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Abstract— Pneumatic muscles are interesting in their use
as actuators in robotics, since they have a high power/weight
ratio, a high-tension force and a long durability. This paper
presents a two-axis planar articulated robot, which is driven
by four pneumatic muscles. Every actuator is supplied by one
electronic servo valve in 3/3-way function. Part of this work
is the derivation of the model description, which describes a
high nonlinear dynamic behavior of the robot. Main focus is
the physical model for the pneumatic muscle and a detailed
model description for the servo valves. The aim is to control
the tool center point (TCP) of the manipulator, which bases
here on a fast subsidiary torque regulator of the drive system
compensating the nonlinear effects. As the robot represents a
MIMO system, a second control objective is defined, which
corresponds here to the average pressure of each muscle-pair.
An optimisation-strategy is presented to meet the maximum
stiffness of the controlled drive system. As the torque controller
assures a fast linear input/output behavior, a standardized
controller is implemented which bases here on the Computed
Torque Method to track the TCP. Measurement results show
the efficiency of the presented cascaded control concept.

I. INTRODUCTION

Most robotic manipulators today apply electric drives in
the form of servomotors or stepper motors. Hydraulic-drive
robots are used for high-speed operations, but their main
drawback lies in the lack of cleanliness. Using servopneu-
matic devices as actuator for robotics is up to now not
state of the art although they are low in price and clean
in their usage. One of the reason for that is their excessive
nonlinear behavior [1], [2], [3]. Thereby the nonlinearity
is caused by the flow characteristic of the servo-valve,
by the gas compressibility, and in the presented work by
the actuator. The set-up consists in this paper of a two-
axis planar articulated robot serving by four pneumatic
muscles. The main advantages of artificial muscles are: high
power/weight ratio, usability in rough environments, and
they are maintenance free. A major drawback of fluidic
muscles is that they are just pulling actuators and possess
a nonlinear contraction-pressure dependency of the force.
Each muscle is served by one electronic proportional direc-
tional control valve in 3/3-way function.

The first part of this work deals with the physical
model of the robot. The description of the fluid dynamic
includes a detailed model of the servo-valve and the
pressure behavior inside the muscles [4], [5]. Although
several works are published about the nonlinear control

of pneumatic muscles, their force behavior was modelled
as a rough nonlinear approximation by neglecting the en-
ergy, which is needed to deform the membrane [6], [7],
[8], [9], [10], [11], [12]. In these approaches the force
is always proportional to the pressure inside the muscle.
That means the maximum contraction is mapped by one
equilibrium point and is thereby pressure-independent. This
paper presents measurement results (combined with those
archived by using the finite-element-method), which shows
that this approximation causes high failures as there exists
a pressure-contraction depended equilibrium-line. Based on
these characteristic, a new analytical approach is suggested
resulting with a precise mapping of the muscle-force.

The control objective is to ensure a fast torque regulation
of each joint in order to use for the position tracking
standard control applications like computed-torque or PD-
gravity controller [13]. A force controller, which bases on
the feedback linearization, was successfully tested on an
experimental setup consisting of one pneumatic muscle as
actuator [11]. On the contrary to that, the presented robot
is driven by four fluidic muscles yielding to a MIMO-
system. That makes it possible to define a second control
variable, which is in the presented case the average pressure
inside the antagonist- and agonist-muscle. An optimization
strategy is derived to define this mean pressure in such a
way that a maximum stiffness of each joint is guaranteed.

II. SYSTEM ILLUSTRATION

The two-axis planar articulated robot (figure 1) is driven
by 4 pneumatic muscles. This kind of actuator was pre-
sented in 1999 by the pneumatic manufacturer Festo [16].
It consists of a cylindrical, an isotropic flexible rubber tube
and two connection flanges. When the muscle is inflated
with compressed air, it widens. Hence a tension force, as
well as a contraction movement in the longitudinal direction
is created. The muscle is simply a flexible pulling actuator
and cannot transmit pressure forces. The tension force is at
its maximum at the beginning of the contraction and drops
with the stroke to zero. It produces a maximum pulling
force of 1800N , contracts up to 25% of its rated length
and it possesses a very long life period of at least 10
million switching cycles. In the mapped adjustment, each
joint can be moved around ±15degree. In order to achieve a
larger sphere of action, it is possible to align the kinematics
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(by varying the effective arm length or distance of the
muscles to the axis). To inflate and deflate the muscles, four
electronic proportional directional control valves in 3/3-way
function are used. Two optical angle incremental encoders
measure the position of each axis. Four pressure sensors
gauge the pressure inside the tubes.
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Fig. 1. Experimental setup; α1: joint angle of the first axis, α2: joint
angle of the second axis, 1: angle encoder, 2: pneumatic muscle, 3: first
axis, 4: pressure sensor, 5: second axis.

III. SYSTEM MODEL

To depict the dynamic and static behavior of the system,
a mathematical set of nonlinear equations is derived. The
initial point is to describe the pressure inside the muscle
in relation to the valves air flow rate ṁi. The ideal gas
equation describes the dependency of the gas mass: m =
pV
RT , where m = gas mass inside the muscle, p = pressure
inside the muscle, V = muscles inner volume, R = specific
gas constant, T = gas temperature. Because the muscle tube
consists of an elastomer, it can only pass partly the heat
through the material. Any variation of the muscle’s volume
or pressure behave between the ideal condition isothermal
and adiabatic and can be described by the polytrophic
gas law: pbV

χ
b = peV

χ
e = constant, where the index

”b” indicates the beginning and index ”e” points the end
of the variation of the muscle’s volume or pressure. The
polytrophic exponent χ is identified to χ = 1.26. The total
differential of the latter mentioned combined with the ideal
gas equation form the differential derivative for the pressure
inside of each muscle ”i”:

ṗi =
χ

Vi

(
RTṁi − piV̇i

)
. i = 1, .., 4 (1)

The expression inside the brackets of equation (1) consid-
ers the power balance of the pressurized flow rate. The
reciprocal volume before the bracket takes account of the

compressibility of the gas. The valves slide-stroke is con-
trolled by an underlying position controller. That guarantees
proportionality between the stroke position xV and the set
point voltage u. To achieve a high control frequency, the
valve stroke is badly sealed in order to minimize static
friction effects. That means, that the mass flow rate ṁi

depends on an active flow rate ṁ12i and a leakage flow rate
ṁ23i: ṁi = ṁ12i − ṁ23i, i = 1, .., 4. [5] and [4] suggest
to describe those effect with an equivalent network, which
is build up by two air resistances C12(xV ) and C23(xV )
depending respectively on the valve stroke xV . The leakage
and active mass flow rate are expressed by the common
pneumatic flow rate equation [17]:

ṁi = C12i(xV i)ρ0psΨ

(
pi

ps
, b12i(xV i)

)
.. i = 1, .., 4

.. −C23i(xV i)ρ0piΨ

(
p0

pi
, b23i(xV i)

)
. (2)

where ps = supply pressure, p0 = atmospheric pressure,
pi = pressure inside each muscle, and ρ0 = atmospheric
air density. The function Ψ considers the state of the flow
rate. In the case the pressure ratio at an air resistance is
smaller than the critical pressure ratio b, the flow rate is
limited by the sonic speed, which results that Ψ equalling
one. Is the pressure ratio higher than the critical one, the
flow function Ψ is proportional to the square root of the
pressure ratio:

Ψ

(
psec

pprim
, b

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1,
psec

pprim
< b,√√√√√√1 −

⎛
⎜⎝

psec

pprim
− b

1 − b

⎞
⎟⎠

2

,
psec

pprim
≥ b,

(3)

where pprim = pressure in front, and psec = behind the
considered air resistance. As mentioned in [5], the critical
pressure ratio b depends also on the valve-slide stroke
position. The air conductivities C12, C23 and the critical
pressure ratios b12, b23 are identified experimentally. The
dynamic response of the servo valve is equivalent to a
frequency of approximately 100Hz, for a desired control
frequency of about 20Hz this effect is negligible. As in
[5] already shown, the air conductivity and the critical
pressure ratio depends strongly on the input voltage of the
valve. Edges inside the valve cause turbulent flow effects
especially at high flow rates. In this case the air resistance
rises, while the flow rate behaves earlier in the subcritical
state as ideally supposed. This property shows figure 2 and
figure 3: at high input voltages, the air conductivities flattens
and the critical pressures falls up to b = 0.32. In the range
of zero volt, one can see that the conductivities brake down
significantly. This effect is provoked by the covering of the
upper and lower steering edge of the valve stroke in order
to guarantee just small air leakage around u = 0V .
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Next, it is necessary to describe the inner volume of the
muscles, as it characterizes the dynamic pressure build-up
inside the bladder (eq. (1)). It is proofed by measurements,
that the inner volume of the muscle depends merely on
the contraction length and not on the pressure. As already
discussed in [11], the volume is experimentally identified
and approximated by a polynomial function of third order
depending on the contraction zi:

Vi(zi) =

3∑
j=0

cjz
j
i . i = 1, .., 4 (4)

The physical model of the muscle force behavior is derived
for example by [15], [8], [10], [11]. The primary idea of
that is the energy conservation of mechanical and gas energy
displacements. The approaches results thereby always to a
muscle force behavior, which is proportional to the pressure:
Fm = p · dV

dz . That means, elasticity effects of the tensile
material are fully neglected. In order to achieve high control
frequencies of the closed loop scheme, an exact mapping
of the force behavior is essential. In the following an an-
alytical muscle-force function is presented, which matches
the measured one at least to ±15N . Thereby the pneumatic
muscle is considered as an one way cylinder (with virtual
flexible diameter as a function of the contraction), which
moves against a spring (with a contraction depended spring
tension). The function of the muscle force Fm can be
described as:

Fm(p, z) = p · A(z) − F (z) (5)

where A(z) = virtual piston area and F (z) = the tension
force of the spring, depending both on the contraction z,
and p = absolute pressure inside the muscle. The virtual
piston area is in this approach supposed to be a polynomial
function of the second order. To map the strong rise of
the force at small contraction displacements (see figure
4) precisely, it would be necessary to use a polynomial
function of the 30th order for the spring force-behavior. To
reduce the order, a polynomial of the 3rd order is supposed,
which is added by a power function. Hence, the analytical
muscle force function yields to:

Fm(p, z) = p ·

2∑
j=0

djz
j
−

⎛
⎝ 3∑

j=0

ejz
j + e4z

2/3

⎞
⎠ . (6)

The parameters dj , ej , e4 are identified by using opti-
mization algorithms to minimize the mean square-failure
between analytical and numerical force characteristics. The
result is shown in figure 5. One can see failures of approx-
imately ±5N inside the characteristic diagram and failures
up to ±15N at the outer line. Function (6) is used to
calculate the torque applied on the axis of the robot. The
driving torque T1, T2 on the first and second joint is given
by:

T1 = Fm1(α1, p1) · s1(α1) − Fm2(α1, p2) · s2(α1),

T2 = Fm3(α2, p3) · s3(α2) − Fm4(α2, p4) · s4(α2), (7)
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Fig. 2. Identified air conductivity in respect of the input voltage of the
valve.
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Fig. 3. Identified critical pressure ratio in respect of the input voltage of
the valve.

1
2

3
4

5
6

7
0

5
10

15
20

25

0

500

1000

1500

F [N] 

p [bar] z [%] 

Fig. 4. Measured force characteristic of the pneumatic muscle MAS-20
(Festo).

thereby the contraction z of the force eq. (6) is expressed by
the joint angles αi, which are expressed by trigonometrical
transformation based on the geometry of the robot, si =
the effective lever arm depending on the joint angles, and
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Fig. 5. Error in force of the analytical muscle-force function.

pi is the pressure inside each muscle. Using the Lagrange
formalism to derive the dynamic model of the motion yields
to:

M(α)α̈ + C(α, α̇) + G(α) = T (α, p), (8)

where M = mass matrix, C = matrix of coriolis and
centripetal effects, G = gravity matrix, α = vector of the
joint angle, p = vector of the applied pressure, and T =
the torque matrix given by eq. (7). As the joint is hinged
nearly frictionless, those effects are neglected.

IV. CONTROLLER DESIGN

The ambition is to track the tool center point (TCP) of
the robot. In this work it is developed a cascaded control
structure. The outer control loop consits of the ”Computed-
Torque Method”, which is state of the art [13]. Thereby
the dynamic coupling of the motion is fully compensated.
The input signals are the reference trajectory of each joint,
the output of the outer control is thereby the reference
torque, which has to be applied by the inner control using
an accurate and fast torque regulator. As the system has
MIMO, it is chosen the mean pressure of antagonist-
and agonist-muscle, which can be interpreted as a second
control variable. The whole structure demonstrates figure 6.

A. Outer control loop: Trajectory tracking

As the dynamic model (8) is differential flat, it can be
easily computed a feedforward control:

T ref = M(αref )α̈ref + C(αref , α̇ref ) + G(αref ). (9)

The reference position αref and its derivatives denote the
desired trajectory, which are calculated by a path planner.
Next, the acceleration vector of eq. (9) is set to a new
input ν =: α̈ and the reference variables are exchanged by
the measured one. In order to guarantee a fast and stable

Fig. 6. Structure of the cascaded control concept.

tracking, the new input is calculated by a feedforward and
feedback control:

ν = α̈ref + K1(α̇ − α̇ref ) + K0(α − αref ). (10)

Thereby the matrix K1 and K0 are the control gains for
the angular velocity and angle error respectively, and are
chosen by pole assignment. Combining eq. (10) with eq.
(9) leads to the trajectory tracking law:

T ref = M(α)ν + C(α, α̇) + G(α). (11)

B. Inner control loop: Torque regulator

The main object of the inner control loop is to track the
reference torque, which is computed by the latter presented
superior trajectory control. As the torque of each joint
depends not on the absolute pressure inside the muscles, eq.
(7) defines an overdetermined set of equations by solving
the pressures pi. Therefore an additional control variable is
suggested, which is in this paper the pressure-average of
each muscle-pair:

pm1ref
= (p1ref

+ p2ref
)/2,

pm2ref
= (p3ref

+ p4ref
)/2, (12)

where pmiref
= reference mean pressure of antagonist-

and agonist-muscle in respect of the reference pressure of
each muscle piref

. Combining eq. (7) with eq. (12) (thereby
the variables T1, T2 and pi of eq. (7) are replaced by the
referenced one), it is possible to derive the four reference
pressures piref

in respect of a demanded reference torque
T ref and a freely chosen average pressure pm1ref

, pm2ref

of the two muscles pairs:

p
ref

= Θ−1(p
mref

, T ref , α), (13)

where Θ−1 is the inverse function of eq. (7), combined
with eq. (12). To stabilize the pressure inside the muscles, a
nonlinear controller is used, which bases on the exact input-
output linearizing method [14]. Thereby the flow eq. (1) is
added by the mass flow rate eq.(2), the volume function
(4) is expressed by the joint angles, and the slide-stroke
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of the valve is supposed to be proportional to the input.
By converting this differential equation to the valves input
voltages, the inverse mapping of the pressure behavior is
achieved by:

ṁiref
=

1

RT

(
Vi(α1, α2)

χ
ṗi + V̇i(α1, α2)pi

)
, (14)

ui = ϑ−1
i (ṁiref

, pi, ε), i = 1, .., 4 (15)

where ϑ−1 indicates the numerically inverted valve function
(2), and ε indicates the constant gain to express the valve
voltage in respect of the valve stroke ui = εxiV

. As the
pressure derivation is not part of the system, it can be chosen
freely:

νi
!
= ṗi, i = 1, .., 4 (16)

where ν denotes the external reference input. To stabilize
the pressure, the external reference input is chosen so as to
assure a vanishing tracking error ei = piref

− pi:

νi = ṗiref
+ Ki(piref

− pi), i = 1, .., 4 (17)

where Ki > 0 specifies the control frequency and piref

denotes the desired pressure inside each muscle represented
by eq. (13). The resulting structure of the torque regulator
can be seen in figure 7. While the reference torque is set

T ref , p
mref

inverse driving
torque (eq. (13))

p
ref

p
ref

ṗ
ref

d
dt

α, p

K

ṁref

p

ui

α

i = 1, .., 4

pressure controller basing on I/O-linearizing
(eq. (14) + eq. (17))

inverse valve
function

(eq. (15))

Fig. 7. Structure of the torque regulator.

by the superior trajectory controller, the reference average
pressure p

mref
can be chosen in a wide range. Thereby it

characterizes the stiffness of each joint. In the following
an optimization strategy is introduced, which guarantees
a maximum stiffness. This is achieved by maximizing the
amplification of the plant controlled system, which means,
that a variation of the reference torque produces just a
minimum signal in ui. Assuming a linear air conductivity
of the valve, negligible air leakage and a constant critical

Fig. 8. Computation of the optimal average pressure in order to maximize
the stiffness.

pressure ration b, the differential equation of the pressure
eq. (1) and eq. (2) can be written as:

ṗi =
χ

Vi

(
RTψi(pi) · ui − piV̇i

)
, i = 1, 3. (18)

ṗi+1 =
χ

Vi+1

(
RTψi+1(pi+1) · ui+1 − pi+1V̇i+1

)
,

where the index ”i” and ”i+1” label the antagonist- and
agonist-muscle of each joint, ψ(p) denotes the air flow
characteristic given by eq. (3) and eq. (2). The amplification
of the pressure plant has the form χ

V ((RTψ(p)). Assuming,
that no external torque is applied, pi and pi+1 can be
expressed by the references average pressure using eq. (13).
By setting the average pressure at a high level, it can be
fast inflated but slowly deflated, if a low average pressure
is used, this results to a slow inflating but fast deflating. To
find the optimal average pressure, it is given the summation
of the pressure-amplification:

Q1 =
ψ1(p1mref

, α1)

V1(α1)
+

ψ2(p1mref
, α1)

V2(α1)
→ max,

Q2 =
ψ3(p2mref

, α2)

V3(α2)
+

ψ4(p2mref
, α2)

V4(α2)
→ max, (19)

which has to be maximized in respect of the average pres-
sure p1mref

and p2mref
. In consideration of the maximiza-

tion of the allowed working range (which is restricted by
the geometry and the pressure limitation) and the avoidance
of any discontinuities, the result is shown in figure 8 just
for the upper axis.

V. EXPERIMENTAL RESULTS

The control frequency of the trajectory controller is
chosen to 7Hz, and the control frequency of the presented
torque regulator is set to 20Hz. Figure 9 shows the joint
angle after a stepwise disturbance. One can see a good
damping behavior. Figure 10 and 11 indicate the reference
and measured angle of a coupled tracking movement.
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Fig. 9. Joint angles after a stepwise disturbance.
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Fig. 10. Reference and measured joint angle α1 (coupled motion
illustrated in fig. 11)

VI. CONCLUSION

This paper presents a physical model based torque regu-
lator for a two-axis planar articulated robot, which is driven
by four pneumatic muscles. It is derived a detailed model of
the dynamic pressure behavior inside the muscles, including
the modelling of the servo-valve. The used fluidic muscle
comes with a high nonlinearity of the force. It is presented
a new analytical approach to map the static contraction-
pressure dependency of the muscle-force. The motivation of
the controller is to ensure a fast torque regulation of each
joint in order to use standard tracking control application,
which bases for example on the Computed-Torque method.
This means the driving torque has to equal the desired one.
To achieve this, the paper derives a control strategy, which
compensates the nonlinear effects of the pressure dynamic
and the nonlinear torque characteristic of the actuators. As
the robot is a MIMO system, it is possible to chose a further
control variable, which corresponds in this approach to the
average pressure of each muscle-pair. In the sense of an
optimization strategy, the average pressure is chosen in such
a way to ensure a maximum stiffness of the drive system.
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