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With Degraded Side Information at the Second User
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Abstract—In this paper, we consider the cascade and triangular
rate-distortion problems where the same side information is avail-
able at the source node and user 1, and the side information avail-
able at user 2 is a degraded version of the side information at the
source node and user 1. We characterize the rate-distortion region
for these problems. For the cascade setup, we show that, at user
1, decoding and rebinning the codeword sent by the source node
for user 2 is optimum. We then extend our results to the two-way
cascade and triangular setting, where the source node is interested
in lossy reconstruction of the side information at user 2 via a rate
limited link from user 2 to the source node. We characterize the
rate-distortion regions for these settings. Complete explicit char-
acterizations for all settings are given in the quadratic Gaussian
case. We conclude with two further extensions: a triangular source
coding problem with a helper, and an extension of our two-way cas-
cade setting in the quadratic Gaussian case.

Index Terms—Cascade source coding, triangular source coding,
two-way source coding, quadratic Gaussian, source coding with a
helper.

I. INTRODUCTION

T
HE problem of lossy source coding through a cascade was

first considered by Yamamoto [1], where a source node

(node 0) sends a message to node 1, which then sends a message

to node 2. Since Yamamoto’s work, the cascade setting has been

extended in recent years through incorporating side information

at either nodes 1 or 2. This model of cascade source coding

with side information has potential applications in peer-to-peer

networking, such as video compression and transmission over a

network, where each node may have side information, such as

previous video frames, about a video to be sent from the source.

In [2], Vasudevan et al. considered the cascade problem with

side information at node 1 and at node 2, with the Markov

chain . They provided inner and outer bounds for

this setup and showed that the bounds coincide for the Gaussian

case. In [3], Cuff et al. considered the cascade problem where
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the side information is known only to the intermediate node and

provided inner and outer bounds for this setup.

Of most relevance to this paper is the work in [4], where

Permuter and Weissman considered the cascade source coding

problem with side information available at both node 0 and

node 1 and established the rate-distortion region for this setup.

The cascade setting was then extended to the triangular source

coding setting where an additional rate limited link is available

from the source node to node 2.

Given the results in [4], a natural question is whether it can be

extended to richer classes of cascade source coding problems.

A related question is the following. The achievability scheme

in the cascade result in [4] relies on node 1 decoding and re-

transmitting the codeword sent by node 0 to node 2. This is es-

sentially a special case of the decode and re-bin scheme where

node 1 decodes and re-bins the codeword sent by node 0 to node

2. When is this decode and re-bin scheme optimum and what is

the statistical structure of the sources and network topology re-

quired for this scheme to be optimum? In this paper, we extend

the cascade and triangular source coding setting in [4] to include

additional side information at node 2, with the constraint that

the Markov chain holds. Under the Markov con-

straint, we establish the rate-distortion regions for both the cas-

cade and triangular settings. The cascade and triangular settings

are shown in Figs. 1 and 2, respectively. In the cascade case,

we show that, at node 1, the decode and re-bin scheme is op-

timum. To the best of our knowledge, this is the first lossy source

coding setting where the decode and re-bin scheme at the cas-

cade is shown to be optimum. (In [5], the decode and re-bin

scheme was shown to be optimum for some classes of source

statistics in a lossless setting.) The decode and re-bin appears to

rely quite heavily on the fact that the side information at node

2 is degraded: Since node 1 can decode any codeword intended

for node 2, there is no need for node 0 to send additional infor-

mation for node 1 to relay to node 2 on the link. Node 0 can

therefore tailor the transmission for node 1 and rely on node 1 to

decode and minimize the rate required on the link. We also

extend our results to two-way source coding through a cascade,

where node 0 wishes to obtain a lossy version of through a rate

limited link from node 2 to node 0. This setup generalizes the

(two-rounds) two-way source coding result found in [6].1 The

two-way cascade source coding and two-way triangular source

coding are given in Figs. 3 and 4, respectively.

The rest of the paper is as follows. In Section II, we pro-

vide the formal definitions and problem setup. In Section III,

1Kaspi [6] considered multiple rounds. In this paper, we consider only two
rounds and when we mention the results in [6], we mean the two-rounds version
of the results
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Fig. 1. Cascade source coding setting.

Fig. 2. Triangular source coding setting.

Fig. 3. Setup for two-way cascade source coding.

Fig. 4. Setup for two-way triangular source coding.

we present and prove our results for the aforementioned set-

tings. In Section IV, we consider the quadratic Gaussian case.

We show that Gaussian auxiliary random variables suffice to ex-

haust the rate-distortion regions, and their parameters may be

found through solving a tractable low-dimensional optimization

problem. We also showed that our quadratic Gaussian settings

may be transformed into equivalent settings in [4] where ex-

plicit characterizations were given. In the quadratic Gaussian

Fig. 5. Extended quadratic Gaussian two-way source coding.

case, we also extended our settings to solve a more general case

of two-way cascade source coding. In Section V, we extend our

triangular source coding setup to include a helper, which ob-

serves the side information , and has a rate limited link to node

2. Our two-way cascade quadratic Gaussian extension is shown

in Fig. 5, while our helper extension is shown in Fig. 7. We con-

clude the paper in Section VI.

II. PROBLEM DEFINITION

In this section, we give formal definitions for the setups under

consideration. We will follow the notation of [7, Lecture 1].

Unless otherwise stated, all logarithms in this paper are taken

to base 2. The source sequences under consideration,

, , and

, are drawn from finite alphabets , , and , respec-

tively. For any , the random variables are in-

dependent and identically distributed according to

; i.e., . The distortion measure be-

tween sequences is defined in the usual way. Let

. Then

A. Cascade and Triangular Source Coding

We give formal definition for the triangular source coding

setting (Fig. 2). The cascade setting follows from specializing

the definitions for the triangular setting by setting . A

code for the triangular setting consists of

three encoders

(at node 0)

(at node 1)

(at node 0)

and two decoders

(at node 1)

(at node 2)

Given , a rate-distortion tuple

for the triangular source coding setting is said to be achiev-

able if, for any , and sufficiently large, there exists a
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code for the triangular source coding set-

ting such that

where and

.

The rate-distortion region is defined as the clo-

sure of the set of all achievable rate-distortion tuples.

Cascade Source Coding: The cascade source coding setting

corresponds to the case where .

B. Two-Way Cascade and Triangular Source Coding

We give formal definitions for the more general two-way

triangular source coding setting shown in Fig. 4. A

code for the triangular setting

consists of four encoders

(at node 0)

(at node 1)

(at node 0)

(at node 2)

and three decoders

(at node 1)

(at node 2)

(at node 0)

Given , a rate-

distortion tuple for the two-way triangular source coding setting

is said to be achievable if, for any , and sufficiently large,

there exists a code for the two-way

triangular source coding setting such that

and

where

, and

.

The rate-distortion region is defined as the

closure of the set of all achievable rate-distortion tuples.

Two-Way Cascade Source Coding: The two-way cascade

source coding setting corresponds to the case where .

In the special case of two-way cascade setting, we will use ,

rather than , to denote the rate from node 2 to node 0.

III. MAIN RESULTS

In this section, we present our main results, which are single

letter characterizations of the rate-distortion regions for the

four settings introduced in Section II. The single-letter char-

acterizations for the cascade source coding setting, triangular

source coding setting, two-way cascade source coding setting,

and two-way triangular source coding setting are given in

Theorems 1, 2, 3, and 4, respectively. While Theorems 1–3

can be derived as special cases of Theorem 4, for clarity and

to illustrate the development of the main ideas, we will present

Theorems 1–4 separately. In each of the theorems, we will

present a sketch of the achievability proof and proof of the

converse. Details of the achievability proofs for Theorems 1–4

are given in Appendix A. Proofs of the cardinality bounds for

the auxiliary random variables appearing in the theorems are

given in Appendix B. In each of the theorems presented, the

achievability scheme does not require the Markov structure

, and hence, they can be used even if the sources

do not satisfy the Markov condition. The Markov condition is

required for us to prove the converse.

A. Cascade Source Coding

Theorem 1 (Rate-Distortion Region for Cascade Source

Coding): for the cascade source coding setting de-

fined in Section II is given by the set of all rate tuples

satisfying

for some

and function such that

The cardinality of is upper bounded by .

If , this region reduces to the cascade source coding

region given in [4]. If , this setup reduces to the well-

known Wyner–Ziv setup [8].

The coding scheme follows from a combination of techniques

used in [4] and a new idea of decoding and re-binning at the

cascade node (node 1). Node 0 generates a description in-

tended for nodes 1 and 2. Node 1 decodes and then re-bins

it to reduce the rate of communicating to node 2 based on

its side information. In addition, node 0 generates to satisfy

the distortion requirement at node 1. We now give a sketch of

achievability and a proof of the converse.

Sketch of Achievability: We first generate

sequences according to . For each and

sequences, we generate sequences ac-

cording to . Partition the set of sequences

into bins, . Separately and indepen-

dently, partition the set of sequences into

bins, .

Given , node 0 looks for a jointly typical codeword ;

that is, . If there are more than one, it selects

a codeword uniformly at random from the set of jointly typical

codewords. This operation succeeds with high probability since

there are sequences. Node 0 then looks for

a that is jointly typical with . This operation suc-

ceeds with high probability since there are
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sequences. Node 0 then sends out the bin index such

that and the index corresponding to . This re-

quires a total rate of .

At node 1, it recovers by looking for the unique se-

quence in such that . Since there

are only sequences

in the bin, this operation succeeds with high probability. Node

1 reconstructs as . Node 1 then sends out such that

. This requires a rate of .

At node 2, note that since , the se-

quences are jointly typical with high

probability. Node 2 looks for the unique in such

that . From the Markov chain

. Hence, this op-

eration succeeds with high probability since there are only

sequences in the bin. It then reconstructs using

for .

Proof of Converse: Given a code,

define . We have the fol-

lowing:

Next

Step (a) follows from the Markov assumption and the

fact that is a function of . Next, let be a random

variable uniformly distributed over and independent of

. We note that , and

Defining and then completes the

proof. The existence of the reconstruction function follows

from the definition of . The Markov chains

and required to factor the probability

distribution stated in the theorem also follow from definitions

of and .

We now extend Theorem 1 to the triangular source coding

setting.

B. Triangular Source Coding

Theorem 2 (Rate-Distortion Region for Triangular Source

Coding): for the triangular source coding setting

defined in Section II is given by the set of all rate tuples

satisfying

for some

and function

such that

The cardinalities for the auxiliary random variables can be upper

bounded by and

.

If , this region reduces to the triangular source coding

region given in [4].

The proof of the triangular case follows that of the cascade

case, with the additional step of node 0 generating an additional

description that is intended for node 2. This description is

then binned to reduce the rate, with the side information at node

2 being and . Node 2 first decodes and then .

Sketch of Achievability: The Achievability proof is an exten-

sion of that in Theorem 1. The additional step we have here is

that we generate sequences according to

for each sequence, and bin these sequences

to bins, . To

send from node 0 to node 2, node 0 first finds a sequence
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that is jointly typical with . This operation succeeds

with high probability since we have se-

quences. We then send out , the bin number for . At node

2, from the probability distribution, we have the Markov chain

. Hence, the sequences are jointly typ-

ical with high probability. Node 2 reconstructs by looking for

unique such that are jointly typical.

This operation succeeds with high probability since the number

of sequences in is . Node 2 then recon-

structs using the function .

Proof of Converse: The converse is proved in two parts.

In the first part, we derive the required inequalities and in the

second part, we show that the joint probability distribution can

be restricted to the form stated in the theorem.

Given a code, define

and . We omit

proof of the and inequalities since it follows the same

steps as in Theorem 1. We have

For , we have

Next, let be a random variable uniformly distributed

over and independent of . Defining

, and then gives

us the bounds stated in Theorem 2. The existence of the

reconstruction function follows from the definition of

and . Next, from the definitions of and , we note

the following Markov relation: .

The joint probability distribution can then be factored as

.

We now show that it suffices to restrict the joint

probability distributions to the form

using a method in [4, Lemma 5].

The basic idea is that since the inequalities derived rely on

only through the marginals

and , we can obtain the same bounds even

when the probability distribution is restricted to the form

.

Fix a joint distribution

and let and be the induced conditional

distributions. Note that and

have the same

marginals and , and the Markov

condition continues to hold under

.

Finally, note that the rate and distortion constraints given

in Theorem 2 depends on the joint distribution only through

the marginals and . It therefore

suffices to restrict the probability distributions to the form

.

C. Two-Way Cascade Source Coding

We now extend the source coding settings to include the case

where node 0 requires a lossy version of . We first consider the

two-way cascade source coding setting defined in Section II (we

will use to denote the rate on the link from node 2 to node 0).

In the forward part, the achievable scheme consists of using the

achievable scheme for the cascade source coding case. Node 2

then sends back a description of to node 0, with

as side information at node 0. For the converse, we rely on the

techniques introduced and also on a technique for establishing

Markovity of random variables found in [6].

Theorem 3 (Rate-Distortion Region for Two-Way Cascade

Source Coding): for two-way cascade source

coding is given by the set of all rate tuples satis-

fying

for some

and functions and

such that

The cardinalities for the auxiliary random variables can be upper

bounded by and .

If , this region reduces to the result for two-way (two

rounds only) source coding found in [6].

Sketch of Achievability: The forward path ( and )

follows from the cascade source coding case in Theorem

1. The reverse direction follows by the following. For each

, we generate sequences according to

and bin them to bins,

. Node 2 finds a sequence that is

jointly typical with . Since there are

sequences, this operation succeeds with high probability. It

then sends out the bin index , which the jointly typical se-

quence is in. At node 0, it recovers by looking for the unique

sequence in such that are jointly

typical. From the Markov condition and

the Markov lemma [9], the sequences are jointly typical with

high probability. Next, since there are only

sequences in the bin, the probability that we do not find the
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unique (correct) sequence goes to zero with . Finally, node 0

reconstructs using the function .

Proof of Converse: Given a

code, define

and . Note that unlike Theorems 1 and 2, does

not contain . We have

where step (a) follows from the Markov assumption

and step (b) follows from being a function of .

Consider now

Next, consider

where the last step follows from the Markov relation

which we will now prove, together

with other Markov relations between the random variables. The

first two Markov relations below are used for factoring the joint

probability distribution while Markov relations three and four

are used for establishing the distortion constraints. We will use

the following lemma from [6].

Lemma 1: Let be random variables with

joint probability mass functions mf

. Let be a function of and

be a function of . Then

(1)

(2)

(3)

Now, let us show the following Markov relations.

1) : To establish this relation, we

show that

2) : Note that .

Consider

Now, using Lemma 1, set

, and

. Then, using the third expression in the Lemma,

we see that .

3) : Consider

4) : Consider
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Applying the first expression in the lemma with

, and

gives .

Distortion constraints: We show that the auxiliary definitions

satisfy the distortion constraints by showing the existence of

functions and such that

(4)

(5)

where and are the original recon-

struction functions.

To prove the first expression (4), we have

where (a) follows from defining

for all and the last

step follows from the Markov relation

. Finally, defining

and gives us

To prove the second expression (5), we follow similar steps.

Considering the expected distortion, we have

where the last step uses Markov relation 4. The rest of the proof

is omitted since it uses the same steps as the proof for the first

distortion constraint.

Finally, using the standard time sharing random variable

as before and defining , and

, we obtain the required outer bound for the rate-distortion

region. The bound for the distortions follows from defining in-

equalities 4 and 5. We show the rest of the proof for and

omit the proof for since it follows similar steps. Defining

, we have

We now turn to the final case of two-way triangular source

coding.

D. Two-Way Triangular Source Coding

Theorem 4 (Rate-Distortion Region for Two-Way Triangular

Source Coding): for two-way triangular source

coding is given by the set of all rate tuples

satisfying

(6)

(7)

(8)

(9)

for some

. and func-

tions and

such that

(10)

(11)

(12)

The cardinalities for the auxiliary random variables are upper

bounded by , and

.

Sketch of Achievability: The forward direction

for two-way triangular source coding follows the procedure in

Theorem 2. For the reverse direction , it follows Theorem

3 with replacing the role of in Theorem 3.

Proof of Converse: Given a

code, define

, and

. The and bounds follow the same steps

as in Theorem 3. For , we have
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Next, consider

where the last step follows from the Markov relation

which we will now prove together

with other Markov relations between the random variables.

The first two Markov relations are for factoring the probability

distribution while Markov relations 3 and 4 are for establishing

the distortion constraints.

Markov Relations

1) : To establish this relation,

we show that

2) : Consider

Now, using Lemma 1, set

, and

. Then, using the third expression in the lemma,

we see that .

3) : Consider

4) : Consider

Applying the first expression in the lemma with

, and

gives .

Distortion Constraints: The proof of the distortion con-

straints is omitted since it follows similar steps to the two-way

cascade source coding case, with the new Markov relations 3

and 4, and replacing in the proof.

Using the standard time sharing random variable

as before and defining

, and , we obtain an outer bound

for the rate-distortion region for some probability distri-

bution of the form

. It remains to show

that it suffices to consider probability distributions of the form

. .

This follows similar steps to proof of Theorem 2. Let

where and are the marginals

induced by . Next, note that , and the dis-

tortion constraints depend on only through the marginals

and . Since these marginals

are the same for and , the rate and distortion constraints

are unchanged. Finally, note that the Markov relations 1 and 2

implied by continue to hold under . This completes the

proof of the converse.

IV. QUADRATIC GAUSSIAN DISTORTION CASE

In this section, we evaluate the rate-distortion regions when

are jointly Gaussian and the distortion is measured in

terms of the mean square error. We will assume, without loss

of generality, that , and

, where , and are independent, zero mean Gaussian

random variables with variances , and , respectively.

While the results in Section III were proven only for discrete

memoryless sources, the extension to the quadratic Gaussian

case is standard and can be found in, for example, [10] and [7,

Lecture 3].

A. Quadratic Gaussian Cascade Source Coding

Corollary 1 (Quadratic Gaussian Cascade Source Coding):

First, we note that if , then the distortion con-
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straint cannot be met. Hence, given and

, the rate-distortion region for quadratic

Gaussian cascade source coding is characterized by the smallest

rate such that are achievable, which is

where , with

and achieving the maximum in the following optimization

problem:

maximize

subject to

The optimization problem given in the corollary can be solved

following analysis in [4]. In our proof of the corollary, we will

show that the rate-distortion region obtained is the same as the

case when the degraded side information is available to all

nodes.

Converse: Consider the case when the side information

is available to all nodes. Without loss of generality, we can

subtract the side information away from and to obtain a

rate-distortion problem involving only and at node 0,

at node 1 and no side information at node 2. Characteriza-

tion of this class of quadratic Gaussian cascade source coding

problem has been carried out in [4] and following the analysis

therein, we can show that the rate-distortion region is given by

the region in Corollary 1.

Achievability: We evaluate Theorem 1 using Gaussian aux-

iliaries random variables. Let

and be a Gaussian random vari-

able that we will specify in the proof. We now rewrite

as with

independent of and . Let

. Evaluating and using this choice of aux-

iliaries, we have

Next, we have

If , we set to obtain

. If , then we choose

where

so that and obtain .

Therefore, .

Finally, we show that this choice of random variables satisfy

the distortion constraints. For , note that since

, the distortion constraint is always satisfied. For

the second distortion constraint, we have

Hence, our choice of auxiliary and satisfies the rate-dis-

tortion region and distortion constraints given in the corollary,

which completes our proof.

B. Quadratic Gaussian Triangular Source Coding

Corollary 2 (Quadratic Gaussian Triangular Source

Coding): Given and

, the rate-distortion region for quadratic Gaussian

triangular source coding is characterized by the smallest for

which is achievable, which is

where , with ,

and satisfying the following optimization problem:

maximize

subject to

As with Corollary 1, the optimization problem given this

corollary can be solved following analysis in [4].

Converse: The converse uses the same approach as Corol-

lary 1. Consider the case when the side information is avail-

able to all nodes. Without loss of generality, we can subtract the

side information away from and to obtain a rate-distor-

tion problem involving only and at node 0, at node

1 and no side information at node 2. Characterization of this

class of quadratic Gaussian triangular source coding problem

has been carried out in [4] and following the analysis therein,

we can show that the rate-distortion region is given by the re-

gion in Corollary 2.

Achievability: We evaluate Theorem 2 using Gaussian aux-

iliary random variables. Let

and
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. Following the analysis in Corollary 1, the inequali-

ties for the rates are

As with Corollary 1, the distortion constraint is satisfied

with an appropriate choice of . For the distortion constraint

, we have

Next, note that we can assume equality for , since we can

adjust and so that inequality is met. Since this operation

can will only decrease , the distortion constraint

will still be met. Therefore, setting , we

have

Since , this completes the proof of achiev-

ability.

Remark: As alternative characterizations, we show in

Appendix C that the cascade and triangular settings in Corol-

laries 1 and 2 can be transformed into equivalent problems

in [4] where explicit characterizations of the rate-distortion

regions were given.

C. Quadratic Gaussian Two-Way Source Coding

It is straightforward to extend Corollaries 1 and 2 to quadratic

Gaussian two-way cascade and triangular source coding using

the observation that in the quadratic Gaussian case, side infor-

mation at the encoder does not reduce the required rate. There-

fore, the backward rate from node 2 to node 0 is always lower

bounded by . This rate (and distortion constraint

) can be achieved by simply encoding . We therefore state

the following corollary without proof.

Corollary 3 (Quadratic Gaussian Two-Way Triangular

Source Coding): Given

, and ,

the rate-distortion region for quadratic Gaussian two-way

triangular source coding is characterized by the smallest for

which is achievable, which is

where , with

and satisfying the following optimization problem:

maximize

subject to

Remark: The special case of two-way cascade quadratic

Gaussian source coding can be obtained as a special case by

setting .

Next, we present an extension to our settings for which we can

characterize the rate-distortion region in the quadratic Gaussian

case. In this extended setting, we have cascade setting from node

0 to node 2 and a triangular setting from node 2 to node 0, with

the additional constraint that node 1 also reconstructs a lossy

version of . As formal definitions are natural extensions of

those presented in Section II, we will omit them here. The set-

ting is shown in Fig. 5.

Theorem 5 (Extended Quadratic Gaussian Two-Way Cascade

Source Coding): Given

and , the rate-distortion region

for the extended quadratic Gaussian two-way cascade source

coding is given by the set of satisfying the

following equalities and inequalities:

where , with

and satisfying the following optimization problem:

maximize

subject to

and

Proof: Converse: For the forward direction , we

note that node 2 can only send a function of to

nodes 0 and 1 using the and links. Since and

are available at both nodes 0 and 1, the forward rates are lower

bounded by the setting where is available to all nodes. Fur-

ther, in this setting, the distortion constraints and are

automatically satisfied since is available at nodes 0 and 1.

Therefore, do not affect the achievable

rates in this modified (lower bound) setting. are then

obtained by the observation in Corollary 1 that the rate-distor-

tion region obtained for our quadratic Gaussian cascade setting

in Corollary 1 is equivalent to the case where the side informa-

tion is available at all nodes.

For the reverse direction, the lower bounds are derived by

letting the side information to be available at node 2, and

for side information to be available at node 1. The and
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Fig. 6. Setup for analysis of achievability of backward rates.

distortion constraints are then automatically satisfied since is

available at all nodes. We then observed that do not

affect the achievable rates in this modified (lower

bound) setting. The stated inequalities for are then

obtained from standard cutset bound arguments and the fact that

form a Markov chain.

Achievability: We analyze only the backward rates ,

and since the forward direction follows from Corollary 1. For

the backward rates, we now show that the rates are achievable

without the assumption of being available at node 2. We

will rely on results on successive refinement of Gaussian sources

with common side information given in [11]. A simplified figure

of the setup for analyzing the backward rates is given in Fig. 6.

We have three cases to consider.

Case 1: . In this case, the inequalities in the lower

bound reduce to

From the successive refinement results in [11], we can show

that the following rates are achievable:

for some conditional distribution

, and satisfying the distortion

constraints. Now, for fixed , choose

such that . We now choose the

auxiliary random variables and reconstruction functions in the

following manner. Define

where

where

where

From this choice of auxiliary random variables, it is easy to

verify the following:

Case 2: . In this case, the active

inequalities are

From [11], the following rates are achievable:

First, assume . Choose

. We choose the auxiliary random variables and reconstruc-

tion functions as follows:

where

where

where

From this choice of auxiliary random variables, it is easy to

verify the following:
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Next, consider and . Then,

it is easy to see from our achievability scheme that we can obtain

, and by setting .

Finally, consider the case where and

. Then, we observe from our achievability scheme

that we can achieve for any and

satisfying the inequalities by setting .

Case 3: . In this case, the active

inequalities are

We first consider the case where . We exhibit

a scheme for which and still satisfies the con-

straints. This procedure is done by letting in case 2 to be

equal to . For , define the auxiliary random

variables and reconstruction functions as follows:

where

where

Then, we have the following:

Finally, we note that in the case where , we

can always achieve , and

by letting .

Remark 1: The two-way cascade source coding setup given

in Section II can be obtained as a special case by setting

and .

Remark 2: The rate-distortion region is the same regardless

of whether node 2 sends first, or node 0 sends first. This ob-

servation follows from i) our result in Corollary 1 where we

showed that the rate-distortion region for the cascade setup is

equivalent to the setup where all nodes have the degraded side

information ; and ii) our proof above where we showed that

Fig. 7. Triangular source coding with a helper.

the backward rates are the same as in the case where the side

information is available at all nodes.

Remark 3: For arbitrary sources and distortions, the problem

is open in general. Even in the Gaussian case, the problem is

open without the Markov chain . One may also

consider the setting where there is a triangular source coding

setup in the forward path from node 0 to node 2. This setting is

still open, since the tradeoff in sending from node 0 to node 2

and then to node 1 versus sending directly to node 1 from node

0 is not clear.

V. TRIANGULAR SOURCE CODING WITH A HELPER

We present an extension to our triangular source coding setup

by also allowing the side information to be observed at the

second node through a rate limited link (or helper). The setup is

shown in Fig. 7. As the formal definitions are natural extensions

of those given in Section II, we will omit them here.

Theorem 6: The rate-distortion region for triangular source

coding with a helper is given by the set of rate tuples

for some

. and

function such that

We give a proof of the converse in Appendix D. As the achiev-

ability techniques used form a straightforward extension of the

techniques described in Appendix A, we give only a sketch of

achievability.

Sketch of Achievability: The achievability follows that of

triangular source coding, with an additional step of generating

a lossy description of . The codebook generation consists of

the following steps.

• Generate sequences according

to . Partition the set of sequences

into bins,

.
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• Generate sequences according

to . Partition the set of sequences

into bins, . Separately

and independently, partition the set of sequences

into bins,

.

• For each sequence, generate

sequences according to

.

• Generate sequences according

to for each sequence, and

partition these sequences to bins,

.

Encoding consists of the following steps.

• Helper node: The helper node (and nodes 0 and 1) looks for

a sequence such that . This step suc-

ceeds with high probability since there are

sequences. The helper then sends out the bin index

such that . The sequences

are jointly typical with high probability due to the Markov

chain .

• Node 0: Given , node 0 looks for a

jointly typical codeword . This operation succeeds with

high probability since there are se-

quences. Node 0 then looks for a that is jointly typical

with . This operation succeeds with high

probability since there are se-

quences.

• Node 0 also finds a sequence that is jointly typical with

. This operation succeeds with high prob-

ability since we have sequences.

• Node 0 then sends out the bin index such that

and the index corresponding to

to node 1. This requires a total rate of

to node 1. Node

0 also sends out the bin index such that to

node 2. This requires a rate of .

• Node 1 decodes the codeword and forwards the index

such that to node 2. This requires a rate

of .

Decoding consists of the following steps.

• Node 1: Node 1 reconstructs by looking for the unique

sequence in such that .

Since there are only

sequences in the bin, this operation suc-

ceeds with high probability. Node 1 reconstructs as

. Since the sequence are jointly

typical with high probability, the expected distortion con-

straint is satisfied.

• Node 2: We note that since , the

sequences are jointly typical

with high probability. Decoding at node 2 consists of the

following steps.

1) Node 2 first looks for in such that

. This operation succeeds with high

probability since there are only se-

quences in the bin.

2) It then looks for in such that

. Since

by the Markov chain

, this operation succeeds with high probability as

there are only sequences in the bin.

3) Finally, it looks for in such that

. Since

by the

Markov chain , this opera-

tion succeeds with high probability as there are only

sequences in the bin.

4) Node 2 then reconstructs using the function

for . Since

the sequences are jointly typ-

ical with high probability, the expected distortion

constraint is satisfied.

VI. CONCLUSION

Rate-distortion regions for the cascade, triangular, two-way

cascade, and two-way triangular source coding settings were es-

tablished. Decoding part of the description intended for node 2

and then re-binning it was shown to be optimum for our cascade

and triangular settings. We also extended our triangular setting

to the case where there is an additional rate constrained helper,

which observes , for node 2. In the quadratic Gaussian case,

we showed that the auxiliary random variables can be taken

to be jointly Gaussian and that the rate-distortion regions ob-

tained for the cascade and triangular setup were equivalent to

the setting where the degraded side information is available at

all nodes. This observation allows us to transform our cascade

and triangular settings into equivalent settings for which explicit

characterizations are known. Characterizations of the rate-dis-

tortion regions for the quadratic Gaussian cases were also es-

tablished in the form of tractable low-dimensional optimization

programs. Our two-way cascade quadratic Gaussian setting was

extended to solve a more general two-way cascade scenario. The

case of generally distributed , without the degradedness

assumption, remains open.

APPENDIX A

ACHIEVABILITY PROOFS

A. Achievability proof of Theorem 1

1) Codebook Generation:

• Fix the joint distribution

. Let

and .

• Generate sequences, , each

according to .

• Partition the set of sequences into bins,

. Separately and inde-

pendently, partition the set of sequences into

bins, .

• For each and sequences, generate

sequences according to .
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2) Encoding at the Encoder: Given a pair, the

encoder first looks for an index such that

, where stands for the set of

jointly typical sequences. If there are more than one such ,

it selects one uniformly at random from the set of admissible

indices. If there is none, it sends an index uniformly at random

from .2 Next, it finds the index such that

. As before, if there are

more than one, it selects one uniformly at random from the set of

admissible indices. If there is none, it sends an index uniformly

at random from . Finally, it sends out ,

where is the bin index such that . The

total rate required is .

3) Decoding and Reconstruction at Node 1: Given

, node 1 looks for the unique such that

and . It reconstructs

as . If it failed to find a unique one, or if there are

more than one, it outputs and performs the reconstruction

as before.

4) Encoding at Node 1: Node 1 sends an index such that

. This requires a rate of .

5) Decoding and Reconstruction at Node 2: Node 2 looks

for the index such that and .

It then reconstructs according to for

. If there is no such index, it reconstructs using .

6) Analysis of Expected Distortion: Using the typical av-

erage lemma in [7, Lecture 2] and following the analysis in [7,

Lecture 3], it suffices to analyze the probability of “error”; i.e.,

the probability that the chosen sequences will not be jointly typ-

ical with the source sequences. Let and be the chosen in-

dices at the encoder. Note that these define the bin indices

and . Let be the chosen index at node 1. Define the fol-

lowing error events.

1) .

2) for all .

3) for all

.

4) for all

.

5) for some and

.

6) for some and

.

We can then bound the probability of error as

• as by law of large numbers (LLN).

• By the covering lemma in [7, Lecture 3],

as if

2For simplicity, we assume randomized encoding, but it is easy to see that the
randomized encoding employed our proofs can be incorporated as part of the
(random) codebook generation stage.

• as by the Markov relation

and the conditional joint typicality lemma

[7, Lecture 2].

• By the covering lemma in [7, Lecture 3],

as if

• From the analysis of the Wyner–Ziv coding scheme (see

[8] or [7, Lecture 12]), as

if

• For the last term, we have

Step (a) follows from the observation that

. The analysis of the probability of

error therefore reduces to the analysis for the equivalent

Wyner–Ziv setup with as the side information at node 2.

Hence, as if

Eliminating in the aforementioned inequalities then gives us

the required rate region.

B. Achievability Proof of Theorem 2

As the achievability proof for the triangular source coding

case follows that of the cascade source coding case closely, we

will only include the additional steps required for generating

and analysis of probability of error at node 2. The steps for

generating and , and for reconstruction at node 1 are the

same as the cascade setup.

1) Codebook Generation:

• Fix

.

• For each , generate , ac-

cording to . Partition the set of sequences

into bins, .

2) Encoding:

• Given a sequence and found through the

steps in the cascade source coding setup, the encoder looks

for an index such that . If
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it finds more than one, it selects one uniformly at random

from the set of admissible indices. If it finds none, it outputs

an index uniformly at random from . The encoder

then sends out such that .

3) Decoding: The additional decoding step is in de-

coding . Node 2 looks for the unique such that

and . If

there is none or more than one, it outputs .

4) Analysis of Distortion: Let and be the indices

chosen by the encoder. Note that these fix the indices and

. We follow similar analysis as in the cascade case, with the

same definitions for error events to . We also require the

following additional error events.

1) .

2) .

3) for some

and .

To bound the probability of error, we have the following addi-

tional terms.

• By the covering lemma, as if

• as from the Markov condition

and the conditional joint typicality

lemma.

• . We have

(a) follows from the observation that

. It remains to bound . Note that the

analysis of this term is equivalent to analyzing the setup

where is the side information at node 0 and is

the side information at node 2. Hence,

as if

We then obtain the rate region by eliminating and .

C. Achievability proof of Theorem 3

As with the case for the triangular setting, the proof for this

case follows the cascade setting closely. We will therefore in-

clude only the additional steps. We have a change of notation

from the cascade setting. We will use instead of

1) Codebook Generation:

• Fix

.

• For each , generate sequences,

, each according to . Partition the set

of into bins, .

2) Encoding: The additional encoding step is at node 2. Node

2 looks for an index such that

. As before, if it finds more than one, it selects an index

uniformly at random from the set of admissible indices. If it

finds none, it outputs an index uniformly at random from

. It then outputs the bin index such that .

3) Decoding: Additional decoding is required at node 0.

Node 0 looks the index such that

and .

4) Analysis of Distortion: Let denote the event that

an error occurs in the forward cascade path. In addition, we de-

fine the following error events.

• for all

.

•

.

• for

some .

•

as if

•

as by the strong Markov lemma [9].

•

as if

Finally, eliminating and gives us the required rate re-

gion.
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D. Achievability Proof of Theorem 4

The achievability proof for two-way triangular source coding

combines the proofs of the triangular source coding case and the

two-way cascade case. As it is largely similar to these proofs, we

will not repeat it here. We will just mention that the codebook

generation, encoding, decoding, and analysis of distortion for

the forward path from node 0 to node 2 follows that of the trian-

gular source coding case, while codebook generation, encoding,

decoding, and analysis of distortion for the reverse path from

node 2 to node 0 follows that of the two-way cascade source

coding case, with taking the role of .

APPENDIX B

CARDINALITY BOUNDS

We provide cardinality bounds for Theorems 1–4 stated in

the paper. The main tool we will use is the Fenchel–Eggle-

ston–Caratheodory theorem [12].

A. Proof of Cardinality Bound for Theorem 1

For each , we have

We therefore have continuous functions of .

These set of equations preserves the distribution and

hence, by Markovity, . Next, observe that the following

are similarly continuous functions of :

These equations give us four additional continuous functions

and hence, by Fenchel–Eggleston–Caratheodory theorem, there

exists a with cardinality of such that all the con-

straints are satisfied. Note that this construction does not pre-

serve , but this does not change the rate-distortion region

since the associated rate and distortion are preserved.

B. Proof of Cardinality Bound for Theorem 2

We will first give a bound for the cardinality of . We look

at the following continuous functions of :

From these equations, there exists a with

such that the equations are satisfied. Note that the new

induces a new . For each , consider the following

continuous functions of :

From this set of equations, we see that for each , it

suffices to consider such that . Hence, the

overall cardinality bound on is

. The joint is preserved due to the Markov chain

.

C. Proof of Cardinality Bound for Theorem 3

The cardinality bounds on follow similar analysis as in

the cascade source coding case. The proof is therefore omitted.

For each , the following are continuous functions of

:

From this set of equations, we see that for each , it suf-

fices to consider such that . Hence, the overall

cardinality bound on is . The joint

is preserved due to the Markov chains

and .

D. Proof of Cardinality Bound for Theorem 4

The cardinality bounds follow similar steps to those for the

first three theorems. For the cardinality bound for , we find

a cardinality bound for each and . Details of the

proof are omitted.
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Fig. 8. Cascade source coding setting for the optimization problem in Corollary
1. �� and �� are lossy reconstructions of � � �.

Fig. 9. Cascade source coding setting for the optimization problem in Corollary
1. �� and �� are lossy reconstructions of� and � is independent� .

APPENDIX C

ALTERNATIVE CHARACTERIZATIONS OF RATE-DISTORTION

REGIONS IN COROLLARIES 1 AND 2

In this Appendix, we show that the rate-distortion regions in

Corollaries 1 and 2 can alternatively be characterized by trans-

forming them into equivalent problems found in [4], where ex-

plicit characterizations were given. We focus on the cascade

case (Corollary 1), since the triangular case follows by the same

analysis.

Fig. 8 shows the cascade source coding setting which the op-

timization problem in Corollary 1 solves.

In [4], explicit characterization of the cascade source coding

setting in Fig. 9 was given.

We now show that the setting in Fig. 8 can be transformed into

the setting in Fig. 9. First, we note that for the setting in Fig. 9,

the rate-distortion regions are the same regardless of whether the

sources are or where since the nodes can

simply scale by an appropriate constant.

Next, for Gaussian sources, the two settings are equivalent

if we can show that the covariance matrix of can be

made equal to the covariance matrix of . Equating

coefficients in the covariance matrix, we require the following:

Solving these equations, we see that and

. Since , this choice

of is valid, which completes the proof.

APPENDIX D

PROOF OF CONVERSE FOR TRIANGULAR SOURCE

CODING WITH HELPER

Given a code, de-

fine ,

and . Observe that we have the

required Markov conditions and

. For the helper condition,

we have

For the other rates, we have

(a) follows from the Markov chain condition. Next
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Next

Finally, it remains to show that the joint probability distri-

bution induced by our choice of auxiliary random variables

can be decomposed into the required form. This step follows

closely the similar step in the proof of Theorem 2, which we

therefore omit.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for

helpful comments.

REFERENCES

[1] H. Yamamoto, “Source coding theory for cascade and branching com-
munication systems,” IEEE Trans. Inf. Theory, vol. IT-27, no. 3, pp.
299–308, May 1981.

[2] D. Vasudevan, C. Tian, and S. N. Diggavi, “Lossy source coding for
a cascade communication system with side informations,” in Proc.

Allerton Conf. Commun. Control Comput., 2006, DOI: 10.1.1.94.1174.
[3] P. Cuff, H.-I. Su, and A. El Gamal, “Cascade multiterminal source

coding,” in Proc. IEEE Int. Conf. Symp. Inf. Theory, Piscataway, NJ,
2009, pp. 1199–1203.

[4] H. Permuter and T. Weissman, “Cascade and triangular source coding
with side information at the first two nodes,” [Online]. Available:
arXiv:1001.1679v

[5] P. Ishwar and S. S. Pradhan, “A relay-assisted distributed source coding
problem,” in Proc. Inf. Theory Appl. Workshop, San Diego, CA, 2008,
DOI: 10.1109/ITA.2008.4601039.

[6] A. H. Kaspi, “Two-way source coding with a fidelity criterion,” IEEE

Trans. Inf. Theory, vol. IT-31, no. 6, pp. 735–740, Nov. 1985.
[7] A. El Gamal and Y. H. Kim, “Lectures on network information theory,”

2010 [Online]. Available: http://arxiv.org/abs/1001.3404

[8] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans. Inf. Theory, vol.
IT-22, no. 1, pp. 1–10, Jan. 1976.

[9] S.-Y. Tung, “Multiterminal source coding,” Ph.D. dissertation, Schl.
Electr. Comput. Eng., Cornell Univ., Itahca, NY, 1978.

[10] A. D. Wyner, “The rate-distortion function for source coding with side
information at the decoder—Part II: General sources,” Inf. Control, no.
38, pp. 60–80, 1978.

[11] Y. Steinberg and N. Merhav, “On successive refinement for the
Wyner-Ziv problem,” Technion Dept. Electr. Eng., Haifa, Israel, CCIT
Rep. 419, EE Pub. 1358, 2003.

[12] H. G. Eggleston, Convexity. Cambridge, U.K.: Cambridge Univ.
Press, 1958.

Yeow-Khiang Chia received the M.Eng. degree in electrical and electronics
engineering from Imperial College, London, U.K. Currently, he is working to-
wards the Ph.D. degree at the Department of Electrical Engineering, Stanford
University, Stanford, CA.

From 2005 to 2006, he was a Research Engineer with the Institute for Info-
comm Research, Singapore.

Mr. Chia is a recipient of the Stanford Graduate Fellowship (SGF) and the
National Science Scholarship (NSS) from the Agency for Science, Technology
and Research, Singapore (A*STAR).

Haim H. Permuter (M’08) received the B.Sc. (summa cum laude) and M.Sc.
(summa cum laude) degrees in electrical and computer engineering from Ben-
Gurion University, Beer-Sheva, Israel, in 1997 and 2003, respectively, and the
Ph.D. degree in electrical engineering from Stanford University, Stanford, CA,
in 2008.

Between 1997 and 2004, he was an Officer at a Research and Development
unit of the Israeli Defense Forces. He is currently a Senior Lecturer at Ben-
Gurion University.

Dr. Permuter is a recipient of the Fullbright Fellowship, the Stanford Grad-
uate Fellowship (SGF), Allon Fellowship, and the 2009 U.S.–Israel Binational
Science Foundation Bergmann Memorial Award.

Tsachy Weissman (S’99–M’02–SM’07) received the B.Sc. (summa cum laude)
and Ph.D. degrees in electrical engineering from the Technion—Israel Institute
of Technology, Haifa, Israel, in 1997 and 2001, respectively.

He then worked at Hewlett-Packard Laboratories with the information theory
group before joining Stanford University, Stanford, CA, where he has been on
the faculty of the Electrical Engineering Department since 2003, spending two
academic years 2007–2009 on leave at the Technion. His research is focused
on information theory, statistical signal processing, the interplay between them,
and their applications.

Dr. Weissman received a National Science Foundation (NSF) CAREER
award, a joint IT/COM societies best paper award, a Horev fellowship for
Leaders in Science and Technology, and a Henry Taub prize for excellence
in research. He is on the editorial board of the IEEE TRANSACTIONS ON

INFORMATION THEORY, serving as an Associate Editor for Shannon Theory.


