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Abstract

This paper presents an approach to recognising the gen-
der and expression of face images by means of Active Ap-
pearance Models (AAM). Features extracted by a trained
AAM are used to construct Support Vector Machine (SVM)
classifiers for 4 elementary emotional states (happy, an-
gry, sad, neutral). These classifiers are arranged into
a cascade structure in order to optimise overall recogni-
tion performance. Furthermore, it is shown how perfor-
mance can be further improved by first classifying the gen-
der of the face images using an SVM trained in a similar
manner. Both gender-specific expression classification and
expression-specific gender classification cascades are con-
sidered, with the former yielding better recognition perfor-
mance. We conclude that there are gender-specific differ-
ences in the appearance of facial expressions that can be ex-
ploited for automated recognition, and that cascades are an
efficient and effective way of performing multi-class recog-
nition of facial expressions.

1. Introduction

The recognition of facial attributes such as identity, gen-
der, expression, ethnicity, and age has attracted much at-
tention in computer vision. An idea that has been less ex-
plored is the interdependency of recognition performance in
these tasks based on gender. Studies in psychophysics have
shown that such linkages exist, with women generally per-
forming better at expression recognition (although men are
better at detecting signs of anger [15]). At the same time,
male faces appear to exhibit greater variability that may aid
in identification. For example, [10] notes that facial attrac-
tiveness for men is inversely related to recognition accuracy,
but not for women.

Some computer vision researchers have also noted dif-
ference in face recognition performance with respect to the

gender of the face images [12]. In evolutionary terms, one
might explain such differences as a results of sexual selec-
tion and cultural influences [15] that have shaped male and
female physical appearance and performance on visual so-
cial communication tasks such as body language and em-
pathy. In many societies women are expected to be more
emotionally extrovert while men are required to maintain a
more guarded “poker face”.

In this paper, we first describe the use of AAMs as a
feature extraction mechanism in two common facial inter-
pretation tasks: expression classification and gender classi-
fication. In Section 4 we describe the architecture and per-
formance of an expression recognition system that uses the
AAM framework for feature extraction and Support Vector
Machines (SVMs) for classification. In Section 5, we delin-
eate a similar system that performs gender classification. By
iteratively optimising accuracy over a test set, we construct
an optimal cascade consisting of binary SVM classifiers for
a set of 4 basic expressions. In Section 6 we explain how
the cascade can be further extended by combining gender
and expression classification. We achieve best results using
a tree structure consisting of two expression classification
cascades that were selectively trained on male and female
images respectively as determined by an initial gender clas-
sifier.

2. Related Work

2.1. Facial Expression Recognition

In the recent past, many different approaches for facial
expression classification in static images have been evalu-
ated. Pantic and Rothkrantz [11] survey the large variety
of such techniques and find that all of them consist of three
major steps: face detection, a mechanism for extracting fa-
cial expression information, and a mechanism to classify
the information extracted according to some pre-defined set
of categories. In order to implement the second step, past



algorithms have used feature-based, template-based or hy-
brid face representations. Feature-based face representa-
tions model the face as a set of facial points, whereas in
template-based representations the face is represented as a
whole unit. There is also a certain amount of controversy
as to what the classes should be in such a classification
system. This is reflected by the fact that certain expres-
sion recognisers classify the encountered expression as a
particular set of facial actions (such as “raised eyebrows”
and “open mouth”) whereas others classify basic emotions,
as described by Ekman [3]. These basic emotions include
“joy”, “sadness”, “anger”, “surprise”, “fear” and “disgust”
(along with “neutral”, which indicates a lack of emotion).

2.2. Gender Classification

Although gender classification has attracted the interest
of many cognitive psychologists, the number of attempts
made at automating the process have been fewer in com-
parison. The first attempt was made by Gollomb et. al.
([5]) who trained a multi-layer neural network, SEXNET,
to classify gender in 90 image samples of men and women.
Brunelli and Poggio [1] followed a feature-based approach
where two competing Radial Basis Functions (RBFs) (one
for male and one for female) were trained on the geomet-
ric relationships between facial features. Moghaddam and
Yang [9] proposed a non-linear SVM for gender classifi-
cation using the FERET database where the feature vectors
for the SVMs were given by the greyscale values of “thumb-
nail” face images. They quote an error rate of 3.4%, which
seems to be the best result in the open literature.

3. Active Appearance Models

In order to construct an AAM [2] for full-frontal faces,
it is necessary to have a labelled training set in which each
image is accompanied with data specifying the coordinates
of landmark points (usually at least 20) (see Figure 1). The
appearance model is then obtained by constructing a shape
model using the coordinate data (which can be viewed as
a set of shape vectors) and a texture model using both the
image data and the coordinate data. The shape model is
built by aligning all of the shape vectors to a common co-
ordinate frame and performing Principal Component Anal-
ysis (PCA) on these. The shape model is then controlled
by bs, each shape generated by the model calculated using,
x = x + Psbs; where Ps contains the eigenvectors of the
sample covariance matrix and x is the mean of the aligned
shape vectors. To construct a model of gray-levels, each
training image is warped so that the control points match the
mean shape x, using Delaunay triangulation to calculate the
warp parameters. The texture data within the region of the
face now bounded by the mean shape is sampled to form a

Figure 1. An instance of the dataset used to
construct the AAM.

texture vector graw. To minimize the effects of global light-
ing variations, histogram equalization is applied to graw to
form a normalised texture sample gi which can be used in
statistical analysis. In a similar manner to the shape model,
the texture model is constructed from {gi} using PCA. In
order to obtain further dimensionality reduction, the process
of building an AAM also involves applying a further PCA
to the shape and texture data. This results in an “appear-
ance model” that controls both shape and texture. A variant
of the Simulated Annealing algorithm is used to learn how
to update model parameters from pixel errors during search.
This information is combined with the appearance model to
form the “Active Appearance Model”. By modelling the
complete texture and shape of faces, along with incorporat-
ing an efficient model optimisation mechanism, the

4. Expression Recognition using AAMs

We chose to classify four of the basic emotions (“happy”,
“angry”, “sad” and “neutral”) outlined by Ekman [3]. In or-
der to initialise the AAM search, we use an implementation
of the Viola-Jones face detector [14].

4.1. Feature extraction using AAMs

As described in Section 3, in order to train an AAM
which would be useful for our expression classification sys-
tem, it was necessary to have an annotated dataset of full-
frontal face images in which subjects display each of the
four expressions genuinely. It was also important that the
faces in the training set had different appearances as deter-
mined by gender, race and the existence of facial hair and/or
glasses, since this would improve the generalisation perfor-
mance of the final recognition system. With these consid-
erations in mind, we opted to work on a dataset of 1,135
samples drawn from the Purdue AR dataset [8], the IMM
dataset by the Denmark Technical University [13] and the



Figure 2. An example of successful AAM con-
vergence.

FEEDTUM dataset of the FG-NET consortium 1. Only 74
of the 1,135 samples were found to be annotated sufficiently
well for our purposes (with 58 landmark points), so we had
to employ a bootstrapping procedure (see Table 1) to ex-
pand the size of the training set in order for the AAM to
have an acceptable correct convergence rate. As a result of

initialise the current training set;

repeat

train AAM on current training set;

test AAM on the rest of the dataset;

add cases that have correctly converged

to the current training set;

until correct convergence rate is acceptable

Table 1. Bootstrapping algorithm.

this procedure, we managed to expand the training set to one
with 262 fully annotated samples. This training set resulted
in an AAM which had a good enough correct convergence
(search) rate of 81%. In total, the AAM converged correctly
on 809 image samples. Thus, a total of 809 feature vectors
were derived for use in training and testing the classifiers in
the final stage. See Figure 2 for an illustration of the AAM

1Face and Gesture Recognition Network

search procedure. It is also worth noting that the final AAM
had 60 control parameters and hence 60 dimensional feature
vectors.

4.2. Classification

A number of schemes for multi-class classification have
have been proposed [4]. Hierarchical decomposition of a
feature space by means of a tree or cascade structure (e.g.
[14]) has been shown to be highly effective, and allows
binary classifiers such as SVMs to be applied to complex
problems [6].

Using a random subset of 60% of the feature vectors, we
trained a cascade of SVM classifiers. Each binary SVM
classifier in the cascade was trained to act as an expression
detector, outputting a positive response if its expression is
present and a negative response otherwise. So, for example,
a binary SVM trained as a “happy detector” would classify
between expressions which are happy and not happy. We
trained SVMs with linear, polynomial and RBF (Radial Ba-
sis Function) kernels in order to compare performance at
the testing stage. For SVM kernels with parameters (i.e.
the polynomial and RBF kernels) we needed to perform a
search for the best parameter value over a restricted sub-
space of the parameter space. For the polynomial kernel
function SVM, the recommended subspace to use was all
integer degrees p ranging from 1 to the number of degrees-
of-freedom within the feature vectors (in this case 60 - recall
that the equation for this kernel is K(x, y) = (x · y + 1)p).
For the RBF kernel with parameter γ, the subspace of search
was taken as γ = 2−15, 2−14, . . . , 22, 23. Thus, for each
binary classifier, we tested 1 linear, 60 polynomial and 19
RBF SVMs.

We then built a cascade structure by iteratively adding
the classifier that:

(a) has the highest accuracy (as measured by the jointly
optimal detection and false positive rate on the ROC
curve, i.e. the “top-most left-most” point on the curve)
for the given expression,

(b) has the lowest false positive rate out of the remaining
expression classifiers satisfying condition (a).

H S A N U
H 94.4% 0% 0% 1.12% 4.49%
S 0% 70.5% 14.8% 9.84% 4.92%
A 1.64% 4.92% 77.1% 8.14% 8.20%
N 2.60% 13.0% 19.5% 63.6% 1.30%

Table 2. Confusion matrix for the SVM cas-
cade classifying AAM feature vectors.



Figure 3. Expressional classification cas-
cade.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
r
u
e
 
P
o
s
i
t
i
v
e
 
R
a
t
e

                    

Happy

Sad

Angry

Neutral

Figure 4. ROC curves for the binary SVM clas-
sifiers.

In our case, the cascade had the structure shown in Fig-
ure 3. The ROC curves for the binary SVM classifiers used
in the final cascade are shown in Figure 4. The confusion
matrix for the overall cascade is shown in Table 2. In all
confusion matrices, “H”, ”S”, ”A”, ”N” and “U” stand for
“Happy”, “Sad”, “Angry”, “Neutral” and “Unrecognised”
respectively. The overall accuracy of the cascade was cal-
culated as 76.4%.

5. Gender Classification using AAMs

After obtaining AAM feature vectors from the full-
frontal face image dataset, gender classification involved
constructing a training set by using 60% of the feature vec-
tors (randomly chosen) to train a family of SVMs (just as

in Section 4.2). The SVM which gave the highest accuracy
whilst being tested on the remainder (40%) of the dataset
was chosen to be the most superior gender classifier. The
optimal classifier was found to have a staggering accuracy
of 97.6% and a false positive rate of 0.735%. The area un-
der the ROC curve, as shown in Figure 5, was close to its
ideal value: 0.986. In the ROC curve, the positive class was
arbitrarily chosen to correspond to the male class.
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Figure 5. ROC curve for the optimal gender
classifier.

6. Combining Expression and Gender Classifi-
cation

Research in neurobiology seems to indicate that biolog-
ical visual systems are structured in a hierarchical fashion
with mutual feedback occuring between different levels in
the hierarchy [7]. The existence of cells in the visual cortex
which can be triggered by stimuli of ever-increasing com-
plexity 2 and the massive feedback loop from the visual
cortex to the lateral geniculate nucleus (which is at a lower
level than the cortex) clearly support this hypothesis. There-
fore, it is likely that the human brain performs the functions
of expression and gender recognition at different levels in
its complex hierarchy and that there exist feedback paths
between these two levels. With this in mind, we decided to
test whether the performance of our expression classifica-
tion system could be improved if we performed gender clas-
sification in advance and then fed the gender predictions to
gender-dependent expression classifiers. Likewise, we de-
cided to test whether the performance of our gender classi-
fication system could be improved if we performed expres-
sion classification in advance and then fed the expression

2Recent research even suggests that we have singleton top-level cells
that respond only when we see people we recognise.



predictions to expression-dependent gender classifiers. We
describe both these systems below.

6.1. Expression Classification using Gender
Recognition

The architecture of the system in which gender recogni-
tion is used to inform gender-specific expression classifiers
is shown in Figure 6.

Figure 6. Expression Classification using
Gender Recognition.

The gender classifier shown in Figure 6 is identical to
the classifier used in Section 5. The gender-specific ex-
pression classification cascades were trained as in Section
4; however, the training data for each binary SVM was
drawn strictly from either male or female samples, depend-
ing on which gender-specific cascade the binary SVM lived
in. Note that we may expect the gender-specific expression
classifiers to perform in a superior fashion since fixing the
gender variable has the consequence of reducing intra-class
variability. However, it is also worth noting that training
each binary SVM on either male or female samples reduced
the size of the training sets for each, and that this could di-
minish the positive effect of reduced intra-class variability.

H S A N U
H 92.2% 0% 1.82% 3.64% 2.38%
S 0% 75.6% 13.1% 6.72% 4.64%
A 0.77% 3.18% 70.7% 12.3% 13.1%
N 0% 1.67% 4.86% 81.0% 12.5%

Table 3. Confusion matrix for expression
classification using gender recognition.

The overall cascade was tested on all samples not used to
train the binary SVM emotion detectors and the results are
shown in the confusion matrix in Table 3. The overall accu-
racy was found to be 79.9%, which shows an improvement
over not using gender classification at all. We expect that
the improvement would have been more visible if the binary
SVM classifiers in the gender-specific expression recognis-
ers were trained with datasets of a similar size to those in
Section 4.

H S A N U
H 97.1% 0% 0% 0% 2.94%
S 0% 80.7% 10.1% 5.32% 3.88%
A 0.98% 1.34% 77.7% 11.3% 8.73%
N 0% 1.04% 3.44% 88.2% 7.32%

Table 4. Confusion matrix for expression
classification in females using gender recog-
nition.

H S A N U
H 87.3% 0% 3.64% 7.28% 1.82%
S 0% 70.5% 16.1% 8.12% 5.40%
A 0.56% 5.02% 63.7% 13.3% 17.5%
N 0% 2.30% 6.28% 73.7% 17.7%

Table 5. Confusion matrix for expression
classification in males using gender recogni-
tion.

It is also interesting to note, by observing confusion ma-
trices in Tables 4 and 5, that expressions in female faces
tend to be classified more successfully in comparison to
those in male faces!

6.2. Gender Classification using Expression
Recognition

Given that expression classification can be improved
using gender recognition, it may be the case that invert-
ing this hierarchical relationship might cause an improve-
ment in gender classification. The system constructed to
evaluate this hypothesis using the AAM feature-vector set



is depicted in Figure 7. The cascaded expression clas-
sifier shown is identical to the one used in Section 4.
Each expression-specific gender classifier was trained using
AAM feature vectors drawn from the relevant expression
class. For feature-vectors which would not be recognised
by the expression recogniser, it was necessary to use the
“general”, expression-independent gender classifier as built
in Section 5. Note that, as in the previous Section, each
expression-specific gender classifier benefits from the low-
ered intra-class variation (due to the expression being fixed)
yet is trained on smaller training sets.

Figure 7. Gender Classification using Expres-
sion Recognition.

ACC TP FP
Happy 90.7% 86.4% 4.76%
Sad 95.7% 94.6% 2.21%
Angry 97.9% 96.7% 1.32%
Neutral 95.5% 96.0% 4.95%
Unclassified 94.3% 92.1% 2.34%
Average 94.8% 93.2% 3.12%

Table 6. Confusion matrix for gender classifi-
cation using expression recognition.

The confusion matrix shown in Table 6 illustrates the re-
sults obtained. ACC, TP, FP stand for Accuracy, True Posi-
tive Rate and False Positive Rate respectively. Although the
overall results are poorer than those obtained in Section 5,
this was probably due to the (approx.) 4-fold decrease in
the size of the training sets used to train each expression-
specific gender classifier.

7. Summary and Conclusions

We have described the architecture and performance
of an expression and gender recognition system that uses
AAMs for feature extraction and SVMs for classification.

By iteratively optimising accuracy over a test set, we con-
structed an optimal cascade consisting of binary SVM clas-
sifiers for a set of 4 basic expressions. The cascade performs
significantly better at recognition and disambiguation than
other classification combination schemes such as maximum
margin. We further show that performance can be improved
further by combining gender and expression classification.
Best results were obtained using a tree structure consisting
of two expression classification cascades that were selec-
tively trained on male and female images respectively as
determined by an initial gender classifier.

References

[1] R. Brunelli and T. Poggio. Hyperbf networks for gender
classification. In DARPA Image Understanding Workshop,
pages 311–314, 1992.

[2] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active
appearance models. Lecture Notes in Computer Science,
1407:484–502, 1998.

[3] P. Ekman. Emotion in the Human Face. Cambridge Univer-
sity Press, 1982.

[4] J. Ghosh. Multiclassifier systems- back to the future. In
Proc. 3d Int. Workshop on Multiple Classifier Systems, 2002.

[5] B. A. Golomb, D. T. Lawrence, and T. J. Sejnowski. Sexnet:
A neural network identifies sex from human faces. Advances
in Neural Information Processing Systems, pages 572–577,
1991.

[6] H. Graf, E. Cosatto, L. Bottou, I. Durdanovic, and V. Vap-
nik. Parallel support vector machines: The cascade svm. In
NIPS, 2004.
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