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Abstract

The purpose of this paper is to apply the stochastic version of
La Salle’s invariance principle in order to obtain sufficient con-
ditions for the asymptotic stabilization in probability of cascade
nonlinear stochastic differential systems. This result extends
the one obtained in Florchinger [4] for partially linear stochas-
tic cascade differential systems.

1 Introduction

The aim of this paper is to study the asymptotic stabilization in
probability of cascade nonlinear stochastic differential systems
by means of state feedback laws.

In connexion with various practical problems, the ques-
tions of stability and stabilizability of nonlinear stochastic
differential systems have been considered by different authors
in the last past years. A fundamental tool consists in the
stochastic Lyapunov machinery developed by Khasminskii
in [8]. See for example the papers [6] and [3] and the
references therein. An extension of the well-known result
of Jurdjevic-Quinn [7] allowing to compute explicitely state
feedback stabilizers for stochastic differential systems affine in
the control has been established by Florchinger in [5].

In general, the cascade connexion of two globally asymptoti-
cally stable in probability stochastic differential systems does
not yield an asymptotically stable in probability stochastic
differential system. The resulting stabilization problem has
been investigated by Florchinger in [4] and Boulanger and
Florchinger in [1]. The construction of the stabilizing control
laws in the above cited papers is an extension of the cancella-
tion procedure used in deterministic control theory, and make
use of a composite Lyapunov function like that introduced
in Saberi, Kokotovic and Sussmann [11] for deterministic
systems.

In this paper, the asymptotic stabilization in probability
of cascade systems obtained when connecting two nonlinear
stochastic differential sytems stable (but not necessarily both
asymptotically stable) in probability is obtained by mean of

explicit state feedback laws. The paper is divided in three
sections and is organized as follows. In section two, we briefly
recall some results about stochastic stability and stabilization
which are closely related to the present paper. In section three,
we introduce the class of nonlinear stochastic differential
systems we are deeling with. In section four, we state and
prove the main result of the paper.

2 Stochastic stability and stabilization.

Let (wt)t≥0 be a standard Wiener process with values inRq

defined on some complete probability space(Ω,F , P ).

Denote by
(
xξ

t

)
t≥0

the stochastic process solution inRn

of the stochastic differential equation written in the sense of
Itô:

xξ
t = ξ +

∫ t

0

b
(
xξ

s

)
ds +

∫ t

0

σ
(
xξ

s

)
dws (1)

whereb andσ are meaurable functions mappingRn into Rn

andRn×q, respectively, vanishing in the origin.

The infinitesimal generator of the solution
(
xξ

t

)
t≥0

of

the stochastic differential equation (1) is the second order
differential operatorL defined by:

L =
n∑

i=1

bi(x)
∂

∂xi
+

1
2

n∑
i,j=1

q∑
k=1

(σi,kσj,k)(x)
∂2

∂xi∂xj
.

The following facts, proven in Khasminskii [8] and Kushner
[9] will be used in the sequel.

Assume that there exist a positive constantc and a Lya-
punov functionV , that is a proper and positive definiteC2

function mappingRn into Rn, such that:

LV (x) ≤ cV (x),

for all x ∈ Rn.

Then, if the functionsf and σ satisfy Lipschitz condi-
tions on any ball inRn, the stochastic differential equation
(1) has a unique solution on the time interval[0,+∞[ for any
initial conditionξ in Rn.

If in addition LV (x) ≤ 0 for all x in Rn, then the equi-
librium solutionx0

t ≡ 0 of the stochastic differential equation



(1) is stable in probability. This means that:

lim
|ξ|→0

P

{
sup
t≥0

∣∣∣xξ
t

∣∣∣ > r

}
= 0

for anyr > 0.

The equilibrium solutionx0
t ≡ 0 of the stochastic differ-

ential equation (1) is said to be asymptotically stable in
probability if, and only if, it is stable in probability and:

P

{
lim

t→+∞
xξ

t = 0
}

= 1

for any initial conditionξ in Rn.

A sufficient condition for the latter to hold is thatLV (x) < 0
for all x in Rn \ {0}.

Another powerfull tool to investigate the asymptotic be-
havior of the stochastic processxξ

t is the following stochastic
version of La Salle’s theorem proved by Kushner in [10].

Theorem 2.1 Assume that there exists a Lyapunov functionV
such that

LV (x) ≤ 0

for anyx ∈ Rn. Then, the stochastic processxξ
t solution of the

stochastic differential equation (1) tends in probability to the
largest invariant set whose support is contained in the locus
LV (xξ

t ) = 0 for anyt ≥ 0.

From this result, an extension to stochastic differential sys-
tems of Jurdjevic-Quinn’s theorem [7] has been obtained by
Florchinger in [5].

Consider the stochastic differential system described by
the Itô equation:

xξ,u
t = ξ +

∫ t

0

[
b
(
xξ,u

s

)
+ h

(
xξ,u

s

)
u
]
ds

+
∫ t

0

σ
(
xξ,u

s

)
dws,

(2)

whereu is some measurable control law with values inRr and
h is a function mappingRn into Rn×r, whose columns will be
denoted byhl, 1 ≤ l ≤ r.

Denote by L0 the infinitesimal generator of the stochas-
tic process solution of the stochastic differential system
deduced from (2) by settingu ≡ 0, and byGj , 1 ≤ j ≤ q, the
first order differential operators defined by:

Gj =
n∑

i=1

σj
i (x)

∂

∂xi
.

Define also the first order differential operatorsΛl, 1 ≤ l ≤ r,
by:

Λl =
n∑

i=1

hl
i(x)

∂

∂xi
,

Then, the following result holds. (See also [2] for a more gen-
eral dependance of the coefficients on the control law)

Theorem 2.2 Assume that there exists a smooth Lyapunov
functionV defined onRn such that:

1. L0V (x) ≤ 0 for all x in Rn.

2. The setK ={
x ∈ Rn/Lα0

0 Gβ0
j0
· · ·Lαk

0 Gβk

jk
L0V (x) = 0,

Lα0
0 Gβ0

j0
· · ·Lαk

0 Gβk

jk
ΛlV (x) = 0,

∀l ∈ {1, . . . , p},
∀k ∈ N,∀j0, . . . , jk ∈ {1, . . . , q},
∀α0, β0, . . . , αk, βk ∈ {0, . . . , k}

such that
∑k

i=0 αi + βi = k

}
is reduced to{0}.

Then, the control lawu defined onRn by

ul(x) = −hl
i(x)

∂V

∂xi
(x)

renders the stochastic differential system (2) asymptotically
stable in probability.

3 Problem statement.

Consider the stochastic process(xt, yt) solution inRn × Rm

of the stochastic differential system dxt = f1(xt, yt)dt + g1(xt, yt)dwt

dyt = (f2(yt) + h(yt)u) dt + g2(yt)dvt

(3)

where

1. x0 andy0 are given inRn andRm, respectively.

2. (vt)t≥0 and (wt)t≥0 are independant standard Wiener
processes defined on the probability space(Ω,F , P ), with
values inRp andRq, respectively.

3. u is a anRr-valued measurable control law.

4. f1 andg1 are smooth functions mappingRn × Rm into
Rn andRn×q, respectively, vanishing in the origin.

5. f2, h andg2 are smooth functions mappingRm into Rm,
Rm×r andRm×p, respectively, vanishing in the origin.

Furthermore, assume that the following conditions are satisfied.



(A1) The unforced dynamics of the stochastic process(yt)t≥0

are stable in probability. More precisely, there exist a
Lyapunov functionV2 defined onRm such that for all
y ∈ Rm:

L2V2(y) = (∇yV2f2)(y)

+
1
2

Tr
((

g2g
?
2∇2

yyV2

)
(y)

)
≤ 0.

(A2) There exist smooth functionsf i
1 andgi

1, 1 ≤ i ≤ r, map-
pingRn ×Rm into Rn andRn×q, respectively, vanishing
in the origin, such that for all(x, y) ∈ Rn × Rm:

1. f1(x, y) = f1(x, 0) +
r∑

i=1

zi(y)f i
1(x, y).

2.

g1(x, y)g1(x, y)? = g1(x, 0)g1(x, 0)?

+
r∑

i=1

zi(y)gi
1(x, y)gi

1(x, y)?

wherez(y) = (∇yV2(y)h(y))?.

(A3) There exists a Lyapunov functionV1 defined onRn such
that for allx ∈ Rn:

L1V1(x) = ∇xV1(x)f1(x, 0)

+
1
2

Tr
(
g1(x, 0)g1(x, 0)?∇2

xxV1(x)
)

≤ 0.

4 Asymptotic stabilization of the composite sys-
tem.

In this section, the stochastic version of La Salle’s theorem
(theorem 2.1) will be used to obtain the asymptotic stabiliza-
tion of the stochastic differential system (3).

First, note that defining the components of the state feedback
law u = α(x, y) by:

αi(x, y) = −∇xV1(x)f i
1(x, y)

− 1
2Tr

(
gi
1(x, y)gi

1(x, y)?∇2
xxV1(x)

) (4)

1 ≤ i ≤ r, one renders the equilibrium solution(0, 0) of the
stochastic differential system (3) stable in probability, as stated
in the following proposition.

Proposition 4.1 Under the assumptions (A1)-(A3), the state
feedback lawu = α(x, y) defined by (4) renders the stochastic
differential system (3) stable in probability.

Proof. Setting

W (x, y) = V1(x) + V2(y)

and denoting byLα the infinitesimal generator of the closed-
loop system obtained in this case, one has for all(x, y) ∈ Rn×
Rm :

LαW (x, y) = ∇xV1(x)f1(x, y) +∇yV2(y)f2(y)

+∇yV2(y)h(y)α(x, y)

+ 1
2Tr

(
(g1g

?
1)(x, y)∇2

xxV1(x)
)

+ 1
2Tr

(
g2(y)g2(y)?∇2

yyV2(y)
)
.

From the assumption (A2), we know that

∇xV1(x)f1(x, y) = ∇xV1(x)f1(x, 0)

+
r∑

i=1

(
(∇yV2(y)h(y))?)

i

·∇xV1(x)f i
1(x, y)

and
Tr

(
g1(x, y)g1(x, y)?∇2

xxV1(x)
)

=

Tr
(
g1(x, 0)g1(x, 0)?∇2

xxV1(x)
)

+
r∑

i=1

[ (
(∇yV2(y)h(y))?)

i

·Tr
(
gi
1(x, y)gi

1(x, y)?∇2
xxV1(x)

) ]
.

The state feedback lawu = α(x, y) is defined in such a way
that:

∇yV2(y)h(y)α(x, y) =

−
r∑

i=1

(
(∇yV2(y)h(y))?)

i
∇xV1(x)f i

1(x, y)

−1
2

r∑
i=1

[ (
(∇yV2(y)h(y))?)

i

·Tr
(
gi
1(x, y)gi

1(x, y)?∇2
xxV1(x)

) ]
.

Thus, one gets:

LαW (x, y) = ∇xV1(x)f1(x, 0)

+ 1
2Tr

(
g1(x, 0)g1(x, 0)?∇2

xxV1(x)
)

+∇yV2(y)f2(y)

+ 1
2Tr

(
g2(y)g2(y)?∇2

yyV2(y)
)

= L1V1(x) + L2V2(y).
(5)

Taking into account (A1) and (A3), this implies that

LαW (x, y) ≤ 0 (6)



for all (x, y) ∈ Rn×Rm and the desired conclusion follows.�

Introduce now for1 ≤ l ≤ p the first order differential opera-
tors defined by

Glϕ(y) = ∇yϕ(y)gl
2(y)

wheregl
2(y), 1 ≤ l ≤ p, denotes the columns of the matrix

g2(y).

Then, the main result of this paper can be stated as follows.

Theorem 4.2 Assume that the coefficients of the stochastic dif-
ferential system (3) are smooth functions satisfying to the as-
sumptions (A1) and (A2) and that the sets{

x ∈ Rn/Lk
1V1(x) = 0, k ∈ N?

}
(7){

y ∈ Rm/Gk
l zi(y) = 0, 1 ≤ i ≤ r, 1 ≤ l ≤ p, k ∈ N

}
(8)

are reduced to the origin inRn andRm, respectively.
Then, the stochastic differential system (3) is asymptotically
stabilized in probability by the feedback law defined onRn ×
Rm by:

u(x, y) = α(x, y)− z(y). (9)

Proof. Let u be the state feedback control law defined on
Rn × Rm by (9).

It is convenient to define the functioñf2 on Rn × Rm

by:
f̃2(x, y) = f2(y) + h(y)α(x, y).

The infinitesimal generatorLα−z of the composite stochastic
differential system

d

(
xt

yt

)
=

(
f1(xt, yt)
f̃2(xt, yt)

)
dt

−
(

0
h(yt)z(y)

)
dt

+
(

g1(xt, yt) 0
0 g2(yt)

)
d

(
wt

vt

)
can now be written as:

Lα−z = Lα − z(y)?h(y)?∇y.

Applying this differential operator to the Lyapunov functionW
yields

Lα−zW (x, y) = LαW (x, y)−
∣∣(∇yV2(y)h(y))?∣∣2 ≤ 0,

(10)

for all (x, y) ∈ Rn × Rm.

Let (xt, yt)t≥0 be a trajectory of the composite system
such that

Lα−zW (xt, yt) = 0

for all t ≥ 0.

In view of inequalities (6) and (10), this implies that

L1V1(xt) = L2V2(yt) = 0 (11)

as well as
z(yt) = 0 (12)

for all t ≥ 0.

In view of (12), it can be seen that the stochastic process
(xt)t≥0 obeys to the stochastic differential equation

dxt = f1(xt, 0)dt + g1(xt, 0)dwt.

Starting with (11), recursive applications of Itô’s formula yield
for anyk ∈ N?:

Lk+1
1 V1(xt) ≡ 0.

Moreover, other conditions have to be satisfied by the pair
(xt, yt) . In particular, one has for anyk ∈ N and1 ≤ l ≤ p:

Gk
l z(yt) = 0,

as it can be again verified by recursive applications of Itô’s
formula.

Therefore, we may conclude from (7) and (8) that the
stochastic process(xt, yt) verifying Lα−zW (xt, yt) = 0 for
all t ≥ 0 is identically(0, 0). The result follows from theorem
2.1. �

Remark 4.3 The assumptions (7) and (8) in theorem 4.2 seem
to be quite natural in the sense that they discribe properties
of the components of the cascade stochastic differential system
(2) when these components are uncoupled and unforced. Nev-
ertheless, it is clear that the asymptotic stabilization of (2) can
be achieved by a direct and full application of the sufficient
condition stated in theorem 2.2.

References

[1] C.Boulanger, P.Florchinger, Stabilization of some cas-
cade stochastic systems.Proceedings of the 4th European
Control Conference, Bruxelles (B) July 19971-4.

[2] L.Daumail. Stabilization of stochastic differential sys-
tems via passivity.Proceedings of the 41th IEEE Confer-
ence on Decision and Control,Las Vegas (USA) (2002).
To appear.



[3] P.Florchinger, Lyapunov-like techniques for stochastic
stability. SIAM Journal of Control and Optimization33
4 (1995) 1151-1169.

[4] P.Florchinger, Global stabilization of cascade stochastic
systems.Proceedings of the 34-th IEEE Conference on
Decision and Control,New Orleans (La) December 1995
13-15.

[5] P.Florchinger, A stochastic Jurdjevic-Quinn theorem.
Proceedings of the 39 th IEEE Conference on Decision
and Control, Sydney, (AUS)December 2000 2883-2884.

[6] Z.Y.Gao, N.U.Ahmed, Feedback Stabilizability of non-
linear stochastic systems with state-dependent noise.In-
ternational Journal of Control45 (1987) 729-737.

[7] V.Jurdjevic, J.P.Quinn, Controllability and stability.Jour-
nal of Differential Equations28 (1978) 381-389.

[8] R.Z.Khasminskii, Stochastic stability of differential equa-
tions. Sijthoff \& Noordhoff, Alphen aan den Rijn
(1980).

[9] H.J.Kushner, Converse theorems for stochastic Lyapunov
functions,SIAM Journal of Control and Optimization5 2
(1967) 228-233.

[10] H.J.Kushner, Stochastic stability. In : R.Curtain ed., Sta-
bility of Stochastic Dynamical Systems.Lecture Notes
in Mathematics294Springer Verlag, Berlin, Heidelberg,
New York (1972) 97-124.

[11] A.Saberi, P.V.Kototovic, H.J.Sussmann, Global stabiliza-
tion of partially linear composite systems,SIAM Journal
of Control and Optimization28 (1990) 1491-1503.


