

Hence,

T.f (ads)=uda; f)=ull; 0af)
FaN
= Tcaaf(al)'

The family {7, t=0} defined by (8.9) is a semigroup on C(M:) and satisfies
(8.12) and To,=1I, so that it is seen to be strongly continuous in #=0 (see, for
example, Yosida [17]). Moreover, by Lemmas 8.14 and 8.17, {73} is a cascade

semigroup (Definition 2. 1).
Now, we have arrived at the following theorem.

THEOREM 8. 1. Given a nonmnegative comstant m and a Borel measure II(dy)

on My—{0,} which satisfies

| a-MemEn<-+oo.
Mi—1{5:}

Let (2, P%) be a vight continuous strong Markov process on [0, 1] generated by A%
DANDCYO, 11 and, for feCH0, 1],

af@=-moe @M.
Mi—{31} .

Then, there exists a cascade semigroup {Ty; t=0} such that wfx; f)=Tif (x6s) is @
solution of the following non-linear integral equation for feC¥ (2/3<d<1):

w(w; [)=E%[f(2); t<val +ESlutico(wd; [); 2ey=ad, ra=i]

+ E;[S‘ dsSMl_m (At M) < 24 < 2ty o5 f) (5 #)].

0
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Moreover, the cascade semigroup {1} has (x, P%) as its underlying process and
II(dy) as its branching measure.

The last part of the theorem is due to Theorem 6. 1.

ConcLUuDING REMARK. Let (m, II) be a pair of two quantities m and I7 such
that s is a nonnegative constant and I/ is a Borel measure on M,—{3;} satisfying

. 16).

Then, the preceding theorems 3.1, 4.1, 5.1, 5.2, 6.1, and 8.1 make it

clear the fact that a cascade semigroup is completely characterized by its underly-
g process and branching wmeasure, or in other wovds, (m, Il) via the system of
Sundamental (Sg)-equations (2/3<d<1).
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